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Abstract In this paper, we initiate the study of minimiz-
ing power consumption in the broadcast scheduling model.
In this setting, there is a wireless transmitter. Over time
requests arrive at the transmitter for pages of information.
Multiple requests may be for the same page. When a page is
transmitted, all requests for that page receive the transmis-
sion simultaneously. The speed the transmitter sends data
at can be dynamically scaled to conserve energy. We con-
sider the problem of minimizing flow time plus energy, the
most popular scheduling metric considered in the standard
online scheduling model when the scheduler is energy aware.
We will assume that the power consumed is modeled by an
arbitrary convex function. For this problem, there is an �(n)

lower bound on the competitive ratio. Due to the lower bound,
we consider using resource augmentation and give a scalable
algorithm.

Keywords Scheduling · Broadcast · Online ·
Resource augmentation · Energy · Speed scalable

1 Introduction

Wireless transmitters can typically be utilized in a variety
of ways. This presents the designer with tradeoffs between
power, signal range, bandwidth, cost, etc. In this paper,
we consider the trade off between power and performance.
Reducing the energy consumption is of importance in many
systems. For example, in ad hoc wireless networks, a typical
transmitter is battery operated, and therefore, energy conser-
vation is critical. There are two modes of a wireless transmit-
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ter where power can be saved: (1) During idle times, (2) Dur-
ing transmit times. Work on the first mode focuses on putting
the system to sleep when not in use (Chen et al. 2002; Xu et al.
2000). By appropriately putting the system to sleep, energy
consumption can be drastically reduced. Another way the
transmitter can reduce power is scaling the speed of the wire-
less transmission (Irani et al. 2007). By using more power,
a signal can be sent at a faster rate or, to save power, the
signal can be sent at a slower rate. We focus on reducing
energy in the second mode. Reducing energy by changing
the transmission speed is naturally related to the well studied
model of speed scaling in scheduling theory. However, now
that we are interested in wireless networks, this motivates a
generalization of the standard speed scaling model.

Companies such as IBM and AMD are producing proces-
sors whose speed can be dynamically scaled by the operating
system. A typical operating systems can control the power
consumed in the system by scaling the processor speed. To
model this in scheduling theory, it is assumed that there is a
power function P where P(s) is the power used when run-
ning the processor at speed s. A scheduler not only chooses
the job to schedule, but also the speed used to process the
job. In other words, a scheduling algorithm consists of a job
selection policy and an energy policy. This is known as the
speed scaling scheduling model.

The standard speed scaling model is similar to our setting,
except that we are interested in speed scaling in wireless net-
works. Like the speed scaling setting, we assume that there
is a power function P where P(s) is the power used when
transmitting at speed s. To model the wireless network, we
will assume a well-studied model known as the broadcast
model. In a broadcast network, there is a single server, and
n pages of information are stored at the server. Over time
clients send requests for pages to the server. Multiple clients
could be interested in the same page of information. When the
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sever broadcasts a page p, all outstanding requests for that
page are simultaneously satisfied. This is how the broad-
cast model differs from the standard scheduling model. In
the standard model, each request (job) is for a unique page
and broadcasting (processing) a page satisfies exactly one
request. In the online setting, the server is not aware of a
request until it arrives to the system. The broadcast model is
motivated by applications in multicast systems and in wire-
less and LAN networks (Wong 1988; Acharya et al. 1995;
Aksoy and Franklin 1999; Hall and Täubig 2003). Along
with practical interest, the broadcast model has been stud-
ied extensively in the scheduling literature (Bar-Noy et al.
2002; Aksoy and Franklin 1999; Acharya et al. 1995; Bartal
and Muthukrishnan 2000; Hall and Täubig 2003; Gandhi et
al. 2006). Similar models have been considered in queuing
theory and in the stochastic scheduling literature (Deb 1984;
Deb and Serfozo 1973; Weiss 1979; Weiss and Pliska 1982).

The goal of the scheduler is to satisfy the requests in an
order which optimizes a quality of service metric. Naturally,
this metric depends on the needs of the system. When speed
scaling is allowed, the server has a dual objective. One is
to minimize the power usage, and the other is to optimize
the quality of service the clients receive. Perhaps the most
popular metric in the speed scaling literature is minimizing
a linear combination of flow time and total energy (Albers
and Fujiwara 2007; Bansal et al. 2009; Chan et al. 2009;
Gupta et al. 2010; Bansal et al. 2009). The flow time1 of a
request is the amount of time the server takes to satisfy the
request. Let F denote the total flow time of a schedule over
all requests and let E denote the energy consumption of the
schedule. The scheduler focuses on minimizing G = F + E .
This has a natural interpretation. Say the system is willing to
spend one unit of energy to reduce ρ units of flow time. For
example, a system designer may be able to justify spending
1 erg of energy to decrease the flow time by ρ =10 µs . The
system designer would then desire a schedule that minimizes
F + 10E . By scaling the units of energy and flow time, we
can assume that ρ = 1. The main contribution of this work
is to initiate the study of energy in the broadcast model. We
focus on the problem of minimizing flow time plus energy in
the broadcast setting. Besides practical interest in the model,
we believe this problem is of theoretical interest as it is a
natural extension of previous work.

Results In this paper, we give an algorithm for minimizing
total flow time plus energy in the online broadcast setting
where the power function is an arbitrary convex function.
There is an �(n) lower bound on the problem of minimizing
flow time in broadcast scheduling when all broadcasts are
sent at a fixed rate and, energy is not included in the objective
(Kalyanasundaram et al. 2000). Since the power function is
arbitrary, this lower bound also extends to the problem of

1 Flow time is also known as waiting time or response time.

minimizing flow time plus energy. Thus, we will resort to
resource augmentation (Kalyanasundaram and Pruhs 2000).
The resource augmentation model we consider is the same as
that introduced in Gupta et al. (2010). Here, if the algorithm
is given 1+ε resource augmentation over the adversary, then
our algorithm uses power P(γ ) when broadcasting at a rate
of (1 + ε)γ . The rest of the paper will be devoted to proving
the following theorem.

Theorem 1.1 There exists an algorithm that with 1 + ε

resource augmentation is O
(

1
ε3

)
-competitive for minimiz-

ing total flow time plus energy in broadcast scheduling with
an arbitrary power function where 0 < ε ≤ 1.

Our algorithm is called scalable since the minimum
amount of resource augmentation is used to be O(1)-
competitive. This is the best result that can be shown in
the worst case setting up to a constant in the competitive
ratio because there is a strong lower bound on an algorithm’s
competitive ratio when the algorithm is not given resource
augmentation.

Relation to previous work In the standard scheduling setting,
speed scaling has traditionally used power functions of the
form P(s) = sα for some α > 0. These power functions
were motivated by the fact that the power used by CMOS-
based processors is approximately s3. Recently, modeling the
power function as an arbitrary convex function was suggested
to capture the power consumption of more complex systems
(Bansal et al. 2010). As mentioned, in this work, we adopt
this general model.

There is a large amount of the literature on scheduling
in the broadcast model. The most popular scheduling metric
considered is minimizing average flow time. Recently, it was
shown that there exists an online scheduler that is a scalable
algorithm for minimizing the total flow time of a schedule
when broadcasts are sent at a fixed rate, and energy is not
considered in the objective (Im and Moseley 2012; Bansal et
al. 2010). This work builds on the ideas and techniques given
in Bansal et al. (2010). In particular, this paper uses the algo-
rithm of Bansal et al. (2010) with the additional feature of
being power aware. Since the power function considered in
this paper is an arbitrary convex function, our work general-
izes these results.

Previous work on flow time in broadcast scheduling Mini-
mizing flow time (without energy) in broadcast scheduling
where broadcasts are sent at a fixed speed has a rich his-
tory beginning with the seminal work of Kalyanasundaram
et al. (2000); Bartal and Muthukrishnan (2000). Kalyana-
sundaram et al. (2000), showed that no online determin-
istic algorithm can be �(n)-competitive. This has been
extended to show that no randomized online algorithm can be
�(

√
n)-competitive (Bansal et al. 2005). Due to these strong
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lower bounds, most previous work has focused on analyz-
ing algorithms in a resource augmentation model (Kalyana-
sundaram and Pruhs 2000). In this resource augmentation
analysis, the online algorithm is given s-speed and is com-
pared to a 1-speed adversary. An algorithm is said to be
s-speed c-competitive for some objective function if the algo-
rithm’s objective when given s speed is within a c factor
of the optimal solution’s objective given 1-speed for every
request sequence. An algorithm that is (1 + ε)-speed O(1)-
competitive is called scalable where 0 < ε ≤ 1 since it is
O(1)-competitive when given the minimum advantage over
the adversary.

In the offline setting, the problem was shown to be
NP-Hard (Erlebach and Hall 2004; Chang et al. 2008).
The first O(1)-speed O(1)-approximation was found in
Kalyanasundaram et al. (2000). The best positive result
in the offline setting using resource augmentation is a
(1+ε)-speed O(1)-approximation (Bansal et al. 2005). With-
out resource augmentation, (Bansal et al. 2005) gave an
O(

√
n)-approximation. This has since been improved to an

O(log2 n/ log log n) approximation (Bansal et al. 2008). It
is long standing open question whether or not this problem
admits an O(1)-approximation.

It has been difficult to find competitive online algo-
rithms for broadcast scheduling. The first online algorithm
was given by Edmonds and Pruhs in Edmonds and Pruhs
(2003). This algorithm was shown to be (4+ε)-speed O(1)-
competitive algorithm via a reduction to a different schedul-
ing problem known as arbitrary speed up curves. This reduc-
tion takes a s-speed c-competitive algorithm for the speed up
curves setting and converts it into a (2s)-speed c-competitive
algorithm for the broadcast setting. In Edmonds and Pruhs
(2005), Edmonds and Pruhs showed that a natural algorithm
Longest-Wait-First (LWF) is 6-speed O(1)-competitive via
a global charging argument. The analysis of LWF has been
improved to show that the algorithm is (3.4+ε)-speed O(1)-
competitive (Chekuri et al. 2009a).

Later, Edmonds and Pruhs (2012) gave an algorithm LAPS
that is scalable in the arbitrary speed up curves setting. Using
the reduction in Edmonds and Pruhs (2003), this gives a
(2 + ε)-speed O(1)-competitive algorithm for the broad-
cast setting. It was a long standing problem whether or
not there existed a scalable online algorithm in the broad-
cast model. This question was resolved by Im and Moseley
(2012); Bansal et al. (2010) by finding scalable algorithms.
The analysis and algorithm of Bansal et al. (2010) has since
been extended to show an algorithm that is (2 + ε)-speed
O(1)-competitive for the �2-norm of flow time (Gupta et
al. 2010). Recently, a scalable algorithm was found for the
�k-norms of flow time for all k ≥ 1 (Edmonds et al. 2010).

Previous work on speed-scaling All of the previous work on
broadcast scheduling has assumed that the scheduler broad-

casts at some fixed speed. Although speed scaling has not
been considered in broadcast scheduling, it has been consid-
ered extensively in the standard scheduling model. As men-
tioned, the standard scheduling model can be interpreted as
each request being for a unique page. Recall that in the speed
scaling setting, a power function P is given where P(s) is the
power used when running the processor at speed s. We first
consider the traditional model where P(s) = sα and α > 1.
In Pruhs et al. (2008), an efficient algorithm was given for the
problem of minimizing flow time offline subject to a bound
on the amount of power consumed. This algorithm can be
extended to find a schedule that minimizes the flow time
plus energy in the offline setting. The problem of minimiz-
ing flow time plus energy online was first studied by Albers
and Fujiwara (2007). Bansal et al. (2009) showed that the
algorithm that runs jobs with power proportional to the num-
ber of outstanding requests is 4-competitive for unit work
jobs. They also showed the Highest-Density-First algorithm

coupled with this power strategy is O
(

α2

log2 α

)
competitive

for weighted flow plus energy. This is since been improved
in Lam et al. (2008) for unweighted flow plus energy to give

an O
(

α
log α

)
-competitive algorithm. In Chan et al. (2009) an

O(α3)-competitive non-clairvoyant algorithm was given.
Recently, Bansal et al. (2009) introduced the problem of

minimizing flow time plus energy with an arbitrary convex
power function. Surprisingly, they were able to give an algo-
rithm that is 3-competitive in this general setting for flow
plus energy. This resolved a central question on whether an
algorithm could be O(1)-competitive where the competitive
ratio does not depend on α. Gupta et al. (2010) gave a scalable
algorithm for minimizing weighted flow time plus energy in
the case where there are m machines, each machine may
have a different power function, and each power function is
an arbitrary convex function. In Gupta et al. (2012) several
different objective functions are considered when the power
function is an arbitrary convex function. As mentioned, in
this paper, we adopt the assumption that the power function
is an arbitrary convex function.

2 Preliminaries

We begin by introducing some notation. There are n pages
stored at the server. Each page has a size σp. A request for
page p is satisfied if it receives σp pieces of page p in sequen-
tial order. That is, a request receives the transmission of page
p from start to finish in that order. This will be further elabo-
rated on later. Notice that by this definition, multiple requests
can be satisfied by a single broadcast. Let Jp,i denote the i th
request for page p. Let ap,i be the time this request arrives
to the server. In the online setting, this is the first time the
server is aware of the request. Let f p,i be the time the server
satisfies request Jp,i , the total flow time of a schedule is
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F = ∑
p
∑

i ( f p,i − ap,i ). The following definitions will be
useful.

Definition 2.1 (convex function) A real-valued function f
is convex if and only if for any 0 ≤ α ≤ 1 and any real valued
x and y it is the case that f (αx + (1 −α)y) ≤ α f (x)+ (1 −
α) f (y)

Definition 2.2 (concave function) A real-valued function
f is concave if and only if for any 0 ≤ α ≤ 1 and any
real valued x and y it is the case that f (αx + (1 − α)y) ≥
α f (x) + (1 − α) f (y)

Using the definition of a concave function, we can easily
show the following proposition.

Proposition 2.3 For any real-valued concave function f
where f (0) = 0, the following holds

• For any positive real number x, x−1
x ≤ f (x−1)

f (x)• For any positive real number x and any α ≤ 1, α f (x) ≤
f (αx)

We will be given a power function P : R → R. The value
of P(s) is the power used when the server broadcasts with
speed s. In Bansal et al. (2009); Gupta et al. (2010) with a
small loss in the competitive ratio, it was assumed that power
function P satisfies the following conditions,

1. At all speeds, P is defined, continuous, and differentiable
2. P(0) = 0
3. P is strictly increasing
4. P is strictly convex
5. P is unbounded

In this paper we adopt these assumptions on P . Let the
function Q = P−1. That is, Q(y) is the maximum speed of
the processor with a limit of y on the power used. Notice that
Q(0) = 0 and that Q is concave. Let s(t) denote the speed
used at time t . Let E = ∫ ∞

t=0 P(s(t))dt be the total energy
used. The goal of the scheduler is to minimize G = F + E .

2.1 Fractional broadcast scheduling

In integral broadcast scheduling (the standard model), a
request Jp,i for page p is satisfied if it receives each of
σp pieces of page p in sequential order. That is, a page
is divided into pieces. At any time the scheduler decides
which piece to broadcast. A request is satisfied if it receives
each of the pieces from start to finish, in that order. We note
that in the previous literature, a slot model was considered
where each page consists of unit sized pieces and in each
time slot one unit-sized piece is chosen to be broadcasted.
Since the speed of the broadcasts can be dynamically scaled

over time, a slot model does not make sense for our set-
ting. We will consider a continuos model where any por-
tion of a page can be broadcasted and time is continuous
and not slotted. Again, we require that a request is satis-
fied only if it receives all pieces of page p in sequential
order.

We now define a different version of the broadcast
scheduling problem called fractional broadcast scheduling.
In this setting, the σp unit-sized pieces of page p are indis-
tinguishable. Now a request Jp,i is satisfied once the server
devotes a total of σp time units to page p after time ap,i . In
Bansal et al. (2010), it was shown that an online algorithm
running at a fixed speed that satisfies a request Jp,i by time t in
a fractional schedule can be converted into a different online
algorithm that completes Jp,i by time t + 3

ε′ (t − ap,i ) + 5
ε′

in an integral broadcast schedule. Here, the new algorithm is
given an additional ε′ resource augmentation.

It is not obvious that this generalizes when the server can
use varying speeds over time. In Sect. 4, we extend their
result to the speed scaling setting. We prove the following
theorem. This theorem may be of independent interest, since
it can be used to reduce integral broadcast scheduling to the
fractional setting for a variety of objective functions where
speeds can vary over time.

Theorem 2.4 Let S be a fractional broadcast schedule
where the server can vary its speed over time and let 0 ≤
ε′ ≤ 1. The schedule S can be converted into a schedule
S ′ using ε′ resource augmentation such that the schedule S ′
satisfies the following properties

• The power used by S ′ is at most twice the power used by
S.

• If a request Jp,i is fractionally satisfied at time f p,i under
S then this request is integrally satisfied at time f p,i +
5
ε′ ( f p,i − ap,i ) under the schedule S′.

• If the algorithm that generates S is online then so is the
algorithm that generates S′.

This theorem implies the following corollary.

Corollary 2.5 An algorithm with 1 + ε resource augmenta-
tion that is c-competitive for flow time plus energy in frac-
tional broadcast scheduling can be converted into an algo-

rithm that is
(

5c
ε′ + 1

)
-competitive for integral broadcast

scheduling and uses (1 + ε)(1 + ε′) resource augmentation
where 0 < ε′ ≤ 1.

Due to the previous corollary, we will focus on fractional
broadcast scheduling for the rest of this paper.
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2.2 The algorithm

Let Na(t) contain the unsatisfied requests under our algo-
rithm’s schedule at time t . Our algorithm broadcasts at
speed Q(|Na(t)|) at time t . Intuitively, since the flow time
of the schedule at time t increases by |Na(t)|, the sched-
uler can afford to use this much power at time t . Now we
define how our algorithm distributes its processing power.
Here the algorithm BLAPS is used. This algorithm was
introduced in Bansal et al. (2010); Edmonds and Pruhs
(2012). We will be assuming that our algorithm is given
(1 + 6ε) resource augmentation, and this implies the total
speed our algorithm uses at time t is (1 + 6ε)Q(|Na(t)|)
where ε ≤ 1

6 . The algorithm BLAPS takes a parame-
ter β ≤ 1. We will fix β = ε later. Let N ′

a(t) be the
�β|Na(t)|	 requests in Na(t) with the latest arrival times.
For a moment, assume that β|Na(t)| is always integral. At
any time t , the algorithm equally distributes its process-
ing power amongst the requests in N ′

a(t). That is, for a
request Jp,i ∈ N ′

a(t) page p is broadcasted at a rate of
x p,i (t) = (1+6ε)Q(|Na(t)|)

β|Na(t)| . Notice that there could be mul-
tiple requests for page p in N ′

a(t). Let Sp(t) be the set
of requests for page p in N ′

a(t). A page p is broadcasted
at a rate of

∑
Jp,i ∈Sp(t) x p,i (t) at time t . We call x p,i (t)

the amount Jp,i contributes to how much page p is broad-
casted. Notice that at any time, the algorithm uses total speed
(1 + 6ε)Q(|Na(t)).

Now we describe the algorithm in the case that β|Na(t)|
is not integral. For the �β|Na(t)|� requests with latest arrival
times in N ′

a(t), BLAPS keeps the value of x the same. Let
Jp,i be the only other request in N ′

a(t). For this request, we
set x p,i = (β|Na(t)| − �β|Na(t)|�) (1+ε)Q(|Na(t)|)

β|Na(t)| . That is,
Jp,i is given processing power proportional to (β|Na(t)| −
�β|Na(t)|�), the amount Jp,i “overlaps” the β|Na(t)| latest
arriving requests.

3 Analysis

We will be using a potential function argument. See Im
et al. (2011) for a tutorial on potential function analy-
sis in scheduling theory. Let d

dt G(t) be the increase in
our algorithm’s objective at time t . Likewise, let d

dt G∗(t)
be the increase in OPT’s objective at time t . Notice
that d

dt G(t) = 2|Na(t)| because there are |Na(t)| out-
standing requests at time t , which increases the flow
time of the schedule by |Na(t)| and the scheduler uses
power |Na(t)| at time t . Let G = ∫ ∞

0
d
dt G(t)dt denote

our algorithm’s total cost and let G∗ = ∫ ∞
0

d
dt G∗(t)dt

denote the optimal solution’s total cost. We will define
a potential function 
(t) that will satisfy the following
conditions:

1. Boundary Condition 
 is 0 before any request arrives
and 0 after all requests complete

2. Arrival/Completion Condition 
 does not increase when
a request is completed by BLAPS or OPT or when a
request arrives.

3. Running Condition At all times t it is the case that
d
dt G(t)+ d

dt 
 ≤ c d
dt G∗(t) where c is some positive con-

stant.

By integrating the running condition over time, this is
sufficient to show that our algorithm is c-competitive. This
can be seen as follows,

G =
∞∫

0

d

dt
G(t)dt =

∞∫

0

(
d

dt
G(t) + d

dt

(t)

)
dt

≤
∞∫

0

c
d

dt
G∗(t)dt ≤ cG∗.

The second equality holds due to 
(0) = 
(∞) = 0.
Now we define our potential function. We assume with-

out loss of generality that all requests arrive at distinct
times, which will simplify the definition of the potential
function. For a request Jp,i ∈ Na(t) let rank(Jp,i ) =∑

Jq, j ∈Na(t),aq, j ≤ap,i
1 at time t be the number of requests

that have arrived during [0, ap,i ] that are unsatisfied by
the algorithm. Recall that x p,i (t) is the amount page p
is broadcasted by our algorithm at time t due to Jp,i

and σp is the amount of page p that must be broad-
casted after ap,i to satisfy Jp,i . Let On(p, i, t1, t2) =∫ t2

t1
x p,i (t)dt . Let y∗

p(t) be the amount of page p that is
broadcasted at time t by OPT and let Opt(p, t1, t2) =∫ t2

t1
y∗

p(t)dt . We define the variable z p,i (t) for a request

Jp,i to be
On(p,i,t,∞)Opt(p,ap,i ,t)

σp
. Our potential function

is,


(t):=1

ε

∑
Jp,i ∈Na(t)

rank(Jp,i )
( z p,i (t)

Q(rank(Jp,i ))

)
.

Our potential function combines the potential func-
tions of Bansal et al. (2010) and Gupta et al. (2010).
The potential function of Bansal et al. (2010) was used
for broadcast scheduling without energy, which needs to
somehow have the power function reflected in the poten-
tial if it is to work in our setting. To incorporate the
power function we use some ideas given in Gupta et al.
(2010).

As is usually the case, our potential is designed to approx-
imate the algorithm future cost after subtracting the opti-
mal solution’s future cost. Our algorithm gives higher pri-
ority to requests that have arrived recently. The potential
function is designed to capture the remaining cost of the
algorithm if it satisfies requests in the opposite order of
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arrival. Fix a request Jp,i . If the optimal solution satisfied
request Jp,i then the value of z p,i (t) should be thought of
as the remaining volume of page p that must be broad-
casted to satisfy request Jp,i . Assume Jp,i has the high-
est rank in Na(t). Then Q(rank(Jp,i )) is the speed that
will be used at time t . The value of rank(Jp,i ) is the
number of requests waiting for request Jp,i to be satisfied.
Thus, if requests are satisfied in opposite order of arrival,

rank(Jp,i )
(

z p,i
Q(rank(Jp,i ))

)
is an estimate on the flow time

that will be accumulated while the algorithm satisfies Jp,i

because it will take at least
z p,i

Q(rank(Jp,i ))
time units to satisfy

request Jp,i .

3.1 Change of the potential function

It is easy to see that the potential function is not affected when
the optimal solution completes a request. Also the potential
function does not increase when a request Jp,i arrives since
z p,i = 0. Further, the potential is 0 before all requests arrive,
and after all requests are completed. We now show that 


does not increase when a request is satisfied by the algo-
rithm. This lemma, combined with the previous arguments
shows that 
 satisfies the boundary and arrival/completion
conditions.

Lemma 3.1 
 does not increase when the algorithm com-
pletes a request.

Proof Consider a time t where that algorithm completes a
request Jp,i . We can assume that rank(Jp,i ) < |Na(t)|; oth-
erwise, trivially there is no increase in 
. The change in 


is,

�
(t) = 1

ε

∑
Jp′, j ∈Na(t),ap′, j >ap,i

(
(rank(Jp′, j ) − 1)zi

Q(rank(Jp′, j ) − 1)

− rank(Jp′, j )zi

Q(rank(Jp′, j ))

)
.

To show that �
(t) ≤ 0, we need to show that
∑

Jp′, j ∈Na(t),ap′, j >ap,i

(rank(Jp′, j ) − 1)zi

Q(rank(Jp′, j ) − 1)

≤
∑

Jp′, j ∈Na(t),ap′, j >ap,i

rank(Jp′, j )zi

Q(rank(Jp′, j )

⇒
∑

Jp′, j ∈Na(t),ap′, j >ap,i

(rank(Jp′, j ) − 1)

rank(Jp′, j )

≤
∑

Jp′, j ∈Na(t),ap′, j >ap,i

Q(rank(Jp′, j ) − 1)

Q(rank(Jp′, j ))
.

This is true by definition of Q and Proposition 2.3 ��
Now we concentrate on the running condition, the final

property of 
 that needs to be shown. Fix a time t . Let

No(t) be the set of requests unsatisfied by OPT at time
t . First lets consider the change in 
(t) due to the algo-
rithm’s processing. Recall that the algorithm broadcasts page
p at a rate of x p,i (t) due to a request Jp,i ∈ N ′

a(t).
Further, notice that Opt(p, ap,i , t) ≥ σp for any request
Jp,i ∈ Na(t) \ No(t), since OPT must broadcast σp units
of page p after ap,i to satisfy page p. Therefore, for any
Jp,i ∈ N ′

a(t)\No(t)we have d
dt z p,i (t) ≥ d

dtOn(p, i, t,∞) =
−x p,i (t). Notice that the rank of each request the algo-
rithm is currently working on is at least (1 −β)|Na(t)|. This
is because N ′

a(t) consists of the �β|Na(t)|	 requests with
latest arrival times. Using this, we can determine a upper
bound on the change in 
(t) due to the algorithm’s process-
ing,

d

dt

 ≤ −1

ε

∑
Jp,i ∈N ′

a(t)\No(t)

rank(Jp,i )x p,i (t)

≤ − (1 − β)|Na(t)|
ε

∑
Jp,i ∈N ′

a(t)

x p,i (t). (1)

Next, we consider the change in 
 due to the adver-
sary’s processing. Let p∗ be the page which the adver-
sary broadcasts. Let so(t) be the speed the optimal solu-
tion processes page p∗ at. Let P∗(t) = P(so(t)) be the
power OPT uses at time t . The adversary can affect z p∗,i
for any request Jp∗,i ∈ Na(t). We first observe the follow-
ing,

d

dt

∑
Jp∗,i ∈Na(t)

z p∗,i (t)

≤
∑

Jp∗,i ∈Na(t)

On(p∗, i, t,∞)

σp∗
·
(

d

dt
Opt(p∗, ap∗,i , t)

)

≤ d

dt
Opt(p∗, ap∗,i , t) = so(t)dt.

The last inequality holds since
∑

i,Jp∗,i ∈Na(t) On(p∗, i,∞)

≤ σp∗ . This is because the algorithm needs to only broad-
cast page p∗ for a total of σp∗ amount of time to sat-
isfy all outstanding requests for page p∗. Let Jp∗,k be the

request in Na(t) such that
rank(Jp∗,k )

Q(rank(Jp∗,k))
is maximized. We

can upper bound the increase in 
 due to OPT’ processing
as,

d

dt

 = 1

ε

(
rank(Jp∗,k)

Q(rank(Jp∗,k))

) ∑
Jp∗,i ∈Na(t)

z p∗,i (t)

≤ rank(Jp∗,k)so(t)

εQ(rank(Jp∗,k))
.

Our goal is to show that d
dt G(t) + d

dt 
(t) ≤ 2
ε2

d
dt G∗(t).

First we consider the case when the adversary uses power
at least |Na(t)|. In this case, the increase in the algorithm’s
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objective can be charged directly to the optimal solution,
along with any increase in the potential function.

Lemma 3.2 If Q(|Na(t)|) ≤ so(t) (equivalently, P∗(t) ≥
|Na(t)|) then d

dt G(t) + d
dt 
(t) ≤ 2

ε
d
dt G∗(t).

Proof First we bound the increase in 
(t) due to OPT’s
processing. Intuitively, the increase in OPT’s objective, due
to using a lot of power, is large enough to absorb the increase
in 
 and the increase in algorithm’s objective. By increas-
ing 
 now and charging it to OPT, we can later use the
decrease in 
 to pay for increases in the algorithm’s objec-
tive. Recall that Jp∗,k is the request in Na(t) for page p∗ that

maximizes
rank(Jp∗,k )

Q(rank(Jp∗,k ))
. Let α|Na(t)| = rank(Jp∗,k) and

let γ = so(t)
Q(|Na(t)|) . Notice that α ≤ 1 and γ ≥ 1. The function

Q is concave. Therefore, Q(rank(Jp∗,k)) ≥ αQ(|Na(t)|) by
Proposition 2.3. The increase in 
(t) due to OPT’s process-
ing can be bounded as follows,
(

rank(Jp∗,k)

ε

)
so(t)

Q(rank(Jp∗,k))

= 1

ε
α|Na(t)|γ Q(|Na(t))|

Q(rank(Jp∗,k))

≤ 1

ε
α|Na(t)|γ Q(|Na(t))|

αQ(|Na(t)|) ≤ γ

ε
|Na(t)|.

The total power used by OPT is at least P∗ ≥ γ |Na(t)|
since P is convex, and the speed OPT uses is γ Q(|Na(t)|).
Hence, d

dt G∗(t) ≥ γ |Na(t)|. Recall that d
dt G(t) = 2|Na(t)|.

Knowing that ε ≤ 1
6 , we have that,

d

dt
G(t) + d

dt

(t) ≤ 2|Na(t)| + γ

ε
|Na(t)| ≤ 2γ

ε
|Na(t)|

≤ 2

ε

d

dt
G∗(t).

��
Due to the previous lemma, for the rest of this paper we can

concentrate on the case where Q(|Na(t)|) > so(t). We begin
by bounding the increase in 
(t) due to OPT’s processing
using this assumption,
(

rank(Jp∗,k)

ε

)
so(t)

Q(rank(Jp∗,k))

≤
(

rank(Jp∗,k)

ε

)
Q(|Na(t)|)

Q(rank(Jp∗,k))

≤
(

rank(Jp∗,k)

ε

)
(|Na(t)|/rank(Jp∗,k))Q(rank(Jp∗,k))

Q(rank(Jp∗,k))

≤ 1

ε
|Na(t)|. (2)

The first inequality holds since we assumed that
Q(|Na(t)|) > so(t). The second inequality follows from def-
inition of Q and Proposition 2.3. We can now prove the final
case of the running condition.

Lemma 3.3 If so(t) < Q(|Na(t)|) and β = ε then d
dt G(t)+

d
dt 
(t) ≤ 2

ε2
d
dt G∗(t).

Proof We know that d
dt G(t) = 2|Na(t)|. The increase in


(t) due to OPT’s processing is at most 1
ε
|Na(t)|, and the

change in 
(t) due to the algorithm’s processing is at most
− (1−β)|Na(t)|

ε

∑
Jp,i ∈N ′

a(t)\No(t) x p,i (t). Combining these, we
have the following.

d

dt
G(t) + d

dt

(t) ≤ 2|Na(t)| + 1

ε
|Na(t)|

− (1 − β)|Na(t)|
ε

∑
Jp,i ∈N ′

a(t)\No(t)

x p,i (t)

≤ 2|Na(t)| + 1

ε
|Na(t)|

− (1 − β)|Na(t)|
ε

⎛
⎝ ∑

Jp,i ∈N ′
a(t)

x p,i (t) −
∑

Jp,i ∈No(t)∩N ′
a(t)

x p,i (t)

⎞
⎠

≤ 2|Na(t)| + 1

ε
|Na(t)|

−
⎛
⎝ (1 + 6ε)(1 − β)

ε
|Na(t)| −

∑
Jp,i ∈No(t)∩N ′

a(t)

x p,i (t)

⎞
⎠

⎡
⎣ ∑

Jp,i ∈N ′
a(t)

x p,i (t) = (1 + 6ε)

⎤
⎦

≤ 2|Na(t)| + 1

ε
|Na(t)|

−
(

(1 + 6ε)(1 − β)

ε
|Na(t)| − (1 + 6ε)(1 − β)

εβ
|No(t)|

)

[
x p,i (t) ≤ (1 + 6ε)Q(|Na(t)|)

β|Na(t)| for all Jp,i ∈ N ′
a(t)

]

≤ 2

ε2 |No(t)| ≤ 2

ε2

d

dt
G∗(t)

The second to last inequality follows from β = ε ≤ 1
6 .

The last inequality follows since the optimal solution’s flow
time increases by |No(t)| at time t . ��

Combing Lemmas 3.2 and 3.3 along with setting β to be
ε gives the running condition, namely d

dt G(t) + d
dt 
(t) ≤

2
ε2

d
dt G∗(t). Thus, we have shown all the properties of 
,

which gives the following theorem.

Theorem 3.4 The algorithm with β = ε ≤ 1
6 is (1 + 6ε)-

speed 2
ε2 -competitive for flow plus energy in fractional broad-

cast scheduling.

By using the reduction from integral to fractional broad-
cast scheduling in Corollary 2.5 and scaling ε, we have
proven Theorem 1.1.
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4 Reduction of integral to fractional broadcast
scheduling

In this section we prove Theorem 2.4. Consider any sequence
of requests and let S denote a valid fractional broadcast
schedule. We now define an algorithm to construct an inte-
gral schedule S ′. In the integral schedule we will use (1 + ε)

resource augmentation over the schedule S where 0 < ε ≤ 1.
Let P(s) be the power that S uses if it runs at speed s for a
time step. Note that since S ′ has (1 + ε) resource augmen-
tation over S it is the case that the power consumed by S ′
when running at speed (1 + ε)s is P(s). Recall that in an
integral schedule, a request Jp,i must receive σp unit sized
pieces of page p in sequential order. We will assume that
the fractional schedule works on at most one page during a
unit time slot and at exactly one speed. Further, requests are
only completed at the end of a unit time slot. We can assume
this without loss of generality because we can set a unit time
slot to be arbitrarily small, since we are assuming preemp-
tion and a continuous model. Let f p,i denote the time request
Jp,i is fractionally satisfied in S. Let f I

p,i denote the time that
Jp,i is integrally satisfied in S ′. Our algorithm and analysis
build on the reduction from fractional to integral broadcast
scheduling given in Bansal et al. (2010) where broadcasts
are always sent at a fixed speed. Since the processor speeds
can vary in our setting, in our analysis we will have to be
careful about how speed is distributed, and how power is
accounted for. Accounting for the speed will make our algo-
rithm and analysis more involved than that in Bansal et al.
(2010).

Our algorithm will keep track of a queue Q of tuples.
A tuple will be of the form 〈p, w, b, k, L〉. Here p corre-
sponds to a page. The value of k ∈ R will correspond to
the part of page p that will be broadcasted. Here k can be
any value between 1 and σp. The variable w ∈ R will be
called the width and b ∈ R will be the start time. Each tuple
τ = 〈p, w, b, k〉 will correspond to some request Jp,i , and
the width will be w = f p,i − ap,i . The width of a tuple
and the request it corresponds to can be updated over time.
Finally, L will be a list of time slots corresponding to a sub-
set of unit times the fractional schedule broadcasted page p.
Initially L will be set to ∅. When the algorithm broadcasts
p because of this tuple, it will choose a speed to broadcast
p at based on some time slot where the fractional schedule
broadcasted p. To ensure that the schedule S ′ does not use
too much energy, we need to ensure that we do not broad-
cast using a large speed too many times when the fractional
schedule does not use this fast speed often. To ensure this,
the list L will keep track of all unit time slots that this tuple
has previously chosen to base its speed on in the fractional
schedule. When choosing a time slot, no slot already in L
will be chosen. We note that two different tuples could pos-
sibly choose the same unit time slot, but by the way we will

define which time slots a tuple can be used, we will be able to
ensure no slot is chosen more than twice. This way, we will
be able to bound the energy used by S ′ by twice that used by
S.

Our algorithm will perform a broadcast corresponding to
a single tuple each 1/(1 + ε) time steps. The algorithm will
always choose the tuple τ = 〈p, w, b, k〉 in Q such that w is
minimized. Then it will broadcast page p starting from the
point k. It only remains to determine the speed that S ′ uses.
Say that the current time is t . Let t∗ be the latest possible
time such that exactly a total volume of σp units of page
p is broadcasted in S during [t∗, b]. Let T (b, t) denote the
set of unit times that S broadcasts p during [t∗, t]. Let s be
the fastest speed used by S ′ to broadcast page p during a
unit time slot in T (b, t) \ L . The speed S ′ uses at time t is
(1 + ε)s. Note that since S ′ has 1 + ε resource augmentation
over S, the total volume of page p broadcasted is s, and
the power used is P(s). See algorithm S ′(t) for a formal
definition.

It can be observed that the algorithm S ′ is online if S is
online. The analysis will proceed as follows. First, we show
the algorithm can always schedule a tuple using a valid speed
at each time. That is, T (b, t) \ L is never empty. Then we
will show that for any unique time slot in S at most two
broadcasts in S ′ will use the speed corresponding to this
time slot. This will allow us to bound the energy cost of
S ′ by that of S. Then we will focus on bounding the flow
time of each request Jp,i in S ′ by the flow time of Jp,i in
S.

Lemma 4.1 At any time t where the tuple τ =〈p, w, b, k, L〉
is scheduled by S ′ it is the case that T (b, t) \ L �= ∅
Proof Consider any time t and any tuple τ = 〈p, w, b, k, L〉
scheduled at time t . We know that during the set of time
slots in T (b, t) the schedule S broadcasts a total volume
of at least σp units of page p by definition of T (b, t). We
also know that any tuple with start time b or less will be
removed after σp units of page p are broadcasted by S ′
after time b. This implies that there will always be some
available speed for S ′ to use when broadcasting a tuple with
start time b. ��

The previous lemma establishes that there is always a valid
speed for the schedule S ′ to use at any point in time. Now our
goal is to bound the energy used by S ′ by the energy used by
S. For page p, let Sp denote the set of times that S ′ schedules
page p starting from the first piece of page p. We assume that
these times are indexed as ρ1 < ρ2,< · · · < ρ|Sp |. We begin
by showing that a total volume of at least σp of page p is
broadcasted between any two times in Sp in the schedule S.

Lemma 4.2 For any two times ρi , ρ j ∈ Sp it is the case that
the total volume of page p broadcasted by S during [ρi , ρ j )

is at least σp for i < j .
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Algorithm: S ′(t)
All requests arrive unmarked
Simulate the schedule S(t)
for Any unmarked request Jp,i completed by S at time t do

if There is a tuple τ = 〈p, w, b, k, L〉 ∈ Q for page p where b ≥ ap,i then
Update the width of τ to be w = min{w, f p,i − ap,i }

else
Insert the tuple 〈p, ( f p,i − ap,i ),∞, 1,∅〉 into Q

end if
end for
if t is a multiple of 1/(1 + ε) then

Dequeue the tuple τ = 〈p, w, b, k, L〉 with minimum width, breaking ties in favor the tuple with the largest b value
if b = ∞ then

Update b = t
end if
Let s be the fastest speed used by S for a unit time slot in T (b, t) \ L and t ′ be the beginning of the corresponding unit time slot.
Broadcast p from time t to time t + 1/(1 + ε) using speed (1 + ε)s. The pieces of page p broadcasted are those between [k, k + s)
Update k = k + s
Update L = L ∪ {t ′}

end if
if k + s = σp then

Mark all requests for page p that arrived before time b
Dequeue all tuples τ ′ = 〈p, w′, b′, k′, L ′〉 for page p where b′ ≤ b

end if

Proof Consider any two times ρi , ρ j ∈ Sp where i < j . Let
τ = 〈p, w, b, k, L〉 be the tuple that caused S ′ to schedule
page p at time ρ j , and let Jp,i be the request that corresponds
to this tuple at time ρ j . By definition of the algorithm S ′, it
is the case that ap,i > ρi . This is because a tuple corre-
sponding to Jp,i would not start broadcasting page p from
the beginning at time ρ j if ap,i ≤ ρi by definition of S ′.

We also know that no request can correspond to a tuple
S ′ schedules until it is completed in S. Thus, a volume of σp

units of page p must be broadcasted by S during [ap,i , ρ j )

which implies that σp units of page p are broadcasted by S
during [ρi , ρ j ) since ap,i > ρi . ��

Lemma 4.3 For any two times ρi , ρi+1 ∈ Sp for some page
p, the only tuples scheduled for page p during [ρi , ρi+1)

have start time ρi

Proof To prove the lemma, we show that for every tuple
τ = 〈p, w, b, k, L〉 scheduled by S ′ at a time t after time
s j it is the case that b ≥ ρ j for any ρ j ∈ Sp. For the sake
of contradiction say that there is a tuple τ = 〈p, w, b, k, L〉
scheduled by S ′ at a time t after ρ j where b < ρ j . Let
τ ′ = 〈p, w′, ρ j , k′, L ′〉 be the tuple scheduled by S ′ for
page p at time ρ j . Knowing that b < ρ j at time ρ j there
must have been a tuple in Q for page p with start time b. Let
τ ′′ = 〈p, w′′, b, k′′, L ′′〉 be this tuple. Since τ ′ was scheduled
at time ρ j it must be the case that w′ ≤ w′′. The only way a
tuple τ could be scheduled at time t is if w < w′. However,
knowing that b < ρ j any time the width of a tuple with start
time b for page p is updated, the width of the tuple with
start time ρ j is updated to have the same width. Since the

algorithm always breaks ties in favor of tuples with larger b
values it cannot be the case that τ was scheduled. ��

Lemma 4.4 For any unit time interval beginning at t , at most
two broadcasts made by S ′ at any time will set their speed
according to the speed used by S during [t, t + 1].

Proof Consider any time t where S schedules some fixed
page p. Let ρi be the latest time in Sp such that ρi ≤ t .
Note that ρi+1 is the earliest time in Sp such that ρi+1 > t .
First we show that after time ρi+2 no tuple scheduled by
S ′ will set its speed based on the speed S uses at time t .
Indeed, by Lemma 4.2 there is a total volume of σp units
of page p broadcasted by S during [ρi+1, ρi ]. This implies
that T (ρ j , t ′′) will not include any time slot in [ρi , ρi+1) by
definition of T (ρ j , t ′′) for any j ≥ i + 2 and t ′′ ≥ s j .

The above fact and Lemma 4.3 imply that if S ′ ever sets the
speed based on the speed used by S at time t then it is the case
that the tuple chosen by S ′ has a start time b ∈ {ρi , ρi+1}.
Knowing that if a tuple τ = 〈p, w, b, k, L〉 with start time ρi

or ρi+1 is scheduled by S ′ then t will be appended to the list
L if S ′ sets the speed to the speed used by S at time [t, t +1],
it must be the case that at most two broadcasts made by S ′
at any time will set their speed according to the speed use by
S during [t, t + 1] ��

The previous lemma immediately gives rise to the follow-
ing corollary. This is because we can map the power used
by S ′ for any tuple scheduled to a time slot where S used
this speed. Further, no slot in S will be mapped to more than
twice.
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Corollary 4.5 The total energy used by S ′ is at most twice
that used by S.

Now that we have bounded the energy consumption used
by S ′, we will now focus on bounding the total flow time of
this schedule. To do this, we will show that every request has
at most a constant factor larger flow time in S ′ as compared
to S. That is, we show the second part of Theorem 2.4. Recall
that f p,i −ap,i is the flow time of request Jp,i in the schedule
S and f I

p,i −ap,i is the flow time of Jp,i in S ′. We will show

that f I
p,i − ap,i ≤ 5

ε
( f p,i − ap,i ) for all requests. For the

sake of contradiction say that this is not the case and let t2
be the first time there exists an unsatisfied request Jq,x in S ′
such that t −aq,x ≤ 5

ε
( fq,x −aq,x ). Let w∗ = ( fq,x −aq,x ).

Let t1 be the earliest time before time t2 such that during the
interval [t1, t2] every tuple scheduled by S ′ has width at most
w∗.

Now we are going to say that for a given tuple τ =
〈p, w, b, k, L〉 if Jp,i is the request that corresponds to this
tuple currently then Jp,i gave this tuple its width. We begin
by showing for every tuple scheduled by S ′ at some time t
during [t1, t2] that the request which gave the tuple its width
at this time arrived at the earliest t1 − w∗.

Lemma 4.6 Consider any tuple τ = 〈p, w, b, k, L〉 that
was scheduled by S ′ at a time t ∈ [t1, t2]. If Jp,i gave τ

its width then ap,i ≥ t1 − w∗.

Proof For the sake of contradiction say that there is a fixed
tuple τ = 〈p, w, b, k, L〉 scheduled by S ′ at a time t during
[t1, t2] where Jp,i is the request that gave τ its width and
ap,i < t1−w∗. We know that w ≤ w∗ by definition of [t1, t2].
This implies that during [ap,i +w∗, t1], there is always a tuple
in Q with width smaller than w∗ by definition of S ′. Knowing
that S ′ always schedules the tuple with the smallest width at
each time, this contradicts the definition of t1. ��

At this point, we are going to map each tuple scheduled by
S ′ during [t1, t2] to a unit time slot during [t −w∗, t2] where
S performs a broadcast. Then we will show that this mapping
implies that S requires more time slots in [t − w∗, t2] than
actually exist. This will give us a contradiction and complete
the proof. This argument is fairly technical because we do
not know how to relate the speed used by S ′ to the speeds
used by S. Due to this, we cannot use a standard volume
argument to draw a contradiction. Rather, we focus mapping
tuples to unit time slots.

Let S∗
p be the set of times in Sp which occur during [t1, t2).

Let ρ∗
1 , ρ∗

2 , . . . ρ∗
|S∗

P | be the set of times in S∗
p indexed from

smallest to largest.

Lemma 4.7 For any ρ∗
i , ρ∗

i+1 ∈ S∗
p where i ≥ 2, the total

number of tuples scheduled by S ′ during [ρ∗
i , ρ∗

i+1) for page
p is at most the total number of unit time slots S devotes to

page p during [ρ∗
i−1, ρ

∗
i ). Further, the total number of tuples

scheduled by S ′ during [ρ∗|S∗
p |, t2) for page p is at most the

total number of unit time slots S devotes to page p during
[ρ∗

|S∗
p−1|, ρ

∗|S∗
p |) and the total number of tuples scheduled by

S ′ during [ρ∗
1 , ρ∗

2 ) for page p is at most the total number of
unit time slots S devotes to page p during [t1 − w∗, ρ1).

Proof First we show that, for any ρ∗
i , ρ∗

i+1 ∈ S∗
p where i ≥ 2,

the total number of tuples scheduled by S ′ during [ρ∗
i , ρ∗

i+1)

is at most the total number of unit time slots S devotes to
page p during [ρ∗

i−1, ρ
∗
i ). Consider T (ρ∗

i , ρ∗
i ). By definition

of T (ρ∗
i , ρ∗

i ) and Lemma 4.2, it is the case that T (ρ∗
i , ρ∗

i ) is
a subset of unit times that page p is scheduled by S during
[ρ∗

i−1, ρ
∗
i ). Further, by Lemma 4.3 any tuple scheduled for

page p by S ′ during [ρ∗
i , ρ∗

i+1) has start time ρ∗
i . Thus at

any time t during [ρ∗
i , ρ∗

i+1) a tuple τ = 〈p, w, ρ∗
i , k, L〉

scheduled by S ′ for page p can use a speed according to the
time slots in T (ρ∗

i , t)\ L ⊇ T (ρ∗
i , ρ∗

i )\ L . Knowing that the
algorithm always chooses the fastest speed possible, it must
be the case that the number of tuples scheduled by S ′ is at
most the total number of unit time slots S devotes to page p
during [ρ∗

i−1, ρ
∗
i ).

The remaining parts of the lemma can be proved similarly,
as follows. We now focus on showing that the total number
of tuples scheduled by S ′ during [ρ∗|S∗

p |, t2) for page p is at

most the total number of unit time slots S devotes to page
p during [ρ∗|S∗

p |−1, ρ
∗|S∗

p |). Consider T (ρ∗|S∗
p |, ρ∗|S∗

p |). By def-

inition of T (ρ∗|S∗
p |, ρ∗|S∗

p |) and Lemma 4.2 it is the case that

T (ρ∗|S∗
p |, ρ∗|S∗

p |) is a subset of unit times that page p is sched-

uled by S during [ρ∗|S∗
p |−1, ρ

∗|S∗
p |). Further, by Lemma 4.3

any tuple scheduled for page p by S ′ during [ρ∗|S∗
p |, t2) has

start time ρ∗|S∗
p |. Thus at any time t during [ρ∗|S∗

p |, t2) a tuple

τ = 〈p, w, ρ∗|S∗
p |, k, L〉 scheduled by S ′ for page p can use

a speed according to the time slots in T (ρ∗|S∗
p |, ρ∗|S∗

p |) \ L .

Knowing that the algorithm always chooses the fastest speed
possible, it must be the case that the number of tuples sched-
uled by S ′ is at most the total number of unit times slots S
devotes to page p during [ρ∗|S∗

p |−1, ρ
∗|S∗

p |).
Finally, we show that he total number of tuples scheduled

by S ′ during [ρ∗
1 , ρ∗

2 ) for page p is at most the total number
of unit time slots S devotes to page p during [t1 − w∗, ρ∗

1 ).
Consider T (ρ∗

1 , ρ∗
1 ) and the tuple τ = 〈p, w, ρ∗

1 , k, L〉 that
S ′ chooses at time ρ∗

1 . Let Jp,i be the request associated with
this tuple. By Lemma 4.6 it is the case that ap,i ≥ t1 − w∗.
Since no request can have a tuple associated with it until
it is completed in S it must be the case that S broadcasts
a total volume of σp units of page p during [t1 − w∗, ρ∗

1 ).
This and the definition of T (ρ∗

1 , ρ∗
1 ) imply that T (ρ∗

1 , ρ∗
1 ) is

a subset of unit times that page p is scheduled by S during
[t1 −w∗, ρ∗

1 ). Further, by Lemma 4.3 any tuple scheduled for
page p by S ′ during [ρ∗

1 , ρ∗
2 ) have start time ρ∗

1 . Thus at any

123



J Sched (2015) 18:107–118 117

time t during [ρ∗
1 , ρ∗

2 ) a tuple τ = 〈p, w, ρ∗
1 , k, L〉 scheduled

by S ′ for page p can use a speed according to the time slots in
T (ρ∗

1 , ρ∗
1 ) \ L . Knowing that the algorithm always chooses

the fastest speed possible, it must be the case that the number
of tuples scheduled by S ′ is at most the total number of unit
times slots S devotes to page p during [t1 − w∗, ρ∗

1 ). ��
Lemma 4.8 The total number of tuples scheduled by S ′ dur-
ing [t1, ρ∗

1 ] for page p is at most the total number of unit time
slots S devotes to page p during [t1 − w∗, t1 + w∗].
Proof Let τ = 〈p, w, b, k, L〉 be the first tuple that S ′ sched-
ules at a time t∗ during [t1, ρ∗

1 ] for a fixed page p. We can
assume that τ exists because otherwise the lemma trivially
holds. Let Jp,i be the request that gave τ its width. By
Lemma 4.6 it is the case that ap,i ≥ t1 − w∗. Further, by
definition of ρ∗

1 , it must be the case that b < t1. Knowing
that ap,i ≤ b we have ap,i ≤ t1. Now we know that w ≤ w∗
by definition of [t1, t2]. We also know that Jp,i completes at
time ap,i + w in S by definition of w. Thus, we know that
Jp,i completes at time ap,i + w ≤ ap,i + w∗ ≤ t1 + w∗.
Since no request can have a tuple associated with it until it
is completed in S and ap,i ≥ t1 − w∗ it must be the case
that S broadcasts a total volume of σp units of page p during
[t1 − w∗, t∗).

This and the definition of T (b, t∗) imply that T (b, t∗) is
a subset of unit times that page p is scheduled by S during
[t1−w∗, t∗) a subinterval of [t1−w∗, t1+w∗). Further, a vol-
ume of σp units of page p is scheduled during [t1 − w∗, t).
By Lemma 4.3 and the definition of ρ∗

1 any tuple sched-
uled for page p by S ′ during [t1, ρ∗

1 ) has start time b. Thus
at any time t during [t1, ρ∗

1 ) a tuple τ = 〈p, w′, b, k′, L ′〉
scheduled by S ′ for page p can use a speed according to
the time slots in T (b, t∗) \ L . Knowing that the algorithm
always chooses the fastest speed possible, it must be the case
that the number of tuples scheduled by S ′ is at most the
total number of unit times slots S devotes to page p during
[t1 − w∗, t1 + w∗). ��

The previous two lemmas imply that we can map all tuples
for page p scheduled by S ′ during [ρ∗

1 , t2] to unique time
slots page p is scheduled in S during [t1 − w∗, t2]. Fur-
ther, we can map all tuples for page p scheduled by S ′
during [t1, ρ1] to unique time slots page p is scheduled in
S during [t1 − w∗, t1 + w∗]. This implies that for every
tuple scheduled by S during [t1, t2] we can map it to a
time slot during [t1 − w∗, t2] such that each time slot in
[t1 + w∗, t2] is mapped to at most once and each time slot in
[t1 −w∗, t1 +w∗] is mapped to at most twice. We know that
S ′ is always busy during [t1, t2] and schedules a tuple every
1/(1 + ε) time steps. Thus, a total of (t2 − t1)(1 + ε) tuples
are scheduled by S ′ during [t1, t2]. The mapping implies that
(t2 − t1)(1 + ε) ≤ (t2 − t1) + 4w∗. However, t2 − t1 ≥ 5

ε
w∗

by assumption. This is a contradiction and we have proved
Theorem 2.4.

5 Conclusion

In this paper we initiated the study of energy in the broad-
cast scheduling model. We showed a scalable algorithm for
average flow time plus energy. It is important to note that the
algorithm BLAPS explicitly depends on the speed ε. That
is, β depends on the parameter ε. Recently, many algorithms
developed for scheduling have this dependency (Chekuri et
al. 2009b; Edmonds and Pruhs 2012; Gupta et al. 2010).
It would be interesting to find an algorithm which does not
depend on ε or show no such algorithm exists. It would also be
of interest to consider other objective functions that include
energy minimization for the broadcast setting.
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