
Scheduling Parallel DAG Jobs Online to Minimize Average Flow

Time

Kunal Agrawal Jing Li Kefu Lu Benjamin Moseley∗

October 14, 2015

Abstract

In this work, we study the problem of scheduling

parallelizable jobs online with an objective of minimizing

average flow time. Each parallel job is modeled as a

DAG where each node is a sequential task and each edge

represents dependence between tasks. Previous work

has focused on a model of parallelizability known as

the arbitrary speed-up curves setting where a scalable

algorithm is known. However, the DAG model is more

widely used by practitioners, since many jobs generated

from parallel programming languages and libraries can

be represented in this model. However, little is known

for this model in the online setting with multiple jobs.

The DAG model and the speed-up curve models are

incomparable and algorithmic results from one do not

immediately imply results for the other. Previous work

has left open the question of whether an online algorithm

can be O(1)-competitive with O(1)-speed for average

flow time in the DAG setting. In this work, we answer this

question positively by giving a scalable algorithm which

is (1 + ǫ)-speed O( 1
ǫ3
)-competitive for any ǫ > 0. We

further introduce the first greedy algorithm for scheduling

parallelizable jobs — our algorithm is a generalization of

the shortest jobs first algorithm. Greedy algorithms are

among the most useful in practice due to their simplicity.

We show that this algorithm is (2 + ǫ)-speed O( 1
ǫ4
)-

competitive for any ǫ > 0.
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1 Introduction

Recently, most hardware vendors have moved to

manufacturing multicore machines and there is increasing

interest in enabling parallelism. Many languages and

libraries, such as Cilk, Cilk Plus [26], Intel’s Threading

Building Blocks [32], OpenMP [31], X10 [35], have

been designed to allow programmers to write parallel

programs. In addition, there has been extensive research

on provably good and practically efficient schedulers for

these programs in the case where a single job (program)

is executing on the parallel machine [8, 7, 6].

In most of this research, the parallel job is modeled

as a directed acyclic graph (DAG) where each node of

the DAG is a sequential sequence of instructions and

each edge is a dependence between nodes. A node is

ready to be executed when all its predecessors have been

executed. For the case of a single job, schedulers such as

a list scheduler [20] and a work-stealing scheduler [8] are

known to be asymptotically optimal with respect to the

makespan of the job.

In this paper, we are interested in multiprogrammed

environments where multiple DAG jobs (say n jobs)

share a single parallel machine with m processors, jobs

arrive and leave online, and the scheduling objective is to

provide a quality of service guarantee. Surprisingly, there

is little work in this domain (see [34, 29, 1, 2, 23, 30]

for exceptions). On the other hand, this problem has

been extensively studied for sequential (non-parallizable)

jobs and several quality of service metrics have been

considered. The flow time of a job i is the amount of

time job i waits after it arrives until it is completed under

some schedule. The most widely considered objectives

are minimizing the average flow time (or equivalently,

the total flow time), the maximum flow time and more

generally, the ℓk-norms of flow time. In this work, we

focus on the average flow time objective, which optimizes

the average quality of service; this is the most popular

objective considered in online scheduling theory.

As stated above, this problem has been widely con-

sidered for sequential jobs where each job can be sched-

uled on only one processor at a time. In this case, when

all m processors are identical it is known that any algo-
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rithm is Ω(min{logP, log n/m})-competitive where P
is the ratio of the largest to smallest processing time of

the jobs [28]. In the face of these strong lower bounds,

previous work has considered a resource augmentation

analysis where the algorithm is given extra speed over

the adversary [27]. With resource augmentation, sev-

eral algorithms are known to be (1 + ǫ)-speed O(f(ǫ))-
competitive for average flow time where ǫ > 0 and some

function f which depends only on ǫ [14]. Such an algo-

rithm is known as scalable and is the best positive result

one can show for problems that have strong lower bounds

on the competitive ratio. In particular, several greedy

algorithms are known to be scalable including Shortest-

Remaining-Processing-Time (SRPT) and Shortest-Job-

First (SJF) [36, 19, 5, 9]. Similar results are also known

in more general machine environments [10, 24, 3].

Parallel jobs have also been considered in this online

multiprogrammed setting; however, the parallelism model

most widely considered is the arbitrary speed-up curve

model. In the speed-up curve model, each job i is asso-

ciated with a sequence of phases. Phase j for job i is de-

noted by a tuple (Wi,j ,Γi,j(m
′)). The value Wi,j denotes

the total work of the jth phase of job i. The work for each

phase must be processed in sequential order. Γi,j(m
′) is

a function that specifies the processing rate Wi,j when

given 1 ≤ m′ ≤ m processors. It is generally assumed

that Γi,j(m
′) is a nondecreasing sublinear function. The

speed-up curve model was introduced by [15] and a scal-

able algorithm, denoted Latest-Arrival-Processor-Sharing

(LAPS) is known for the model [17]. This algorithm and

its analysis have been very influential in scheduling theory

[11, 13, 4, 22, 16, 21, 12, 18].

While the speed-up curve model is a theoretically

elegant model, most languages and libraries generate

parallel programs that are more accurately modeled using

DAGs. Despite this, the DAG model has only been

considered for online multiprogrammed environments in

a limited way: for instance, in real-time environments

where jobs must finish by their deadlines[34, 29]. The

work of [33] consider a hybrid of the DAG model and

the speed-up curve setting where each node in the DAG

has a speed-up curve. They show a (2 + ǫ)-speed O(κ
ǫ
)-

competitive algorithm for any ǫ > 0 where κ is the

maximum number of independent tasks in a job’s DAG.

Previous work leaves many open questions. In particular,

does there exist online scalable algorithms for average

flow time as in the arbitrary speed-up curve setting?

Further, is there an algorithm whose competitive ratio

does not depend on κ?

Challenges with the DAG model:

• Interestingly, the speed-up curve and the DAG mod-

els appear to be incomparable. In particular, for the

speed-up curve model, the instantaneous parallelism

(the number of processors a job can use effectively

at a particular instant) depends only on the phase the

job is in, which in turn depends only on how much

work of the job has been completed. In contrast, for

the DAG model, the instantaneous parallelism de-

pends also on which particular nodes have been pro-

cessed so far. Since there are many possible ways to

do the same amount of work, the instantaneous paral-

lelism at a particular instant depends on the previous

schedule. Since the DAG is unknown in advance, it

is impossible to compute the best possible schedule

that leads to best possible future parallelizability. 1

• One of the goals of this paper is to design a greedy

algorithm for DAG jobs. Interestingly, this presents

unique challenges. In Section 4.2.1, we show a coun-

terintuitive result for the DAG model. We construct

an example showing that a greedy scheduling algo-

rithm may actually fall behind in the total aggre-

gate amount of work processed when compared to

the same algorithm with less resource augmentation.

Note that this can never happen for sequential jobs.

This occurs for DAG jobs due to the dependences —

by processing jobs faster, the scheduler later may not

be able to efficiently pack the tasks of different jobs

on the processors as it did in the slower schedule, due

to the DAG structures of jobs. The example shows

that standard scheduling techniques are not directly

applicable to the DAG model, as typically the faster

schedule never falls behind the slower schedule.

• A widely used analysis technique for bounding the

total flow time, is the fractional flow time technique.

Fractional flow time is an alternative objective func-

tion for which competitiveness is typically easier to

prove. In addition, one can usually easily convert an

algorithm that is competitive for fractional flow time

to one that is competitive for average flow time by

speeding up the algorithm by a small factor. Unfor-

tunately, there are several hurdles for this technique

in the DAG setting. In particular, it is not immedi-

ately clear how to define the fractional objective and,

further, since an algorithm may still fall behind by

using extra speed in the DAG setting, it is not obvi-

ous how to convert an algorithm that is competitive

for fractional flow to one that is competitive for av-

erage flow time.

Results: We consider minimizing average flow time in

the DAG scheduling model. The most natural algorithm

1The speed-up curve model also cannot be simulated using the DAG

model. In the speed-up curve model one could have a speed-up curve

of the form Γ(m′) =
√
m

′. In this case, a job is processed at a rate

of
√
m

′ when given 1 ≤ m
′ ≤ m processors. In the DAG setting,

a job’s parallelizability is linear up to the number of nodes ready to be

scheduled and thus it is unclear how to simulate this speed-up curve.
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to consider for average flow time in the DAG model

is LAPS, since this algorithm is known to work well

in the speed-up curve model. However, LAPS is a

generalization of Round Robin and [33] showed that in

the hybrid model, where jobs consist of a DAG and

every node has it own speed-up curve, Robin Robin like

algorithms must have a competitive ratio that depends on

log κ even if they are given any O(1) speed augmentation.

We are able to show that this hybrid model is strictly

harder than the DAG model and that LAPS is a scalable

algorithm in the DAG model.

THEOREM 1.1. LAPS is (1+ǫ)-speed O( 1
ǫ3
)-competitive

for minimizing the average flow time in the DAG model.

The result of LAPS also implies the following bound

for Round Robin.

COROLLARY 1.1. Round Robin is (2 + ǫ)-speed O(1)-
competitive for any fixed ǫ > 0 for minimizing the average

flow time in the DAG model.

LAPS is a nonclairvoyant algorithm in the sense

that it schedules jobs without knowing the processing

time of jobs or nodes until they have been completed.

Theoretically, LAPS is a natural algorithm to consider.

On the other hand, LAPS is a challenging algorithm to

implement. In particular, LAPS requires a set of jobs to

receive equal processing time, which is hard to achieve

in practice with low overheads. More importantly, LAPS

has another disadvantage that it is parameterized. The

algorithm effectively splits the processors evenly amongst

the ǫ fraction of the latest arriving jobs. This ǫ is the same

constant used in the resource augmentation. In practice,

it is unclear how to set ǫ. Theoretically, this type of

algorithm is known as existentially scalable. That is, for

each possible speed (1+ ǫ) there exists a constant to input

to the algorithm which makes it O(1)-competitive for any

fixed ǫ > 0. Note that in the speed-up curve model

it is an intriguing open question whether an algorithm

exists which is universally scalable. That is, the algorithm

is O(1)-competitive given any speed (1 + ǫ) without

knowledge of ǫ.
In practice, the most widely used algorithms are

simple greedy algorithms. They are easy to implement

and features can be added to them to ensure low overhead

from preemptions. Unfortunately, it is not clear how to

adapt known greedy algorithms to the parallel scheduling

environments. None are known to perform well for the

speed-up curve settings. In this work, we consider a

natural adaptation of Shortest-Job-First (SJF) to the DAG

model and show the following theorem.

THEOREM 1.2. SJF is (2 + ǫ)-speed O( 1
ǫ4
)-competitive

for average flow time in the DAG model for any ǫ > 0.

To prove the theorem, we extend the definition of

fractional flow time to the DAG model. As mentioned,

it is not obvious how to convert an algorithm that is

competitive for fractional flow to one that is competitive

for total flow time. We give an analysis of such a

conversion to the DAG model, but this is perhaps the most

challenging part of the analysis and it is where we lose the

factor of 2 speed.

This is the first greedy algorithm shown to perform

well for parallelizable jobs in the online setting. The algo-

rithm is simple and natural and could be used in practice.

Unfortunately, we were unable to show it is a scalable

algorithm. However, we hope our analysis techniques

can be useful to resolving whether there exists universally

scalable algorithms for scheduling parallelizable jobs.

2 Preliminaries

In the problem considered, there are n jobs that

arrive over time that are to be scheduled on m identical

processors. Each job i has an arrival time ri and is

represented as a Directed-Acyclic-Graph (DAG). A node

in the DAG is ready to execute, if all its predecessors have

completed. We assume the scheduler knows the ready

nodes for a job at a point in time, but does not know the

DAG structure a priori. Any set of ready nodes can be

processed at once, but each processor can only execute

one node at a time. A DAG job can be represented with

two important parameters. The total work Wi is the sum

of the processing time of the nodes in job i’s DAG. The

critical-path length Ci is the length of the longest path in

job i’s DAG, where the length of the path is the sum of the

processing time of nodes on the path. We now state two

straightforward observations regarding work and critical-

path length.

OBSERVATION 1. If a job i has all of its n ready nodes

being executed by a schedule with speed s on m cores,

where n ≤ m, then the remaining critical-path length of i
decreases at a rate of s. In other words, at each time step

where not all m processors are executing jobs, all ready

nodes of all unfinished jobs are being executed; hence,

the remaining critical-path length of each unfinished job

reduces by s.

OBSERVATION 2. Any job i takes at least max{Wi

m
, Ci}

time to complete in any schedule with unite speed, includ-

ing OPT.

Throughout the paper we will use A to specify the

algorithm being considered unless otherwise noted. We

let WA
i (t) denote the remaining processing time of all

the nodes in job i’s DAG at time t in A’s schedule.

Let CA
i (t) be the remaining length of the longest path

in i’s DAG where each node contributes its remaining

processing time in job A’s schedule at time t. Let A(t)
denote the set of jobs which are released and unsatisfied

178 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.



in A’s schedule at time t. In the above, we replace A
with O to denote the same quantity in some fixed optimal

solution. Note that
∫∞

t=0
|A(t)| is exactly the total flow

time, the objective we consider. Finally, let W i(t) =
min{Wi − WO

i (t),WA
i (t)}. We overload notation and

let OPT refer to both the optimal solution’s schedule and

its final objective.

Potential Function Analysis: Throughout this paper we

will utilize the potential function framework, also known

as amortized analysis. See [25] for a survey on the

technique. For this technique, one defines a potential

function Φ(t) which depends on the state of the algorithm

being considered and the optimal solution at time t. Let

Ga(t) denote the current cost of the algorithm at time t.
This is the total waiting time of all the arrived jobs up

to time t if the objective is total flow time. Similarly

let Go(t) denote the current cost of the optimal solution

up to time t. We note that
dGa(t)
dt

is the change in the

algorithm’s objective at time t and this is equal to the

number of unsatisfied jobs in the algorithm’s schedule at

time t, i.e.
dGa(t)
dt

= |A(t)|. To bound the competitiveness

of an algorithm, one shows the following conditions about

the potential function.

Boundary condition: Φ is zero before any job is re-

leased and Φ is non-negative after all jobs are fin-

ished.

Completion condition: Summing over all job comple-

tions by the optimal solution and the algorithm, Φ
does not increase by more than β · OPT for some

β ≥ 0.

Arrival condition: Summing over all job arrivals, Φ
does not increase by more than α · OPT for some

α ≥ 0.

Running condition: At any time t when no job arrives

or is completed,

(2.1)
dGa(t)

dt
+
dΦ(t)

dt
≤ c ·

dGo(t)

dt

Integrating these conditions over time one gets that Ga −
Φ(0)+Φ(∞) ≤ (α+β+c)·OPT by the boundary, arrival

and completion conditions. This shows the algorithm is

(α+ β + c)-competitive

3 Algorithm: LAPS

In this section, we analyze the LAPS scheduling

algorithm for the DAG model. LAPS is a generalization of

round robin. Round robin essentially splits the processing

power evenly among all jobs. In contrast, at each step,

LAPS splits the processing power evenly among the ǫ
fraction of the jobs which arrived the latest. Note that

LAPS is parametrized by the constant ǫ, the same constant

used for the resource augmentation.

Specifically, let A(t) denote the set of unsatisfied

jobs in LAPS’s queue at time t. Let 0 < ǫ < 1
10

be some fixed constant. Let A′(t) contain the ǫ|A(t)|
jobs from A(t) which arrived the latest. Each job in

A′(t) receives m
|A′(t)| processors. Each DAG job in A′(t)

then assigns an arbitrary set of m
|A′(t)| ready tasks on the

processors it receives. If the job does not have m
|A′(t)|

ready tasks, it schedules as many tasks as possible and

idles the remaining alloted processors.

We assume that the LAPS is given 1 + 10ǫ resource

augmentation. As mentioned in Section 2, WA
i (t) and

CA
i (t) denote the aggregate remaining work and critical-

path length, respectively, of job i at time t in the LAPS’s

schedule. WO
i (t) is the aggregate remaining work of job

i in the optimal schedule at time t. Now we compare

LAPS to the optimal schedule. To do this, we define a

variable Zi(t) := max{WA(t)−WO(t), 0} for each job

i. The variable Zi(t) is the total amount of work job i
has fallen behind in the LAPS’s schedule as compared

to the optimal schedule at time t. Finally, we define

ranki(t) =
∑

j∈A(t),rj≤ri
1 of job i to be the number

of jobs in A(t) that arrived before job i, including itself.

Without loss of generality, we assume each job arrives at

a distinct time.

Now we are ready to define our potential function.

Φ(t) =
10

ǫ

∑

i∈A(t)

(

1

m
ranki(t)Zi(t) +

100

ǫ2
CA

i (t)

)

The following proposition follows directly from the

definition of the potential function.

PROPOSITION 3.1. Φ(0) = Φ(∞) = 0.

We begin by showing the increase in the potential

function is bounded by OPT over the arrival and com-

pletion of all jobs.

LEMMA 3.1. The potential function never increases due

to job completion by the LAPS or optimal schedule.

Proof. When the optimal schedule completes a job, it has

no effect on the potential. When the LAPS completes a

job i at time t, a term is removed from the summation.

Notice that Zi(t) = 0 and CA
i (t) = 0, since the algorithm

has completely processed the job. Thus the removal of this

term has no effect on the potential. The only other change

is that rankj(t) decreases by 1 for all jobs j ∈ A(t)
where rj > ri. However, Zj(t) is always positive by

definition, so this can only decrease the potential.

LEMMA 3.2. The potential function increases by at most

O( 1
ǫ3
)OPT over the arrival of the jobs.
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Proof. When job i arrives at time t, it does not effect

the rank of any other job since its arrival is after them.

Further, by definition Zi(t) is 0 when job i arrives, since

both LAPS and OPT cannot have worked on job i yet at

the time it arrives. Finally, the value of CA
i (t) = Ci. The

increase in the potential will be 1000
ǫ3

Ci. By summing over

the arrival of all jobs, the total increase is 1000
ǫ3

∑

i∈[n] Ci.

We know that each job i must wait at least Ci time units

to be satisfied in OPT by Observation 2, so this is at most

O( 1
ǫ3
)OPT.

The remaining lemmas bound the change in the po-

tential due to the processing of jobs by OPT and LAPS.

We first consider the change in the potential due to

the OPT and LAPS separately. Then we combine both

changes and bound the aggregate change to be at most

−10|A(t)|+O( 1
ǫ2
)|O(t)|.

LEMMA 3.3. At any time t, the potential function in-

creases by at most 10
ǫ
|A(t)| due to the processing of jobs

by OPT.

Proof. Notice that the variables CA
i (t) do not change

due to OPT. The only change occurs due to the optimal

schedule decreasing Zi(t) for some jobs i. Let job i′

be the job in A(t) which arrived the latest. In the

worst case, the optimal schedule uses all m processors

to process job i′ to decrease Zi(t) at a rate of m. This

is the worst case because the rank of job i′ is the largest.

The total increase in the change of the potential is then
10
ǫ

1
m
ranki′(t)m. Knowing that ranki′(t) = |A(t)|,

hence 10
ǫ

1
m
ranki′(t)m = 10

ǫ
|A(t)|.

LEMMA 3.4. At any time t, the potential function in-

creases by at most − 10
ǫ
(1 + ǫ)|A(t)| + O( 1

ǫ2
)|O(t)| due

the processing of jobs by LAPS.

Proof. Consider the set A′(t) of jobs LAPS processes at

time t. We break the analysis into two cases. In either

case we show that the total change in the potential is a

most − 10
ǫ
(1 + ǫ)|A(t)|+O( 1

ǫ2
)|O(t)|.

Case 1: At least ǫ
10 |A

′(t)| jobs in A′(t) have less than
m

|A′(t)| ready nodes at time t. Let Ac(t) be this set of jobs.

Since each of these jobs has less than m
|A′(t)| ready

tasks at time t, then LAPS schedules all available tasks

for these jobs. Hence, LAPS decreases CA
i (t) at a rate

of 1 + 10ǫ for each job i ∈ Ac(t) since LAPS has

1 + 10ǫ resource augmentation. We denote the change

in the potential as C1. Therefore,

C1 = −
1000

ǫ3
(1 + 10ǫ)|Ac(t)|

Note that |Ac(t)| ≥
ǫ
10 |A

′(t)| and , we have

C1 ≤ −
100

ǫ2
(1 + 10ǫ)|A′(t)| ≤ −

100

ǫ
(1 + 10ǫ)|A(t)|

Finally, because |A′(t)| = ǫ|A(t)|, we get

C1 ≤ −
10

ǫ
(1 + ǫ)|A(t)|+O(

1

ǫ2
)|O(t)|

Case 2: At least (1− ǫ
10 )|A

′(t)| jobs in A′(t) have at least
m

|A′(t)| nodes ready at time t. Let Aw(t) be this set of jobs,

so |Aw(t)| ≥ (1− ǫ
10 )|A

′(t)|.
In this case, we ignore the decrease in the C variables

and focus on the decrease in the Z variables due to the

algorithms processing. We further ignore the decrease in

the Zi(t) for jobs in Aw(t) ∩O(t).
Notice that for every job i in Aw(t)\O(t) it is the case

that Zi(t) decreases at a rate of (1 + 10ǫ) m
|A′(t)| . This is

because: (1) each of these jobs is given m
|A′(t)| processors;

(2) LAPS has (1 + 10ǫ) resource augmentation; (3) OPT

completed job i by time t, if job i is in Aw(t) \ O(t).
Knowing this, we can bound the total change in the

potential due to LAPS.

We will replace 1 + 10ǫ with k in some intermediate

steps for ease of notation and we denote the total change

in the potential due to LAPS as C2.

C2 = −
10

ǫ

∑

i∈Aw(t)\O(t)

1

m
ranki(t)

(1 + 10ǫ)m

|A′(t)|

= −
10k

ǫ

∑

i∈Aw(t)\O(t)

ranki(t)
1

|A′(t)|

≤ −
10k

ǫ

∑

i∈Aw(t)\O(t)

(1− ǫ)|A(t)|
1

|A′(t)|

Note that ranki(t) ≥ (1−ǫ)|A(t)| for i ∈ A′(t) and

|A′(t)| = ǫ|A(t)|, we have

C2 ≤ −
10k

ǫ2

∑

i∈Aw(t)\O(t)

(1− ǫ)

≤ −
10k

ǫ2





∑

i∈Aw(t)

(1− ǫ)−
∑

i∈O(t)

1





We can also derive |Aw(t)| ≥ (1− ǫ
10 )|A

′(t)|. Again

by replacing |A′(t)| with ǫ|A(t)|, we get

C2 ≤ −
10k

ǫ2



(1−
ǫ

10
)

∑

i∈A′(t)

(1− ǫ)−
∑

i∈O(t)

1





≤ −
10k

ǫ



(1−
ǫ

10
)

∑

i∈A(t)

(1− ǫ)−
1

ǫ

∑

i∈O(t)

1
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Finally, because ǫ < 1/10, we can derive

C2 ≤ −
10

ǫ
(1 + 10ǫ)(1−

ǫ

10
)

∑

i∈A(t)

(1− ǫ)

+O(
1

ǫ2
)|O(t)|

≤ −
10

ǫ
(1 + ǫ)|A(t)|+O(

1

ǫ2
)|O(t)|

Thus, in either case the total change in the potential is at

most − 10
ǫ
(1 + ǫ)|A(t)|+O( 1

ǫ2
)|O(t)|.

LEMMA 3.5. Fix any time t. The total change in the

potential is at most −10|A(t)| + O( 1
ǫ2
)|O(t)| due the

processing of jobs by both algorithms.

Proof. Now we know from Lemma 3.3 the change due

to OPT processing jobs is at most 10
ǫ
|A(t)|. Combining

the change due to both algorithms in Lemma 3.3 and

3.4, we see that the aggregate change in the potential is

at most − 10
ǫ
(1 + ǫ)|A(t)| + O( 1

ǫ2
)|O(t)| + 10

ǫ
|A(t)| ≤

−10|A(t)|+O( 1
ǫ2
)|O(t)|.

Thus, by the potential function framework and com-

bining Lemma 3.1, 3.2 and 3.5 and Proposition 3.1 we

have Theorem 1.1.

4 Algorithm: SJF

In this section we analyze a generalization of SJF to

parallel DAG jobs. In this algorithm, the jobs are sorted

according to their original work and the smallest have the

highest priority. The algorithm takes the highest priority

job and assigns all of its ready nodes to machines and then

recursively considers the next highest priority job. This

continues until all machines have a node to execute or

there are no more ready nodes. In the event that a job

being considered has more ready nodes than machines

available, the algorithm choses an arbitrary set of nodes to

schedule on the remaining machines. At first glance, this

might be counterintuitive, since it doesn’t take the critical-

path length into consideration at all; one might think that

we should give higher priority to jobs with longer critical-

path length. However, as the analysis shows, it turns out

that prioritizing based on just work provides good bounds.

4.1 Analysis of SJF for Fractional Flow Time We

use fractional flow time to do this analysis. In this

section, to avoid confusion, we refer to total flow time as

integral flow time — recall that a job contributes 1 to the

objective each time unit the job is alive and unsatisfied.

In contrast, in fractional flow time, it contributes the

fraction of the work which remains for the job; that

is, the goal is to minimize
∑∞

t=0

∑

i∈A(t)
WA

i (t)
Wi

. Our

analysis is structured as follows: We first compare the

fractional flow time of SJF (with resource augmentation)

to the integral flow time of the optimal algorithm. We

then compare the integral flow time of SJF (with further

resource augmentation) to its fractional flow time.
We will utilize a potential function analysis and de-

fine the potential functions as follows. Throughout the
analysis we will assume without loss of generality that
each job arrives at a distinct time and has a unique amount
of work.

Φ(t) =
1

ǫ

∑

j∈A(t)

C
A
j (t) +

1

ǫm

∑

j∈A(t)









W j(t)

Wj

∑

i | i∈A(t)∪O(t)
Wi≤Wj

W
A
i (t)−W

O
i (t)









Using this potential function, our goal is to show the

following theorem.

THEOREM 4.1. SJF is (1 + ǫ)-speed O( 1
ǫ
)-competitive

when SJF’s fractional flow time is compared against the

optimal schedule’s integral flow time.

Note that Φ(0) = Φ(∞) = 0, thus the boundary condition

is true. We will now show the arrival and completion

conditions.

LEMMA 4.1. The potential function increases by at most

O( 1
ǫ

OPT) due to the arrival and completion of jobs.

Proof. First consider the arrival condition. Suppose job

j′ arrives at a time t′, then in the first term a new term

is created, 1
ǫ
Cj′ . This is less than 1

ǫ
multiplied by the

amount of time this job must wait to be completed in

an optimal schedule because Ci is a lower bound on a

job’s integral flow time, according to Observation 2. The

change of Φ(t′) over all job arrivals in the first term is

at most 1
ǫ

OPT. Now consider the second term of Φ(t′)

when j′ just arrives. The quantity W j′(t
′) = 0, because

OPT has not worked on job j′ yet. Though j′ is a new

term in the outer summation of the second term, this

term is 0. Finally, j′ may appear as a new term in the

inner summation for all jobs i ∈ A(t′) with Wi > Wj′ .

However then WA
j′ (t

′) − WO
j′ (t

′) = 0 because both

algorithm and optimal schedule have yet to work on j′.
These are all the possible changes due to the arrival of job

j′, therefore the arrival condition holds.

Now consider when the optimal schedule completes

some job j′ at time t′. The only effect on the potential, is

that a term may be removed from the inner summation of

the second term if j′ is no longer in A(t′) ∪ O(t′). This

only happens if the job is also not in A(t′). If the job is

not in A(t′) then WA
j′ (t

′) − WO
j′ (t

′) = 0 and there is no

change to the potential due to the removal of the term.

Now consider when the algorithm completes some

job j′ at time t′. Because the job has completed, so

CA
j′ (t

′) = 0 and W j′(t
′) = 0. Thus, removing terms from

181 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.



the either the first summation or the outer summation of

the second term has no effect on the potential. However

we may remove a job from the inner summation of the

second term. Again, this only occurs if j′ /∈ O(t′), which

means that inner summation is 0. Therefore this does

not cause a change in the potential. Overall, there is no

change in the potential due to jobs being completed by

either the algorithm or the optimal schedule.

Thus, we have shown the boundary conditions as

well as the bounded the non-continuous changes in Φ.

It remains to show how the potential changes due to the

algorithm and optimal schedule processing jobs. These

are the only remaining ways the potential may change.

Fix some time t. Our goal is to bound
dΦ(t)
dt

.

LEMMA 4.2. The total change in Φ at time t due to

the optimal schedule processing jobs is O(|O(t)|) +
1
ǫ

∑

i∈A(t)
WA

i (t)
Wi

.

Proof. Notice that the only changes that can occur due to

the optimal schedule processing some job j is due to the

changes in WO
j (t) and W j(t), both of which are in the

second term of Φ(t). Fix some job j that OPT processes

at time t and suppose that OPT uses m′
j processors to

process job j. Consider the change in Φ(t) due to WO
j (t)

decreasing. The change only increases WA
j (t)−WO

j (t) in

the inner summation only if job i in the outer summation

has Wi ≥ Wj . Each machine in OPT has 1 speed and all

work values are distinct, so the change is the following.

1

ǫ

m′
j

m

W j(t)

Wj

+
1

ǫ

m′
j

m

∑

i∈A(t)
Wi>Wj

W i(t)

Wi

The first term is the job j itself and the second is the

other jobs effected. Since
W i(t)
Wi

≤
WA

i (t)
Wi

by definition of

W i(t), we have

1

ǫ

m′
j

m

∑

i∈A(t)
Wi≥Wj

W i(t)

Wi

≤
1

ǫ

m′
j

m

∑

i∈A(t)
Wi≥Wj

WA
i (t)

Wi

Now consider the change induced in W j(t) by OPT’s

processing. This variable could, in the worst case, in-

crease at a rate of m′
j . This changes all of the inner sum-

mation terms where Wi ≤ Wj . We omit the −WO
i (t)

part of the inner summation, as this part only decreases

the potential. The change is then the following.

1

ǫ

m′
j

m

WA
j (t)

Wj

+
1

ǫ

m′
j

mWj

∑

i∈A(t)
Wi<Wj

WA
i (t)

By definition,
WA

j (t)

Wj
≤ 1. Additionally, in the

summation we have Wi < Wj . Therefore the overall

change from processing job j is:

1

ǫ

m′
j

m
+

1

ǫ

m′
j

mWj

∑

i∈A(t)
Wi<Wj

WA
i (t)

≤
1

ǫ

m′
j

m
+

1

ǫ

m′
j

m

∑

i∈A(t)
Wi<Wj

WA
i (t)

Wi

Let PO(t) be the set of jobs the optimal schedule

processes at time t. Clearly, the optimal schedule can use

at most m processors at time t, i.e.
∑

j∈PO(t) m
′
j ≤ m.

Knowing this, we have the overall change is

∑

j∈PO(t)





1

ǫ

m′
j

m
+

1

ǫ

m′
j

m

∑

i∈A(t)

WA
i (t)

Wi





≤





1

ǫ
+

1

ǫ

∑

i∈A(t)

WA
i (t)

Wi





Finally we know that OPT must have at least one

alive job if it processes some job. Thus we charge the 2
ǫ

to OPT’s increase in its objective. This gives the lemma.

Now we consider the change in Φ(t) due to the

algorithm processing jobs.

LEMMA 4.3. The total change in Φ at time t due to

the algorithm processing jobs is O(|O(t)|) − (1 +

ǫ) 1
ǫ

∑

i∈A(t)\O(t)
WA

i (t)
Wi

.

Proof. For any job j, we know that either the algorithm

is processing jobs i ∈ A(t) where Wi ≤ Wj using all

m processors or the algorithm is decreasing the critical-

path, CA
j (t), at a rate of (1 + ǫ). This is because,

the algorithm by definition has either has assigned all

processors to higher priority jobs or it is scheduling all

available ready nodes for job j by Observation 1. Suppose

that the algorithm decreases the critical-path of j. If this

is the case then, this decreases CA
j (t) at a rate of −(1+ǫ).

Alternatively, say the algorithm assigned all processors to

jobs with higher priority than j. Then it is the case that
∑

i | i∈A(t)∪O(t),Wi≤Wj
WA

i (t) − WO
i (t) decreases at a

rate of −(1 + ǫ)m due to the algorithms processing.

Consider all jobs i in the potential. The decreases

in the potential function due to the change in WA
i (t) and

CA
i (t) over all jobs i the algorithm processes is at least

the following,

−
(1 + ǫ)

ǫ

∑

i∈A(t)

W i(t)

Wi
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Consider the jobs in this summation, if i /∈ O(t) it

is the case that W i(t) = WA
i (t). If i ∈ O(t) then in

the worst case W i(t) = 0. Nevertheless dropping all

i ∈ O(t) the decrease in the potential still

−
(1 + ǫ)

ǫ

∑

i∈A(t)\O(t)

WA
i (t)

Wi

The only other change that can occur is that the

algorithm can cause W j(t) to decrease for jobs j that the

algorithm processes. When multiplied by −WO
i (t) this

causes an increase in the potential function. Say that the

algorithm processes job j using m′
j processors at time t.

Let PA(t) be the set of jobs the algorithm processes. In

the worst case, W j(t) decreases at a rate of (1+ ǫ)m′
j for

each job j ∈ PA(t). The change is at most,

(1 + ǫ)

mǫ

∑

j∈PA(t)

m′
j

Wj

∑

i∈O(t)
Wi≤Wj

WO
i (t)

≤
1 + ǫ

mǫ

∑

j∈PA(t)

m′
j

∑

i∈O(t)
Wi≤Wj

1 [WO
i (t) ≤ Wi ≤ Wj]

≤
(1 + ǫ)

mǫ

∑

j∈PA(t)

m′
j

∑

i∈O(t)

1

≤
(1 + ǫ)

ǫ

∑

i∈O(t)

1 [
∑

j∈PA(t) m
′
j ≤ m]

=
(1 + ǫ)

ǫ
|O(t)|

Thus, the lemma follows assuming that 0 < ǫ ≤ 1 is

a constant.

Now we are ready to show SJF’s guarantees for

fractional flow time.

Proof of [Theorem 4.1]

The total change in the potential due to the algorithm

and optimal schedule processing jobs is the following

from Lemmas 4.3 and 4.2. Note that we are summing over

the terms, some of which are negative due to decreasing

the potential.

O(|O(t)|) +
1

ǫ

∑

i∈A(t)

WA
i (t)

Wi

+

−
(1 + ǫ)

ǫ

∑

i∈A(t)\O(t)

WA
i (t)

Wi

≤ O(|O(t)|) +
1

ǫ

∑

i∈A(t)\O(t)

WA
i (t)

Wi

+

1

ǫ

∑

i∈O(t)

WA
i (t)

Wi

+−(1 + ǫ)
1

ǫ

∑

i∈A(t)\O(t)

WA
i (t)

Wi

≤ O(|O(t)|) +
1

ǫ

∑

i∈A(t)\O(t)

WA
i (t)

Wi

+

1

ǫ

∑

i∈O(t)

1 +−(1 + ǫ)
1

ǫ

∑

i∈A(t)\O(t)

WA
i (t)

Wi

≤ O(|O(t)|) +
1

ǫ

∑

i∈A(t)\O(t)

WA
i (t)

Wi

+

− (1 + ǫ)
1

ǫ

∑

i∈A(t)\O(t)

WA
i (t)

Wi

≤ O(|O(t)|)−
∑

i∈A(t)\O(t)

WA
i (t)

Wi

Consider the second term. We know that

−
∑

i∈A(t)\O(t)

WA
i (t)

Wi

= −
∑

i∈A(t)

WA
i (t)

Wi

+
∑

i∈A(t)∩O(t)

WA
i (t)

Wi

≤ −
∑

i∈A(t)

WA
i (t)

Wi

+ |O(t)|

Thus, we have proved that the total change in the

potential plus the increase in the algorithm’s objective,
∑

i∈A(t)
WA

i (t)
Wi

, is bounded by O( 1
ǫ

OPT). This com-

pletes the proof of the continues change in the potential.

The theorem follows by this, Lemma 4.1 and the potential

function framework. ✷

4.2 SJF Falls Behind with Resource Augmentation

Before we show how to convert the fractional flow time

of SJF to its integral flow time and how to prove the

competitiveness for SJF, we first present the challenges

in the proof.

In particular, we show that SJF can fall behind with

more resource augmentation. This is surprising because

essentially the same scheduling algorithm is used, yet

with speed augmentation it is actually possible for the
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Figure 1: An example schedule of slow and fast SJF on 6 processors

fast schedule to have performed less aggregate work than

the slow schedule at some time t. This difficult arises

specifically due to the intricacies of the DAG model.

We consider two schedules: one slow schedule S
with unit speed and one fast schedule F with speed s
for some fixed constant S. We will show that for a given

speed augmentation s and m processors, where 1 < s <
2− 2

m
, we can always construct a counterexample showing

that the fast schedule F falls behind the slow schedule S
using two jobs J1 and J2.

First we shall give a concrete example where with 1.6
speed, F does less aggregate work than S does at some

time t. Then, the general example for any speed s < 2− 2
m

will be given. Intuitively, we show that the structure of

J1 on the fast schedule forces J2 to be executed entirely

sequentially, this severely limits the amount of work that

can be done on J2 by the fast schedule. As both schedules

complete J1, this directly shows that the fast schedule

completes less aggregate work.

4.2.1 Example for Speed 1.6 on 6 processors In the

concrete example, the fast schedule have 1.6 speed. Con-

sider two jobs J1 and J2 as given in the figure. J1 con-

sists of a sequential chain of nodes of total length 16, fol-

lowed by 5 chains of nodes all having total length 30 (i.e.

a block of width 5 and length 30). Note the construction

of the DAG means that at time 10 the fast schedule will

have finished the entire chain, while the slow one will still

have 6 nodes to do. J2 arrives at the absolute time of 10
and consists of a block of width 5 with length 6, followed

by a long sequential chain of nodes. In this example, the

length of this chain is 140. Note that the total work of J2
is 170, which is more than J1’s total work 166. Thus, J2
has lower priority under both slow and fast SJF.

The time we consider to contradict the lemma is

t = 46. By this point, both F and S have finished J1,

therefore it is sufficient to compare the amount of work

done on J2. In the slow schedule for the first 6 steps

once J2 arrives, due to the fact that J1 can only utilize 1
processor, 30 nodes of J2 is finished. A further 30 nodes

of J2 finishes for a total of 60 at time t.
The fast schedule is of more interest. With 1.6 speed

augmentation, effectively 16 nodes can be finished in the

time that the slow schedule requires to finish 10 nodes.

Therefore, when J2 arrives, the fast schedule has already

finished the first chain and reached the highly parallel

portion of J1. As J1 has higher priority than J2, this

forces J2 to be executed on the only remaining processor

sequentially. Hence, due to the length of the block in J1,

the first block (30 nodes) of J2 is executed completely

sequentially. The rest of J2 is a chain and has to run

sequentially due to the structure of the DAG. Therefore,

J2 is performed entirely sequentially.

Now we compare the amount of work of J2 done by S
and F during the time interval [10, 46], which has length

36. Slow schedule with unit speed finishes 60 nodes of

J2. Taking the speed augmentation of 1.6 into account,

F can sequentially execute 36 ∗ 1.6 = 57.6 nodes of J2.

Hence, less than 60 nodes of J2 finishes executing by F .

This means that F has fallen behind in comparison to S
in terms of aggregate work at time t = 46.
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Figure 2: An example schedule of slow and fast SJF for m processors.

4.2.2 General Case for Speed s on m processors We

now show the general case where a speed of 2 − 2
m

is

necessary. We assume that the fast schedule is given some

speed s = 1 + ǫ with the restriction that 0 < ǫ < 1− 2
m

.

Similar to the concrete example, we construct the two jobs

with J1 being a chain followed by a block and J2 being

almost the opposite but having larger work and lower

priority. The key idea is that for J1, the fast schedule must

reach the highly parallel portion earlier, more precisely, at

the release time of J2. Note that for every node processed

by the slow schedule in the initial chain of J1, the fast

schedule processes 1 + ǫ nodes, gaining ǫ nodes over the

slow schedule.

Consider Figure 2, for similarity to the previous

example we introduce a constant L. In the previous

example, we had L = 6. Let J1 begin with a chain of

length L
ǫ
+ L, followed by a block of length (m − 1)L

and parallelism (width) (m−1). J2 will consist of a block

of length L with parallelism (m − 1) followed by a long

chain of sufficient length such that J2 has more work and

lower priority than J1. J2 arrives at exactly time L
ǫ

.

The time that will be examined is time t =
(

L
ǫ
+ L

)

+ (m − 1)L. Note that at this point both the

schedules have finished J1 and therefore it is sufficient

to compare the amount of work done on J2. In the slow

schedule, J2 arrives when only 1 processors is used to ex-

ecute J1, as the highly parallel block has not been reached.

Therefore, for the next L time steps a total of (m − 1)L
nodes of J2 are finished with parallelism m − 1. On the

following (m− 1)L steps, J1 occupies m− 1 processors,

while J2 reaches its chain and is processed sequentially.

A total of 2L(m − 1) nodes of J2 are finished at time t.
We also note that a total of mL time steps have passed in

the slow schedule between the arrival of J2 and time t.
From the construction of the initial chain of J1, the

fast schedule completes all L
ǫ
+ L = L

ǫ
(1 + ǫ) nodes of

the strand by the time L
ǫ

that J2 arrives. Due to the higher

priority of J1, the parallel block of J1 take precedence

over that of J2. Note that the parallel block of J1 has a

width of m− 1, which occupies all but one processor for

as long as (m− 1)L steps. This forces J2 to only execute

sequentially on the remaining single processor for all its

(m − 1)L nodes of the parallel block in J2. When J1
finally completes and all m processors are free, J2 reaches

its sequential chain. Therefore, J2 is processed entirely

sequentially in the fast schedule.

The amount of time which passes between the arrival

of J2 and t is just mL. Consider the speed augmentation

of the fast schedule and recall that ǫ < 1 − 2
m

. The

total number of nodes of J2, that the fast processor can

sequential execute between the arrival of J2 and t, is

mL(1 + ǫ) < mL(2 − 2
m
) = 2L(m − 1). Recall that

the slow schedule performed exactly 2L(m − 1) nodes

of J2 during the same time interval. Therefore, the fast

schedule with 1 + ǫ speed performs less total aggregate

work at time t in comparison to the slow schedule.

Note that this example does not hold when ǫ ≥ 1
as the final calculation would result in the fast processor

finishing more nodes of J2.
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4.3 From Fractional to Integral We now compare the

fractional flow time of SJF to its integral flow time and

prove the following lemma. Note that this lemma, com-

bined with Lemma 4.1 proves Theorem 1.2.

LEMMA 4.4. If SJF is s-speed c-competitive for frac-

tional flow time then SJF is (2 + ǫ)s-speed O( c
ǫ3
)-

competitive for the integral flow time for any 0 < ǫ ≤ 1/2.

To show the Lemma 4.4, for the remaining portion

of the section we will consider two schedules created by

SJF. One schedule has s speed and the other (2 + ǫ)s for

some fixed 0 < ǫ ≤ 1/2 and some constant s. To avoid

confusion, we use F to denote the fast schedule and S
to denote the slow schedule. Since both schedules are

SJF, we assume that the tasks for a job are given the same

priority in both algorithms — this priority can be arbitrary.

To begin the proof, we first show that F has always

processed as much work as S at any time given a (2 + ǫ)
factor more speed. It may seem obvious that a faster

schedule should do more work than the slower schedule.

However, showing this is not straightforward in the DAG

model. In fact, in Section 4.2, we have already showed

that if the faster schedule has less than a (2 − 2
m
) factor

speed it will actually fall behind in total aggregate work

compared to the slow schedule in some instances. In

other words, F does not always process as much of each

individual job as S at each point in time. This could cause

F to later not achieve as much parallelism as S. Here we

will show that F does not fall behind S given a (2 + ǫ)
factor more speed.

First, we give some more notations. Let S(t) (F(t))
denote the queued jobs in S’s (F ’s) schedule at time t,
which have been released but not finished. Let WS

i (t)
(WF

i (t)) and CS
i (t) (CF

i (t)) denote the remaining work

and remaining critical-path length, respectively, for job

i in S’s (F ’s) schedule at time t. The following lemma

states that if we only focus on jobs whose original pro-

cessing time is less than some value ρ, it must be the case

that F did more total work on these jobs than S. This

lemma is where we require the 2 speed in the conversion

from fractional to integral flow time.

LEMMA 4.5. At all times t and for all ρ ≥ 0, it is the

case that
∑

i∈F(t),Wi≤ρ W
F
i (t) ≤

∑

i∈S(t),Wi≤ρ W
S
i (t).

Proof. For the sake of contradiction, say the lemma is

not true and let t be the first time it is false for some

ρ. Then at this time t, there must be some job i where

WS
i (t) < WF

i (t) and Wi ≤ ρ.

At release time ri the lemma still holds, i.e.
∑

i∈F(ri),Wi≤ρ W
F
i (ri) ≤

∑

i∈S(ri),Wi≤ρ W
S
i (ri). Let

V be the total volume of original work for jobs of size at

most ρ which arrives during [ri, t]. Note that S can do at

most ms(t − ri) work during [ri, t] with speed s on m
processors, we know that at time t

∑

i∈S(t),Wi≤ρ

WS
i (t)

≥
∑

i∈S(ri),Wi≤ρ

(WS
i (ri) + V −ms(t− ri))

Consider the time interval [ri, t]. Notice that it must

be the case that t − ri ≥ (Ci − CS
i (t))/s, since the

schedule S has decreased the critical-path of job i by

Ci − CS
i (t) with a speed of s. Further, knowing that

both of the schedules execute the nodes of a particular

job in the same priority order for either schedule, then

CS
i (t) ≤ CF

i (t). Therefore, we have

(4.2) t− ri ≥ (Ci − CS
i (t))/s ≥ (Ci − CF

i (t))/s

Now consider the amount of work done by F during

[ri, t]. Note that for at most a
Ci−CF

i (t)
s(2+ǫ) amount of time

during [ri, t] the schedule F have some processors idling

and not executing nodes of jobs with Wi ≤ ρ. Otherwise,

by Observation 1 F would have decreased the critical-

path of job i during these non-busy time steps by strictly

more than
Ci−CF

i (t)
s(2+ǫ) · s(2 + ǫ) = Ci − CF

i (t). Then

the remaining critical-path of job i at time t in F would

then be less than CF
i (t), contradicting the definition of

CF
i (t). Thus, F processes a total volume of at least

(2 + ǫ)ms(t− ri −
Ci−CF

i (t)
s(2+ǫ) ) on jobs with original size

at most ρ during [ri, t]. Hence the following. (Here have

omitted the repeated indices on some sums for brevity,

and invoked equation 4.2 for one of the steps).

∑

i∈F(t),Wi≤ρ

W
F
i (t)

≤
∑

−

W
F
i (ri) + V − (2 + ǫ)s(t− ri −

Ci − C
F
i (t)

s(2 + ǫ)
)

≤
∑

−

W
F
i (ri) + V − (2 + ǫ)s(t− ri −

t− ri

(2 + ǫ)
)

=
∑

−

W
F
i (ri) + V − (1 + ǫ)s(t− ri)

≤
∑

i∈S(ri),Wi≤ρ

W
S
i (ri) + V − s(t− ri)

=
∑

i∈S(t),Wi≤ρ

W
S
i (t)

This contradicts the definition of t.

Let tSi,ǫ denote the latest time t in S’s schedule where

WS
i (t)
Wi

≥ ǫ. For the fractional flow time objective, job i

always pays a cost of at least ǫ at each time during [ri, t
S
i,ǫ]

in S’s schedule. Let fS
i,ǫ = tSi,ǫ − ri. It must be the case

that job i’s fractional flow time is greater than ǫfS
i,ǫ in S.
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For integral flow time we know that a job pays a cost of 1
each time unit it is unsatisfied. Thus, if the integral flow

time of job i in F is bounded by fS
i,ǫ we can charge this

job’s integral cost in F to the job’s fractional cost in S.

Also, according to Observation 2, for integral flow time

the optimal schedule of speed 1 must make job i wait

Ci time steps. Thus, if job i’s flow time is bounded by

Ci in F then we can charge job i’s integral flow time in

F directly to the optimal schedule. These two ideas are

formalized in the following lemma.

For any schedule A, we let IntCost(A) denote the

integral cost of A and FracCost(A) denote the fractional

flow time of A. Finally, we let OPTI denote the optimal

schedule for integral flow time.

LEMMA 4.6. Let EF (t) be the set of jobs i ∈ F(t)
such that t ≤ ri +

10
ǫ2
(max{fS

i,ǫ, Ci}). Consider the

quantity
∑∞

t=0 |E
F (t)|, which is the contribution to the

total integral flow at time t from jobs in EF (t). It is

the case that
∑∞

t=0 |E
F (t)| ≤ O( 1

ǫ3
)(FracCost(S) +

IntCost(OPTI)).

Proof. Case 1: Consider a job i with fS
i,ǫ =

max{fS
i,ǫ, Ci}. In this case, job i can only be in EF (t)

during [ri, ri +
10
ǫ2
fS
i,ǫ]. The total integral flow time that

job i in F can accumulate during this interval is at most
10
ǫ2
fS
i,ǫ. By definition of fS

i,ǫ, job i’s fractional flow in S is

at least ǫfS
i,ǫ. Hence, the total integral flow time of all jobs

in F where fS
i,ǫ = max{fS

i,ǫ, Ci} during times where they

are in EF (t) is at most O( 1
ǫ3
)FracCost(S).

Case 2: Consider a job i, with Ci = max{fS
i,ǫ, Ci}.

The integral flow time in OPTI for job i is at least Ci by

definition of the critical-path. Thus, we bound the integral

flow time of all such jobs in F while they are in EF (t) by

O( 1
ǫ2
)IntCost(OPTI).

Intuitively, we think of the jobs in EF (t) as jobs

which are early at time t. Let LF (t) = F(t) \ EF (t) be

the set of late jobs at time t. The remaining portion of the

proof focuses on bounding the integral flow time of jobs

in F ’s schedule at times when they are in LF (t). We will

prove that O( 1
ǫ
)
∑

i∈S(t)
WS

i (t)
Wi

≥ |LF (t)| at all times t.
That is, the total fractional weight of jobs in S is greater

than the number of late jobs in L at all times t. Thus, we

can charge the integral flow time of jobs in LF (t) to the

fractional flow time of S’s schedule. This will complete

the proof.

To prove this, we will show the following structural

lemma about S and F . Let S=h(t) (F=h(t)) denote the

remaining jobs i in S’s (F ’s) schedule at time t whose

original work satisfies 2h−1 ≤ Wi < 2h for some integer

h ≥ 1. Let WS
=h(t) =

∑

i∈S(t),2h−1≤Wi<2h W
S
i (t)

(WF
=h(t) =

∑

i∈F(t),2h−1≤Wi<2h W
F
i (t)) denote the

remaining work in S’s (F ’s) schedule at time t for jobs i

whose original work satisfies 2h−1 ≤ Wi < 2h for some

h ≥ 1. We will say job i is in class h, if 2h−1 ≤ Wi < 2h.

LEMMA 4.7. At all times t and for all h ≥ 1, |F=h(t) ∩

LF (t)| ≤ 10
ǫ

1
2h

∑h
h′=1 W

S
=h′(t).

Before we prove this lemma, we show how it can be

used to bound the number of jobs in LF (t) in terms of the

fractional weight of jobs in S(t).

LEMMA 4.8. At all times t,

O(
1

ǫ
)
∑

i∈S(t)

WS
i (t)

Wi

≥ |LF (t)|

Proof. Notice that |LF (t)| =
∑∞

h=1 |F=h(t) ∩ LF (t)|.
Using Lemma 4.7 we have the following.

|LF (t)| =
∞
∑

h=1

|F=h(t) ∩ LF (t)|

≤

∞
∑

h=1

10

ǫ

h
∑

h′=1

1

2h
WS

=h′(t) [By Lemma 4.7]

=

∞
∑

h=1

10

ǫ

h
∑

h′=1

(
1

2h′
WS

=h′(t))
1

2h−h′

=
10

ǫ

∞
∑

h′=1

(
1

2h′
WS

=h′(t))
∞
∑

h=h′

1

2h−h′

≤
20

ǫ

∞
∑

h′=1

1

2h′
WS

=h′(t)

≤
20

ǫ

∑

i∈S(t)

WS
i (t)

Wi

[2h
′−1 ≤ Wi < 2h

′

if i in class h′]

The previous lemma with Lemma 4.6 implies

Lemma 4.4. All that remains is to prove Lemma 4.7.

Proof of [Lemma 4.7]

Assume for the sake of contradiction the lemma

is not true. Let t be the earliest time the lemma

is false for some class h, i.e. |F=h(t) ∩ LF (t)| >
10
ǫ

∑

i∈S(t),Wi≤2h
1
2h
WS

i (t).

Let j∗ denote the job in LF (t) which arrived the

earliest and j∗ is of some class h′ ≤ h. By definition

of LF (t), this implies that S processed at least (1− ǫ)Wi

for each job i ∈ LF (t) where Wi ≤ 2h by time t. Since

S has m processors of speed s, this means t − rj∗ ≥
1
sm

∑

i∈LF (t),Wi≤2h(1− ǫ)Wi.

Consider the interval [rj∗ , t]. We first make several

observations about the length of this time interval. We

know that t − rj∗ ≥ 10
ǫ2
Cj∗ since j∗ ∈ LF (t). We

further know that during [rj∗ , t] there can be at most

Cj∗ time steps where F is not using all m processors

to execute nodes for jobs which are in a class at most h.
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Otherwise job J∗ would have finished all its Cj∗ critical-

path length by time t using Observation 1 and thus have

been completed by t, a contradiction.

Now our goal is to bound the total work S and F
can process for jobs in classes h or less during [rj∗ , t].
The schedule S can process at most sm(t − rj∗) work

on jobs of class at most h during [rj∗ , t] since it has m
machines of speed s. The schedule F processes at least

(2+ ǫ)sm(t− rj∗ −Cj∗) work on jobs of class at most h
by the observations above. Knowing that t−rj∗ ≥ 10

ǫ2
Cj∗ ,

we see that (2 + ǫ)sm(t − rj∗ − Cj∗) ≥ (2 + ǫ)(1 −
ǫ2

10 )sm(t− rj∗).
We will use these arguments to bound the total vol-

ume of work in S at time t to draw a contradiction.

Let V denote the total original processing time of jobs

which are of class at most h that arrive during [rj∗ , t].
By Lemma 4.5, we have

∑

i∈F(rj∗ ),Wi≤2h W
F
i (rj∗) ≤

∑

i∈S(rj∗ ),Wi≤2h W
S
i (rj∗). Thus,

∑

i∈S(t),Wi≤2h

WS
i (t)−

∑

i∈F(t),Wi≤2h

WF
i (t)

≥











∑

i∈S(rj∗ )

Wi≤2h

WS
i (rj∗) + V − sm(t− rj∗)











−











∑

i∈F(rj∗ )

Wi≤2h

WF
i (rj∗) + V − (2 + ǫ)(1−

ǫ2

10
)sm(t− rj∗)











≥ (−sm(t− rj∗))−

(

−(2 + ǫ)(1−
ǫ2

10
)sm(t− rj∗)

)

[Lemma 4.5]

≥
1 + ǫ

2
sm(t− rj∗) [ǫ ≤ 1/2]

This implies that

∑

i∈S(t),Wi≤2h

WS
i (t) ≥

1 + ǫ

2
sm(t− rj∗)

. We also know that

t− rj∗ ≥
1

sm

∑

i∈LF (t),Wi≤2h

(1− ǫ)Wi

. With ǫ ≤ 1/2 this means that

∑

i∈S(t),Wi≤2h

WS
i (t) ≥

1 + ǫ

2

∑

i∈LF (t),Wi≤2h

(1− ǫ)Wi

≥
ǫ

4

∑

i∈LF (t),Wi≤2h

Wi

Knowing that jobs of class h have size at most 2h

and
∑

i∈S(t),Wi≤2h W
S
i (t) ≥ ǫ

4

∑

i∈LF (t),Wi≤2h Wi, we

complete the proof:

|F=h(t) ∩ LF (t)|

=
∑

i∈LF (t)

2h−1≤Wi<2h

1 ≤ 2
∑

i∈LF (t)

2h−1≤Wi<2h

Wi

2h

≤
10

ǫ

∑

i∈S(t),Wi≤2h

1

2h
WS

i (t)

This contradicts the definition of time t and thus we

have proven the lemma. ✷
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