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Abstract
In this paper two scheduling models are addressed. First
is the standard model (unicast) where requests (or jobs)
are independent. The other is the broadcast model where
broadcasting a page can satisfy multiple outstanding requests
for that page. We consider online scheduling of requests
when they have deadlines. Unlike previous models, which
mainly consider the objective of maximizing throughput
while respecting deadlines, here we focus on scheduling all
the given requests with the goal of minimizing the maximum
delay factor. The delay factor of a schedule is defined to be
the minimum α ≥ 1 such that each request i is completed by
time ai +α(di − ai) where ai is the arrival time of request i
and di is its deadline. Delay factor generalizes the previously
defined measure of maximum stretch which is based only the
processing times of requests [9, 11].

We prove strong lower bounds on the achievable com-
petitive ratios for delay factor scheduling even with unit-time
requests. Motivated by this, we consider resource augmen-
tation analysis [24] and prove the following positive results.
For the unicast model we give algorithms that are (1 + ε)-
speedO( 1

ε )-competitive in both the single machine and mul-
tiple machine settings. In the broadcast model we give an
algorithm for same-sized pages that is (2 + ε)-speed O( 1

ε2 )-
competitive. For arbitrary page sizes we give an algorithm
that is (4 + ε)-speed O( 1

ε2 )-competitive.

1 Introduction
Scheduling requests (or jobs1) that arrive online is a funda-
mental problem faced by many systems and consequently
there is a vast literature on this topic. A variety of mod-
els and performance metrics are studied in order to capture
the requirements of a system. In this work, we consider a
recently suggested performance measure called delay factor
[14, 10] when each request has an arrival time (also referred
to as release time) and a deadline. We consider both the tra-
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1In this paper we use requests instead of jobs since we also address
the broadcast scheduling problem where a request for a page is more
appropriate terminology than a job.

ditional setting where requests are independent, and also the
more recent setting of broadcast scheduling when different
requests may ask for the same page (or data) and can be si-
multaneously satisfied by a single transmission of the page.
We first describe the traditional setting, which we refer to as
the unicast setting, to illustrate the definitions and and then
describe the extension to the broadcast setting.

We assume that requests arrive online. The arrival time
ai, the deadline di, and the processing time `i of a request
Ji are known only when i arrives. We refer to the quantity
Si = (di − ai) as the slack of request i. There may be a
single machine or m identical machines available to process
the requests. Consider an online scheduling algorithm A.
Let fi denote the completion time or finish time of Ji under
A. Then the delay factor of A on a given sequence of
requests σ is defined as αA(σ) = max{1,maxJi∈σ

fi−ai

di−ai
}.

In other words αA measures the factor by which A has
delayed jobs in proportion to their slack. The goal of
the scheduler is to minimize the (maximum) delay factor.
We consider worst-case competitive analysis. An online
algorithm A is r-competitive if for all request sequences
σ, αA(σ) ≤ rα∗(σ) where α∗(σ) is the delay factor of
an optimal offline algorithm. Delay factor generalizes the
previously studied maximum stretch measure introduced by
Bender, Chakraborty and Muthukrishnan [9]. The maximum
stretch of a schedule A is maxJi∈σ(fi − ai)/`i where `i is
the length or processing time of Ji. By setting di = ai + `i
for each request Ji it can be seen that delay factor generalizes
maximum stretch.

In the broadcast setting, multiple requests can be satis-
fied by the same transmission. This model is inspired by a
number of recent applications — see [7, 2, 1, 8] for the mo-
tivating applications and the growing literature on this topic.
More formally, there are n distinct pages or pieces of data
that are available in the system, and clients can request a spe-
cific page at any time. This is called the pull-model since the
clients initiate the request and we focus on this model in this
paper (in the push-model the server transmits the pages ac-
cording to some frequency). Multiple outstanding requests
for the same page are satisfied by a single transmission of
the page. We use J(p,i) to denote the i’th request for a page
p ∈ {1, 2, . . . , n}. We let a(p,i) and d(p,i) denote the ar-
rival time and deadline of the request J(p,i). The finish time
f(p,i) of a request J(p,i) is defined to be the earliest time af-



ter a(p,i) when the page p is sequentially transmitted by the
scheduler. Note that multiple requests for the same page can
have the same finish time. The delay factor αA for an al-
gorithm A over a sequence of requests σ is now defined as
max{1,max(p,i)∈σ

f(p,i)−a(p,i)

d(p,i)−a(p,i)
}.

Motivation: There are a variety of metrics in the scheduling
literature and some of the well-known and widely used
ones are makespan and average response time (or flowtime).
More recently, other metrics such as maximum and average
stretch, which measure the waiting time in proportion to
the size of a request, have been proposed [9, 26, 32]; these
measures were motivated by applications in databases and
web server systems. Related metrics include Lp norms of
response times and stretch [6, 3, 16] for 1 ≤ p < ∞. In a
variety of applications such as real-time systems and data
gathering systems, requests have deadlines by which they
desire to be fulfilled. In real-time systems, a hard deadline
implies that it cannot be missed, while a soft deadline
implies some flexibility in violating it. In online settings
it is difficult to respect hard deadlines. Previous work has
addressed hard deadlines by either considering periodic tasks
or other restrictions [12], or by focusing on maximizing
throughput (the number of jobs completed by their deadline)
[28, 13, 33]. It was recently suggested by Chang et al.
[14] that delay factor is a useful and natural relaxation to
consider in situations with soft deadlines where we desire all
requests to be satisfied. In addition, as we mentioned already,
delay factor generalizes maximum stretch which has been
previously motivated and studied in [9, 11].

Results: We give the first results for online scheduling for
minimizing delay factor in both the unicast and broadcast
settings. Throughout we assume that requests are allowed to
be preempted if they have varying processing times. We first
prove strong lower bounds on online competitiveness.

• For unicast setting no online algorithm is ∆0.4/2-
competitive where ∆ is the ratio between the maximum
and minimum slacks.

• For broadcast scheduling with n unit-sized pages there
is no n/4-competitive algorithm.

We resort to resource augmentation analysis, introduced by
of Kalyanasundaram and Pruhs [24], to overcome the above
lower bounds. In this analysis the online algorithm is given
faster machines than the optimal offline algorithm. For
s ≥ 1, an algorithm A is s-speed r-competitive if A when
given s-speed machine(s) achieves a competitive ratio of r.
We prove the following.

• For unicast setting, for any ε ∈ (0, 1], there is an (1+ε)-
speed O(1/ε)-competitive algorithm in both single and
multiple machine cases. Moreover, the algorithm for

the multiple machine case immediately dispatches an
arriving request to a machine, and is non-migratory.

• For broadcast setting, for any ε ∈ (0, 1], there is a
(2 + ε)-speed O(1/ε2)-competitive algorithm for unit-
sized (or similar sized) pages. If pages can have varying
length, then for any ε ∈ (0, 1], there is a (4 + ε)-speed
O(1/ε2)-competitive algorithm.

Our results for the unicast setting are related to, and
borrow ideas from, previous work on minimizing Lp norms
of response time and stretch [6] in the single machine and
parallel machine settings [3, 16].

Our main result is for broadcast scheduling. Broadcast
scheduling has posed considerable difficulties for algorithm
design. In fact most of the known results are for the offline
setting [25, 21, 22, 23, 5, 4] and several of these use resource
augmentation. The difficulty in broadcast scheduling arises
from the fact that the online algorithm may transmit a page
multiple times to satisfy distinct requests for the same page,
while the offline optimum, which knows the sequence in
advance, can save work by gathering them into a single
transmission. Online algorithms that maximize throughput
[28, 13, 33, 17] get around this by eliminating requests. Few
positive results are known in the online setting where all
requests need to be scheduled [8, 19, 20] and the analysis
in all of these is quite non-trivial. In contrast, our algorithm
and analysis are direct and explicitly demonstrate the value
of making requests wait for some duration so as to take
advantage of potential future requests for the same page. We
hope this idea can be further exploited in other broadcast
scheduling contexts. We mention that even in the offline
setting, only an LP-based 2-speed algorithm is known for
delay factor with unit-sized pages [14].

Related Work: We refer the reader to the survey on online
scheduling by Pruhs, Sgall and Torng [31] for a comprehen-
sive overview of results and algorithms (see also [30]). For
jobs with deadlines, the well-known earliest-deadline-first
(EDF) algorithm can be used in the offline setting to check if
all the jobs can be completed before their deadline. A sub-
stantial amount of literature exists in the real-time systems
community in understanding and characterizing restrictions
on the job sequence that allow for schedulability of jobs with
deadlines when they arrive online or periodically. Previous
work on soft deadlines is also concerned with characterizing
inputs that allow for bounded tardiness. We refer the reader
to [29] for the extensive literature on scheduling issues in
real-time systems.

Closely related to our work is that on max stretch
[9] where it is shown that no online algorithm is O(P 0.3)
competitive even in the preemptive setting where P is ratio
of the largest job size to the smallest job size. [9] also gives
an O(

√
P ) competitive algorithm which was further refined

in [11]. Resource augmentation analysis for Lp norms of



response time and stretch from the work of Bansal and Pruhs
[6] implicitly shows that the shortest job first (SJF) algorithm
is a (1 + ε)-speed O(1/ε)-competitive algorithm for max
stretch. Our work shows that this analysis can be generalized
for the delay factor metric. For multiple processors our
analysis is inspired by the ideas from [3, 16]. In [10], the
authors suggest delay factor as a performance measure under
the name of maximum interval stretch. They consider a
model in which the speed of processing a job increases as
the job approaches its deadline. Implicit in their work is
a resource augmentation result in the unicast setting when
there exists an offline schedule that finishes all the jobs by
their deadline.

Broadcast scheduling has seen a substantial amount of
research in recent years; apart from the work that we have
already cited we refer the reader to [15, 27], the recent paper
of Chang et al. [14], and the surveys [31, 30] for several
pointers to known results. Our work on delay factor is
inspired by [14]. As we mentioned already, a good amount
of the work on broadcast scheduling has been on offline
algorithms including NP-hardness results and approximation
algorithms (often with resource augmentation). For delay
factor there is a 2-speed optimal algorithm in the offline
setting and it is also known that unless P=NP there is no
2− ε approximation [14]. In the online setting the following
results are known. For maximum response time, it is shown
in [8, 14] that first-in-first-out (FIFO) is 2-competitive. For
average response time, Edmonds and Pruhs [19] give a (4 +
ε)-speedO(1/ε)-competitive algorithm; their algorithm is an
indirect reduction to a complicated algorithm of Edmonds
[18] for non-clairvoyant scheduling. They also show in [20]
that longest-wait-first (LWF) is a 6-speed O(1)-competitive
algorithm for average response time. Constant competitive
online algorithms for maximizing throughput [28, 13, 33, 17]
for unit-sized pages.

We describe our results for the unicast setting in Section 2
and for the broadcast settings in Section 3.

Notation: We let Si = di − ai denote the slack of Ji in
the unicast setting. When requests have varying processing
times (or lengths) we use `i to denote the length of Ji. We
assume without loss of generality that Si ≥ `i. In the
broadcast setting, (p, i) denotes the i’th request for page p.
We assume that the requests for a page are ordered by time
and hence a(p,i) ≤ a(p,j) for i < j. In both settings we
use ∆ to denote the ratio of maximum slack to the minimum
slack in a given request sequence.

2 Unicast Scheduling
In this section we address the unicast case where requests
are independent. We may thus view requests as jobs although
we stick with the notation of requests. For a request Ji, recall
that ai, di, `i, fi denote the arrival time, deadline, length, and

finish time respectively. An instance with all `i = 1 (or
more generally the processing times are the same) is referred
to as a unit-time instance. It is easy to see that preemption
does not help much for unit-sized instances. Assuming that
the processing times are integer valued then in the single
machine setting one can reduce an instance with varying
processing time to an instance with unit-times as follows.
Replace Ji, with length `i, by `i unit-sized requests with the
same arrival and deadline as that of Ji.

As we had remarked earlier, scheduling to minimize the
maximum stretch is a special case of scheduling to minimize
the maximum delay factor. In [9] a lower bound of P 1/3

is shown for online maximum stretch on a 1-speed machine
where P is the ratio of the maximum processing time to the
minimum processing time. They show that this bounds holds
even when P is known to the algorithm. This implies a lower
bound of ∆1/3 for minimizing the maximum delay factor.
Here we improve the lower bound for maximum stretch to
P 0.4/2 when the online algorithm is not aware of P . A proof
can be found in the appendix.

THEOREM 2.1. There is no 1-speed P .4

2 -competitive algo-
rithm for online maximum stretch when P is not known in
advance to the algorithm.

COROLLARY 2.1. There is no 1-speed ∆.4

2 -competitive al-
gorithm for delay factor scheduling when ∆ is not known in
advance with unit-time requests.

In the next two subsections we show that with (1 +
ε) resource augmentation, simple algorithms achieve an
O(1/ε) competitive ratio.

2.1 Single Machine Scheduling We analyze the simple
shortest-slack-first (SSF) algorithm which at any time t
schedules the request with the shortest slack.

Algorithm: SSF
• At any time t schedule the request with with the

minimum slack which has not been satisfied.

THEOREM 2.2. The algorithm SSF is (1 + ε)-speed ( 1
ε )-

competitive for minimizing the maximum delay factor in
unicast scheduling.

Proof. Consider an arbitrary request sequence σ and let α be
the maximum delay factor achieved by SSF on σ. If α = 1
there is nothing to prove, so assume that α > 1. Let Ji be
the request that witnesses α, that is α = (fi − ai)/Si. Note
that SSF does not process any request with slack more than
Si in the interval [ai, fi]. Let t be the largest value less than
or equal to ai such that SSF processed only requests with
slack at most Si in the interval [t, fi]. It follows that SSF
had no requests with slack≤ Si just before t. The total work



that SSF processed in [t, fi] on requests with slack less than
equal to Si is (1 + ε)(fi − t) and all these requests arrive
in the interval [t, fi]. An optimal offline algorithm with 1-
speed can do total work of at most (fi − t) in the interval
[t, fi] and hence the earliest time by which it can finish these
requests is fi + ε(fi − t) ≥ fi + ε(fi − ai). Since all these
requests have slack at most Si and have arrived before fi, it
follows that α∗ ≥ ε(fi − ai)/Si where α∗ is the maximum
delay factor of the optimal offline algorithm with 1-speed
machine. Therefore, we have that α/α∗ ≤ 1/ε.

REMARK 2.1. For unit-time requests, the algorithm that
non-preemptively schedules requests with the shortest slack
is a (1 + ε)-speed 2

ε -competitive for maximum delay factor.

2.2 Multiple Machine Scheduling We now consider de-
lay factor scheduling when there are m machines. To adapt
SSF to this setting we use intuition from previous work on
minimizing Lp norms of flow time and stretch [6, 3, 16]. We
develop an algorithm that immediately dispatches an arriv-
ing request to a machine, and further does not migrate an
assigned request to a different machine once it is assigned.
Each machine essentially runs the single machine SSF algo-
rithm and thus the only remaining ingredient to describe is
the dispatching rule. For this purpose the algorithm groups
requests into classes based on their slack. A request Ji is said
to be in class k if Si ∈ [2k, 2k+1). The algorithm maintains
the total processing time of requests (referred to as volume)
that have been assigned to machine x in each class k. Let
Ux=k(t) denote the total processing time of requests of class
k assigned to machine x by time t. With this notation, the
algorithm SSF-ID (for SSF with immediate dispatch) can be
described.

Algorithm: SSF-ID

• When a new request Ji of class k arrives at time
t, assign it to a machine x where Ux=k(t) =
miny U

y
=k(t).

• Use SSF on each machine separately.

The rest of this section is devoted to the proof of the
following theorem.

THEOREM 2.3. SSF-ID is a (1 + ε)-speed O( 1
ε )-

competitive algorithm for online delay factor scheduling on
m machines.

We need a fair amount of notation. For each time t,
machine x, and class k we define several quantities. For
example Ux=k(t) is the total volume assigned to machine
x in class k by time t. We use the predicate “≤ k” to
indicate classes 1 to k. Thus Ux≤k(t) is the total volume
assigned to machine x in classes 1 to k. We let Rx=k(t)

to denote the remaining processing time on machine x at
time t and let P x=k(t) denote the total volume that x has
finished on requests in class k by time t. Note that P x=k(t) =
Ux=k(t)−Rx=k(t). All these quantities refer to the algorithm
SSF-ID. We use V ∗=k(t) and V=k(t) to denote the remaining
volume of requests in class k in an optimal offline algorithm
with speed 1 and SSF-ID with speed (1 + ε), respectively.
Observe that V=k(t) =

∑
xR

x
=k(t). The quantities V ∗≤k(t)

and V≤k(t) are defined analogously.
The algorithm SSF-ID balances the amount of process-

ing time for requests with similar slack. Note that the as-
signment of requests is not based on the current volume of
unfinished requests on the machines, rather the assignment
is based on the volume of requests that were assigned in the
past to different machines. We begin our proof by showing
that the volume of processing time of requests less than or
equal to some slack class is almost the same on the different
machines at any time. Several of these lemmas are essen-
tially the same as in [3].

OBSERVATION 1. For any time t and two machines x and
y, |Ux=k(t) − Ux=k(t)| ≤ 2k+1. This also implies that
|Ux≤k(t)− Ux≤k(t)| ≤ 2k+2.

Proof. The first inequality holds since all of the requests of
class k are of size ≤ 2k+1. The second inequality follows
easily form the first.

Proofs of the next two lemmas can be found in the
appendix.

LEMMA 2.2. Consider any two machines x and y. The
difference in volume of requests that have already have been
processed is bounded as |P x≤k(t)− P y≤k(t)| ≤ 2k+2.

LEMMA 2.3. At any time t the difference between the resid-
ual volume of requests that needs to be processed, on any
two different machines, x and y is bounded as |Rx≤k(t) −
Ry≤k(t)| ≤ 2k+3.

COROLLARY 2.2. At any time t, V ∗≤k(t) ≥ V≤k(t) −
m2k+3.

Now we get to the proof of the upper bound on SSF-
ID, when given (1 + ε)-speed, in a similar fashion to the
single machine case. Consider an arbitrary request sequence
σ and let Ji be the request that witnesses the delay factor
α of SSF-ID on σ. Let k be the class of Ji. Therefore
α = (fi − ai)/Si. Also, let x be the machine on which
Ji was processed by SSF-ID. We use α∗ to denote the delay
factor of some fixed optimal offline algorithm that uses m
machines of speed 1.

Let t be the last time before ai when machine x pro-
cessed a request of class > k. Note that t ≤ ai since



x does not process any request of class > k in the in-
terval [ai, fi]. At time t we know by Corollary 2.2 that
V ∗≤k(t) ≥ V≤k(t)−m2k+3. If fi ≤ ai + 2k+4 then SSF-ID
achieves a competitive ratio of 16 since Ji is in class k. Thus
we will assume from now on that fi > ai + 2k+4.

In the interval I = [t, fi), SSF-ID completes a total
volume of of (1+ε)(fi−t) on machine x. Using Lemma 2.2,
any other machine y also processes a volume of (1 + ε)(fi−
t)− 2k+3 in I . Thus the total volume processed by SSF-ID
during I in requests of classes ≤ k is at least m(1 + ε)(fi −
t) − m2k+3. During I , the optimal algorithm finishes at
most m(fi − t) volume in classes ≤ k. Combining this with
Corollary 2.2, we see that

V ∗≤k(fi) ≥ V≤k(t)−m2k+3 +m(1 + ε)(fi − t)
−m2k+3

≥ V≤k(t) +m(1 + ε)(fi − t)−m2k+4

≥ εm(fi − t).

In the last inequality we use the fact that fi − t ≥ fi − ai ≥
2k+4. Without loss of generality assume that no requests
arrive exactly at fi. Therefore V ∗≤k(fi) is the total volume of
requests in classes 1 to k that the optimal algorithm has left
to finish at time fi and all these requests have arrived before
fi. The earliest time that the optimal algorithm can finish all
these requests is by fi+ε(fi−t) and therefore it follows that
α∗ ≥ ε(fi − t)/2k+1. Since α ≤ (fi − ai)/2k and t ≤ ai, it
follows that α ≤ 2α∗/ε.

Thus α ≤ max{16, 2α∗/ε} which finishes the proof of
Theorem 2.3.

3 Broadcast Scheduling
We now move our attention to the broadcast model where
multiple requests can be satisfied by the transmission of a
single page. Most of the literature in broadcast scheduling
is concerned with the case where all pages have the same
size which is assumed to be unit. A notable exception is the
work of Edmonds and Pruhs [19]. Here we consider both the
unit-sized as well as arbitrary sized pages.

We start by showing that no 1-speed online algorithm
can be (n/4)-competitive for delay factor where n is the total
number of unit-sized pages. We then show in Section 3.1
that there is a (2 + ε)-speed O(1/ε2)-competitive algorithm
for unit-sized pages. We prove this for the single machine
setting and it readily extends to the multiple machine case.
Finally, we extend our algorithm and analysis to the case
of different page sizes to obtain a (4 + ε)-speed O(1/ε2)-
competitive algorithm in Section 3.2. We believe that this
can be extended to the multiple machine setting but leave it
for future work.

THEOREM 3.1. Every 1-speed online algorithm for broad-
cast scheduling to minimize the maximum delay factor is
Ω(n)-competitive where n is number of unit-sized pages.

The proof of Theorem 3.1 can be found in the appendix.

3.1 A Competitive Algorithm for Unit-sized Pages We
now develop an online algorithm, for unit-sized pages, that
is competitive given extra speed. We first note that, in
this case, the arrival times are assumed to be integral. It
can be seen that this assumption can only increase the
delay factor by one. It is easy to check that unlike in
the unicast setting, simple algorithms such as SSF fail
to be constant competitive in the broadcast setting even
with extra speed. The reason for this is that any simple
algorithm can be made to do an arbitrary amount of “extra”
work by repeatedly requesting the same page while the
adversary can wait and finish all these requests with a single
transmission. We use this intuition to develop a variant of
SSF that adaptively introduces waiting time for requests.
The algorithm uses a single real-valued parameter c < 1
to control the waiting period. The algorithm SSF-W (SSF
with waiting) is formally defined below. We note that the
algorithm is non-preemptive in that a request once scheduled
is not preempted. As we mentioned earlier, for unit-sized
requests, preemption is not very helpful. The algorithm
keeps track of the maximum delay factor it has seen so far,
αt (we set α0 = 1). The value of αt depends on unsatisfied
requests where the delay factor of an unsatisfied request
is its delay factor at time t. The important feature of the
algorithm is that it considers requests for scheduling only
after they have waited sufficiently long when compared to
their adaptive slack.

Algorithm: SSF-W

• Let αt be the maximum delay factor SSF-W has at
time t.

• At time t, let Q(t) = { J(p,i) | J(p,i) has not been
satisfied and t− a(p,i) ≥ c · αt · S(p,i) }.

• If the machine is free at t, schedule the request in
Q(t) with the smallest slack non-preemptively.

We now analyze SSF-W when it is given a (2 + ε)-
speed machine. Let σ be an arbitrary sequence of requests.
Consider the first time t where SSF-W achieves the max-
imum delay factor αSSF-W. At time t, SSF-W must have
finished a request J(p,k) which caused SSF-W to have this
delay factor. Hence, SSF-W has a maximum delay factor of
(f(p,k) − a(p,k))/S(p,k) where f(p,k) is the time SSF-W sat-
isfies request J(p,k). We let OPT denote some fixed offline
optimum algorithm and let α∗ denote the optimum delay fac-
tor.

We now prove the most interesting difference between
unicast and broadcast scheduling. The following lemma
shows that forcing a request to wait in the queue, for a small



period of time, can guarantee that our algorithm is satisfying
as many requests as OPT by a single broadcast unless OPT
has a similar delay factor.

Since J(p,k) defines αSSF-W, we observe that from time
t′ = a(p,k)+c(f(p,k)−a(p,k)), the request J(p, k) is ready to
be scheduled and hence the algorithm is continuously busy
in the interval I = [t′, f(p,k)] processing requests of slack no
more than that of J(p,k).

LEMMA 3.1. Consider the interval I = [t′, f(p,k)). Sup-
pose two distinct requests J(x,j) and J(x,i) for the same page
x were satisfied by SSF-W during I at different times. If
OPT satisfies both of these requests by a single broadcast
then αSSF-W ≤ 1

c2α
∗.

Proof. Without loss of generality assume that i > j; there-
fore a(x,j) ≤ a(x,i). Request J(x,i) must have arrived during
I , otherwise SSF-W would have satisfied J(x,i) when it satis-

fied J(x,j). We observe that αt′ ≥
c(f(p,k)−a(p,k))

S(p,k)
≥ cαSSF-W

since J(p,k) is still alive at t′.
Since J(x,j) was scheduled after t′, it follows that

SSF-W would have made it wait at least cαt′S(x,j) which
implies that

f(x,j) ≥ a(x,j) + cαt′S(x,j).

Note that SSF-W satisfies J(x,i) by a separate broadcast from
J(x,j) which implies that a(x,i) ≥ f(x,j). However, OPT sat-
isfies both requests by the same transmission which implies
that OPT finishes J(x,j) no earlier than a(x,i). Therefore the
delay factor of OPT is at least the delay factor for J(x,j) in
OPT which implies that

α∗ ≥
a(x,i) − a(x,j)

S(x,j)
≥
f(x,j) − a(x,j)

S(x,j)

≥
cαt′S(x,j)

S(x,j)
≥ cαt′ ≥ c2αSSF-W.

Note that previous lemma holds for any two requests
scheduled by SSF-W during interval I regardless of when
OPT schedules them, perhaps even after f(p,k).

LEMMA 3.2. Consider the interval I = [t′, f(p,k)]. Any
request which SSF-W scheduled during I must have arrived
after time a(p,k) − (1− c)(f(p,k) − a(p,k)).

Proof. For sake of contradiction, assume that a request J(x,j)

scheduled by SSF-W on the interval I has arrival time less
than a(p,k) − (1− c)(f(p,k) − a(p,k)). Since SSF-W finishes
this request during I , f(x,j) ≥ a(p,k) + c(f(p,k) − a(p,k)).
Also, as we observed before, all requests scheduled during
I by SSF-W have slack no more than that of J(p,k) which

implies that S(x,j) ≤ S(p,k). However this implies that the
delay factor of J(x,j) is at least

f(x,j) − a(x,j)

S(x,j)
≥ (a(p,k) + c(f(p,k) − a(p,k))− (a(p,k)

−(1− c)(f(p,k) − a(p,k))))
1

S(x,j)

≥
f(p,k) − a(p,k)

S(x,j)
≥

f(p,k) − a(p,k)

S(p,k)
.

≥ αSSF-W

This is a contradiction to the fact that J(p,k) is the first
request that witnessed the maximum delay factor of SSF-W.

Now we are ready to prove the competitiveness of
SSF-W.

LEMMA 3.3. The algorithm SSF-W when given a (2 + ε)-
speed machines satisfies αSSF-W ≤ max{ 1

c2 ,
1

ε−cε−c}α
∗.

Proof. The number of broadcasts which SSF-W transmits
during the interval I = [t′, f(p,k)] is

(2 + ε)(f(p,k) − t′) ≥ (2 + ε)(1− c)(f(p,k) − a(p,k)).

From Lemma 3.2, all the requests processed during I
have arrived no earlier than a(p,k)− (1− c)(f(p,k)− a(p,k)).
Also, each of these requests has slack no more than S(p,k).
We restrict attention to the requests satisfied by SSF-W
during I . We consider two cases

First, if there are two requests for the same page that
SSF-W satisfies via distinct broadcasts but OPT satisfies
using one broadcast, then by Lemma 3.1, αSSF-W ≤ 1

c2α
∗

and we are done.
Second, we assume that OPT does not merge two

requests for the same page whenever SSF-W does not do
so. It follows that OPT also has to broadcast (2 + ε)(1 −
c)(f(p,k) − a(p,k)) pages to satisfy the requests that SSF-W
did during I . Since these requests arrived no earlier than
a(p,k) − (1− c)(f(p,k) − a(p,k)), OPT, which has a 1-speed
machine, can finish them at the earliest by

(2 + ε)(1− c)(f(p,k) − a(p,k)) + a(p,k)

−(1− c)(f(p,k) − a(p,k))
≥ f(p,k) + (ε− c− cε)(f(p,k) − a(p,k)).

Since each of these requests has slack at most S(p,k) and
arrived no later than f(p,k), we have that

α∗ ≥ (f(p,k) + (ε− c− cε)(f(p,k) − a(p,k))− f(p,k))/S(p,k)

≥ (ε− c− cε)(f(p,k) − a(p,k))/S(p,k)

≥ (ε− c− cε)αSSF-W.



The previous lemma yields the following theorem.

THEOREM 3.2. With c = ε/2, SSF-W is a (2 + ε)-speed
O( 1

ε2 )-competitive algorithm for minimizing the maximum
delay factor in broadcast scheduling with unit-sized pages.

It may appear that SSF-W needs knowledge of ε. How-
ever, another way to interpret Lemma 3.3 is that for any fixed
constant c, SSF-W with parameter c is constant competitive
in all settings where its machine is at least (2 + 2

√
c) times

the speed of the optimal algorithm. Of course, it would be
ideal to have an algorithm scales with ε without any knowl-
edge of ε. We leave the existence of such an algorithm for
future work.

Now consider having m machines where we have (2 +
ε)-speed. Since we are using unit time requests, this is
analogous to OPT having onem-speed machine and SSF-W
having a (m(2 + ε))-speed machine. Thus, one can extend
the above analysis to the multiple machine setting with unit-
sized pages in a straight forward fashion.

3.2 Varying Page Sizes In this section we generalize our
algorithm for unit-sized pages to the setting where each page
has potentially a different page size. We let `p denote the
length of page p. In this setting we allow preemption of
transmissions. Suppose the transmission of a page p is
started at time t1 and ends at time t2; pmay be preempted for
other transmissions and hence t2 − t1 ≥ p. A request for a
page p is satisfied by the transmission of p during the interval
[t1, t2] only if the request arrives before t1. It is possible that
the transmission of a page p is abandoned and restarted due
to the arrival of a new request for p with a smaller slack.
This may lead to further wasted work by the algorithm and
increases the complexity of the analysis. Here we show that
a natural adaptation of SSF-W is competitive even in this
more general setting if it is given (4 + ε)-speed.

We outline the details of modifications to SSF-W. As
before, at any time t, the algorithm considers broadcasting
a request J(p,i) if t − a(p,i) ≥ cαtS(p,i); these are requests
that have waited long enough. Among these requests, the
one with the smallest slack is scheduled. Note that the
waiting is only for requests that have not yet been started;
any request that has already started transmission is available
to be scheduled. The algorithm breaks ties arbitrarily, yet
ensures that if a request J(p,k) is started before a request
J(p′,j) then J(p,k) will be finished before request J(p′,j).
Note that the algorithm may preempt a request J(p,i) by
another request J(p,k) for the same page p even though i < k
if S(p,k) < S(p,i). In this case the transmission of J(p,i) is
effectively abandoned. Note that transmission of a page p
may be repeatedly abandoned.

We now analyze the algorithm assuming that it has a
(4 + ε)-speed advantage over the optimal offline algorithm.
The extra factor in speed is needed in our analysis to handle

the extra wasted work due to potential retransmission of a
page p after a large portion of it has already been transmitted.
As before, let σ be a sequence of requests and let t be
the first time SSF-W achieves the maximum delay factor
αSSF-W. At time t, it must be the case that a request J(p,k)

was finished which caused SSF-W to have his maximum
delay factor. Hence, SSF-W has a maximum delay factor
of (f(p,k) − a(p,k))/S(p,k) where f(p,k) is the time SSF-W
satisfied request J(p,k).

As with the case with unit time requests, at time t′ =
a(p,k) + c(f(p,k) − a(p,k)) the request J(p,k) is ready to be
scheduled and the algorithm is busy on the interval I =
[t′, f(p,k)] processing requests of slack at most S(p,k).

We say that a request J(p,i) is started at time t if t is the
first time at which the algorithm picked J(p,i) to transmit its
page. Multiple requests may be waiting for the same page
p but only the request with the smallest slack that is picked
by the algorithm is said to be started. Thus a request may be
satisfied although it is technically not started. Also, a request
J(p,i) that is started may be abandoned by the start of another
request for the same page.

The lemma below is analogous to Lemma 3.1 but re-
quires a more careful statement since requests may now be
started and abandoned.

LEMMA 3.4. Consider two distinct requests J(x,j) and
J(x,i) for the same page x where i > j such that they are
both satisfied by OPT via the same transmission. If SSF-W
starts J(x,j) in [t′, f(p,k)] before the arrival of J(x,i), then
αSSF-W ≤ 1

c2α
∗.

Observe that the request J(x,j) may be satisfied together
with J(x,i) even though it starts before the arrival of J(x,i).

Proof. As before, αt′ ≥
c(f(p,k)−a(p,k))

S(p,k)
≥ cαSSF-W since

J(p,k) is still alive at t′. Since J(x,j) is started after t′,
it follows that SSF-W would have made it wait at least
cαt′S(x,j). Let t ≥ t′ be the start time of J(x,j). Therefore
t ≥ a(x,j) + cαt′S(x,j). By our assumption, t < a(x,i) and
therefore a(x,i) > a(x,j) + cαt′S(x,j).

Since OPT satisfies these two requests by the same
transmission, the finish time of J(x,j) in OPT is at least
a(x,i). Therefore,

α∗ ≥
a(x,i) − a(x,j)

S(x,j)
≥
cαt′S(x,j)

S(x,j)
≥ cαt′ ≥ c2αSSF-W.

The proof of the lemma below is very similar to that of
Lemma 3.2.

LEMMA 3.5. Consider the interval I = [t′, f(p,k)]. Any
request which is alive with slack ≤ S(p,k), but unsatisfied
by SSF-W at time t′ must have arrived after time a(p,k) −
(1− c)(f(p,k) − a(p,k)).



Now we are ready to prove the competitiveness of
SSF-W. Although the outline of the proof is similar to that of
Lemma 3.3, it requires more careful reasoning to handle the
impact of abandoned transmissions of pages. Here is where
we crucially rely on the speed of (4 + ε).

LEMMA 3.6. The algorithm SSF-W when given a (4 + ε)-
speed machine satisfies αSSF-W ≤ max{ 1

c2 ,
2

(ε−cε−2c)}α
∗.

Proof. We consider the set of requests satisfied by SSF-W
during the interval I = [t′, f(p,k)]. All of these requests have
slack at most S(p,k), and from Lemma 3.5 and the property
of the algorithm, have arrived no earlier than a(p,k) − (1 −
c)(f(p,k) − a(p,k)). Since SSF-W is busy throughout I , the
volume of broadcasts it transmits during I is (4+ ε)(f(p,k)−
t′) ≥ (4 + ε)(1− c)(f(p,k) − a(p,k)).

We now argue that either Lemma 3.4 applies in which
case αSSF-W ≤ α∗/c2, or OPT has to transmit a comparable
amount of volume to that of SSF-W.

Fix a page x and consider the transmissions for x
that SSF-W does during I . Let J(x,i1), J(x,i2), . . . , J(x,ir)

be distinct requests for x which cause these transmissions.
Amongst these, only J(x,i1) may have started before t′, the
rest start during I . Note that we are not claiming that these
transmissions are satisfied separately; some of them may be
preempted and then satisfied together. Observe that if J(x,ih)

starts at some time t then it implies that no request J(x,ih′ )

for h′ > h has arrived by time t. Therefore by Lemma 3.4, if
OPT satisfies any two of these requests that SSF-W started
in I by the same transmission, αSSF-W ≤ α∗/c2 and we are
done.

Otherwise, OPT satisfies each of J(x,i2), . . . , J(x,ir) by
separate transmissions. (If J(x,i1) was started by SSF-W
before t′, OPT could satisfy J(x,i1) and J(x,i2) together and
we would not be able to invoke Lemma 3.4). Therefore if
r ≥ 2 then the total volume of transmissions that OPT does
to satisfy these requests for page x is at least (r− 1)`x while
SSF-W does at most r`x. If r = 1 then both OPT and
SSF-W transmit page x once for its entire page length. In
either case, the total volume of transmissions that OPT does
is at least half those of SSF-W. Since x was arbitrary, it
follows that the total volume of transmissions that OPT does
to satisfy requests that SSF-W satisfies during I is at least
1
2 (4 + ε)(1− c)(f(p,k) − a(p,k)).

From Lemma 3.5, all the requests that SSF-W processes
during I arrived no earlier than a(p,k) − (1 − c)(f(p,k) −
a(p,k)). Since OPT has a 1-speed machine, it follows that
OPT can finish these requests only by time

1
2

(4+ε)(1−c)(f(p,k)−a(p,k))+a(p,k)−(1−c)(f(p,k)−a(p,k))

≥ f(p,k) +
1
2

(ε− 2c− cε)(f(p,k) − a(p,k)).

Since each of these requests have slack at most S(p,k) and
arrive no later than f(p,k),

α∗ ≥ (f(p,k) +
1
2

(ε− 2c− cε)(f(p,k) − a(p,k))

−f(p,k))/S(p,k)

≥ 1
2

(ε− 2c− cε)(f(p,k) − a(p,k))/S(p,k)

≥ 1
2

(ε− 2c− cε)αSSF-W.

We thus obtain the following.

THEOREM 3.3. With c = ε/3, SSF-W is a (4 + ε)-speed
O( 1

ε2 )-competitive algorithm for minimizing the maximum
delay factor in broadcast scheduling with arbitrary page
sizes.

4 Concluding Remarks
In this paper we have initiated the study of online algorithms
for minimizing delay factor when requests have deadlines.
Our main result is broadcast scheduling where the algorithm
and analysis demonstrates the utility of making requests
wait. We hope that this and related ideas are helpful in
understanding other performance measures in the broadcast
setting. Particularly, can ‘waiting’ combined with some
known algorithm, like most requests first, be used to improve
the current best known online algorithm for minimizing
the average response time? Another interesting problem is
whether there is a (1 + ε)-speed O(1)-competitive algorithm
for delay factor. Our algorithm has a parameter that controls
the waiting time. Is there an algorithm that avoids taking an
explicit parameter and “learns” it along the way?

Acknowledgments: We thank Samir Khuller for clarifica-
tions on previous work and for his encouragement.
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A Appendix
A.1 Proof of Theorem 2.1

Proof. For sake of contradiction, assume that some algo-
rithm that achieves a competitive ratio better than P .4

2 exists.
Now consider the following example.

Type 1: At time 0 let the client request a page
with processing time and deadline P . This request
has slack P .

Type 2: At times P − P .6, P, P +
P .6, . . . , P 1.16 − P .6 let the client request a
page with processing time P .6 and a deadline P .6



time units after its arrival time. These requests
have slack P .6.

Consider time P 1.16. Assume that this is all of the
requests which the client makes. The optimal solution
schedules these requests in a first in first out fashion. The
optimal schedule finishes request type 1 by its deadline. The
requests of type 2 then finish at P .6 time units after their
deadline. Thus, the delay factor for the optimal schedule is
2P .6/P .6 = 2.

The maximum ratio of maximum to minimum slack val-
ues seen so far is P

P .6 = P .4. Thus, the maximum delay fac-
tor our algorithm can have is (P .4).4/2 = P .16/2. Consider
having the request of type 1 still in the deterministic algo-
rithms queue. At time P 1.16, the algorithm has achieved a
delay factor of at least P

1.16

P = P .16. Thus, the algorithm has
a competitive ratio of at least P

.16

2 , a contradiction. There-
fore, at time P 1.16 the algorithm must have finished the re-
quest of type 1. Now, immediately after this time, requests
of type 3 arrive.

Type 3: Starting at time P 1.16 the client requests
P 1.2−P .6 unit processing time requests each with
a deadline one time unit after their arrival time.
These requests arrive one after another, each time
unit. The slack of these requests is 1.

These are all of the requests which are sent. The optimal
solution schedules the request of type 1 until time P .4, thus
has P .6 processing time left to finish this request. Then the
optimal solution schedules the type 2 and type 3 requests
as they arrive, giving them a delay factor of 1. At time
P 1.16+P 1.2−P .6 the optimal solution schedules the request
of type 1 to completion. Thus delay factor of this solution is
P 1.16+P 1.2

P ≤ 2P .2.
Our algorithm must have scheduled the request of type

1 by time P 1.16. Thus the last request it finishes is either
of type 2 or type 3. If the request is of type 2 then this
request must have waited for all requests of type 3 to finish
along with its processing time, thus the delay factor is at least
P 1.2+P .6

P .6 ≥ P .6. If the last request satisfied by the algorithm
is of type 3, then this request must have waited for a request
of type 2 to finish, so the delay factor is at least P .6. In
either case, the competitive ratio of the algorithm is at least
P .6

2P .2 = P .4

2 , a contradiction.

A.2 Proof of Lemma 2.2

Proof. Suppose the lemma is false. Then there is a first time
t0 when P x≤k(t0) − P y≤k(t0) = 2k+2 and small constant
δt > 0 such that P x≤k(t0 + δt) − P y≤k(t0 + δt) > 2k+2.
Let t′ = t0 + δt. For this to occur, x processes a request of
class ≤ k during the interval I = [t0, t′] while y processes
a request of class > k. Since each machine uses SSF, it

must be that y had no requests in classes≤ k during I which
implies that Uy≤k(t′) = P y≤k(t′). Therefore,

Uy≤k(t′) = P y≤k(t′) < P x≤k(t′)− 2k+2 ≤ Ux≤k(t′)− 2k+2,

since P x≤k(t′) ≤ Ux≤k(t′). However, this implies that

Uy≤k(t′) < Ux≤k(t′)− 2k+2,

a contradiction to Observation 1.

A.3 Proof of Lemma 2.3

Proof. Combining Observation 1, Lemma 2.2, and the fact
that R(t) = U(t)− P (t) by definition then,

|Rx≤k(t)−Ry≤k(t)| ≤ |Ux≤k(t)−Uy≤k(t)|+|P x≤k(t)−P y≤k(t)| ≤ 2k+3.

A.4 Proof of Theorem 3.1

Proof. Let A be any online 1-speed algorithm. We consider
the following adversary. At time 0, the adversary requests
pages 1, . . . , n2 , all which have a deadline of n

2 . Between
time 1 and n

4 the client requests whatever page the online
algorithm A broadcasts immediately after that request is
broadcast; this new request also has a deadline of n

2 . It
follows that at time t = n

2 the online algorithm A has
n
4 requests for distinct pages in its queue. However, the
adversary can finish all these requests by time n

2 . Then
starting at time n

2 the adversary requests n
2 new pages,

say n
2 + 1, . . . , n. These new pages are requested, one at

each time step, in a cyclic fashion for n2 cycles. More
formally, for i = 1, . . . , n/2, page n

2 +i is requested at times
j · (n2 ) + i− 1 for j = 1, . . . , n. Each of these requests has a
slack of one which means that their deadline is one unit after
their arrival. The adversary can satisfy these requests with
delay since it has no queue at any time; thus its maximum
delay factor is 1. However, the online algorithm A has n

4
requests in its queue at time n

2 ; each of these has a slack of
n
2 . We now argue that the delay factor of A is Ω(n). If the
algorithm satisfies two slack 1 requests for the same page
by a single transmission, then its delay factor is n/2; this
follows since the requests for the same page are n/2 time
units apart. Otherwise, the algorithm does not merge any
requests for the same page and hence finishes the the last
request by time n/2 + n2/2 + n/4. If the last request to
be finished is a slack 1 request, then its delay factor is at
least n/4 since the last slack 1 requests is released at time
n/2 + n2/2. If the last request to be finished is one of
the requests with slack n/2, then its delay factor is at least
n2/2/(n/2) = Ω(n).
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