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ABSTRACT
Most of the online advertising today is sold via an auction,
which requires the advertiser to respond with a valid bid
within a fraction of a second. As such, most advertisers
employ bidding agents to submit bids on their behalf. The
architecture of such agents typically has (1) an offline opti-
mization phase which incorporates the bidder’s knowledge
about the market and (2) an online bidding strategy which
simply executes the offline strategy. The online strategy
is typically highly dependent on both supply and expected
price distributions, both of which are forecast using tradi-
tional machine learning methods. In this work we investi-
gate the optimum strategy of the bidding agent when faced
with incorrect forecasts. At a high level, the agent can in-
vest resources in improving the forecasts, or can tighten the
loop between successive offline optimization cycles in order
to detect errors more quickly. We show analytically that
the latter strategy, while simple, is extremely effective in
dealing with forecast errors, and confirm this finding with
experimental evaluations.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complex-

ity]: General; G.2.3 [Mathematics of Computing]: Dis-
crete Mathematics—Applications

General Terms
Algorithms, Theory, Experimentation

Keywords
Ad Exchanges, Bidding Agents, Adaptive Bidding

1. INTRODUCTION
Online advertising is a multi-billion dollar industry, with

billions of auctions taking place daily. At such scales au-
tomated bidding agents have become the norm. An auto-
mated agent takes as input a set of parameters, or goals, of
the advertiser: for example, the targeting constraints, de-
sired number of impressions, quality constraints, etc., and
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then outputs a bid for every advertising opportunity. The
bids from all interested parties are collected by the publisher,
often through an advertising exchange (e.g. RightMedia Ex-
change, Google Ad Exchange), and the opportunity to show
an advertisement is given to the highest bidder.

The goals of the bidding agents are quite diverse: some
bidding agents aim to maximize the number of clicks or con-
versions for an advertiser, others look to achieve a repre-
sentative allocation, aiming for a uniform slice of all eligible
impressions [8], still others care about temporal smoothness,
making sure the advertiser receives a stream of impressions
throughout the day, as opposed to getting them all in the
morning or in the evening. Regardless of the specific goal,
almost all of the agents rely on some sort of forecasting in or-
der to properly set the bidding parameters. Specifically, al-
most all of the optimization formulations rely on supply and
price forecasts. Intuitively, the forecasts are needed to judge
the utility of a specific impression. Deciding whether an im-
pression looks cheap or expensive requires the knowledge of
the typical price of such impressions. Similarly, knowing
how many of such impressions will arrive in the future helps
decide the urgency with which the bidding agent should be
bidding, since most advertisers have an additional budget
constraint on their campaigns.

Accurately predicting both supply and price forecasts is a
non-trivial endeavor. For example, for the supply forecasts,
although general traffic trends stay consistent day to day—
there are more impressions in the middle of the day than in
the middle of the night—the exact forecasts experience a lot
of daily fluctuations —the Oscars, for example will change
the traffic pattern for websites related to the entertainment
industry.

Moreover, an individual bidder may not have access to the
necessary data to make the desired predictions. Some ex-
changes employ selective call out strategies [1], wherein the
number of eligible impressions observed by the bidder is cor-
related with his win percentage. In other situations, when
the bidding agents are hosted by the exchange, the exchange
only reports the number of won opportunities for each bid-
der, not the number of eligible opportunities. (In fact early
termination methods [11] result in situations where a full
eligible set is never computed for each opportunity.)

All of the above leads to a natural question for a bidding
agent designer: how to deal with forecast errors in devel-
oping a bidding strategy. One approach requires investing
heavily in better forecasting strategies to reduce the number
of errors, but one quickly hits a state of diminishing returns:
there is enough entropy in the system, so that perfect fore-
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casts are simply not achievable. A different approach is to
myopically adjust the bidding parameters based on the past
history, relying on frequent re-optimization to achieve the
goals of the agent. In this work we formally analyze the
latter approach, and show that as long as the adjustments
are done sufficiently frequently, the agent can automatically
compensate for reasonably large errors in forecasts.

1.1 Related Work
Advertising exchanges sell billions of impressions per day

requiring the use of automated bidding agents to buy adver-
tising opportunities online [13]. The typical problem facing a
bidding agent is to obtain a target number of impressions to
users satisfying specific targeting characteristics (e.g. Male,
Age > 30) over some limited time horizon (e.g. one week),
while limited by a budget constraint.

The problem of finding a good bidding strategy falls under
the larger umbrella of allocation problems for display adver-
tising. Previous work focused on the allocation problem in
the Guaranteed Advertising scenario, where a publisher is
trying to satisfy multiple display advertising contracts si-
multaneously, by deciding which ad to show to each user
visiting his page. This problem is often modeled as an on-
line matching problem, which has a rich history beginning
with the seminal work by Karp et al. [10] who showed a
lower bound of 1− 1/e on the competitive ratio of any algo-
rithm, and gave a randomized algorithm that matched that
bound. This work has been applied to the online advertising
scenario in a series of works by Feldman et al. [6, 7], who
used the specifics of the problem to improve on that bound.

A different direction was to phrase the problem as a stochas-
tic optimization problem, where the user arrivals are not
adversarial, but rather are drawn from some distribution.
Devanur and Hayes [5] assumed that the arrivals are inde-
pendent and effectively showed how to learn the distribution
before performing the analysis. Vee et al. [14], assumed full
knowledge of the distributions and focused on providing a
compact strategy that can be readily implemented in ad
serving. Only the recent work by Chen et al. [3] explicitly
addressed the limitations of supply forecasts and experimen-
tally showed that control theory based methods mitigate the
impact of forecast errors. In this work we show both ana-
lytically and experimentally that even simpler methods lead
to good performance.

The allocation problems described above focus on obtain-
ing the target number of impressions in situations where the
publisher controls the allocation, and hence no explicit bid-
ding is necessary. Requiring that the bidding agent buy the
impressions directly from an exchange adds an additional
layer of complexity. In addition to supply forecasts, the
competitors bids need to be forecast as well [4], or learned
in real time [9]. Moreover, the choice of the objective func-
tion for the bidder becomes more important. For example,
Ghosh et al. [8] conclude that one should aim for a fair or
representative allocation, rather than getting the cheapest
impressions possible.

1.2 Our Contribution
We explicitly study the problem faced by the bidding

agent designer in the face of inaccurate forecasts. We be-
gin by analytically bounding the error in the number of im-
pressions won and the total spend when given inaccurate
forecasts and using a well known bidding strategy. We then

show that a simple algorithm that myopically re-optimizes
the bidding parameters can greatly mitigate the errors in
the forecasts. The algorithm is simple and requires minimal
feedback from the system, yet a formal analysis shows that
the re-optimization approach quickly converges to the bid-
der’s desired budget and demand. We prove the algorithm’s
effectiveness as a function of the number of update cycles
and the original error in the forecasts. We conclude with
an experimental analysis on both synthetic and real-world
datasets. Our experimental evaluations shows that the al-
gorithm performs extremely well on real data, even with
forecasts with large error.

2. PRELIMINARIES
We consider the problem from the perspective of a single

advertiser, Alice, bidding in a second price auction. Alice
has a total budget of B and desires to win D impressions.
We note that Alice’s goal is not to win D impressions at min-
imum cost: as [8] argued, advertisers in these markets have
a common value, which means the cheapest impressions are
precisely the lowest quality ones. This setting best describes
advertisers buying individual impressions.1 At every oppor-
tunity, Alice can submit a bid b. Other advertisers submit
bids as well, and we model the highest competing bid as be-
ing chosen independently from a distribution with density
p∗, and CDF of P ∗. Let c ∼ P ∗ be the highest competitor
bid. If b > c then Alice wins the impression, decrementing
her desired demand by 1 and her budget by c. Otherwise,
c ≥ b and Alice loses the impression, leaving her demand
and her remaining budget unchanged.

If the distribution P ∗ and the total number of impressions
n∗ is known to Alice, she can use an easy bidding strategy
that achieves her demand while spending exactly the bud-
get. We call this algorithm SingleRound. To analyze the
algorithm, we will denote by DA the total number of auc-
tions won using bidding strategy A, dropping the subscript
when it’s clear from the context. Similarly, denote by BA

the expected budget spent using strategy A.
Let t = B/D be the desired target spend per win. If t ≤

E[P ∗] then there exists a bid b∗ so that the expected price
to Alice conditioned on winning the impression is exactly t,
i.e.

E[p|p < b∗] = t.

The expected number of impressions won by bidding b∗ is
exactly n · P ∗(b∗). The SingleRound bidding strategy bids
b∗ with probability q∗ = D

n∗·P∗(b∗)
(For simplicity we assume

that q∗ ≤ 1, we investigate this further in Section 5.) It is
easy to see that E[D] = D and E[B] = B.

Unfortunately, in practice, neither the total supply, n∗,
nor the price distribution, P ∗ are known ahead of time,
instead only forecasts, which we denote by n and P re-
spectively, are available. To quantify the forecast error, we
will use δ to denote the relative error in the supply fore-
cast: n∗(1 − δ) ≤ n ≤ n∗(1 + δ). Similarly, we denote by
γ the relative error in the price forecast: for any b ≥ 0,
p∗(b)(1−γ) ≤ p(b) ≤ p∗(b)(1+γ). We emphasize that while
we use δ and γ for the analysis, neither of the parameters is
known to the advertiser.

1The underlying problem is similar for CPC advertisers who
only pay per click.
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3. NON-ADAPTIVE ALGORITHM
In this Section we analyze the performance of a non-

adaptive bidding algorithm as a function of the forecast er-
rors, δ and γ. As we saw before, given the bidding agent pa-
rameters: the demand D and the budget B, and the forecast
of others’ behavior: the total supply, n and the distribution
of the highest competing bid, P , the algorithm SingleR-

ound achieves the goals in expectation. Here SingleRound

uses the forecasts P and n as if they were the actual supply
and bid landscape to determine the bid and probability of
bidding.

Now consider the performance of SingleRound in the face
of forecast errors. We bound the demand fulfilled, i.e. the
number of auctions won, and the budget spent:

Theorem 3.1. Consider the bidding strategy SingleRound,
under supply forecast error, δ, and bid forecast error γ.

Then

D

(1 + γ)(1 + δ)
≤ E [D] ≤

D

(1− γ)(1− δ)
,

and

B

(1 + γ)(1 + δ)
≤ E [B] ≤

B

(1− γ)(1− δ)
.

Proof. Let y be the bid computed by SingleRound, and
q the probability of participating. Then the expected num-
ber of impressions won is

E[D] = q · P ∗(y) · n∗

=
D

nP (y)
· P ∗(y) · n∗

∈

»

D

(1 + δ)(1 + γ)
,

D

(1− δ)(1− γ)

–

To bound the total budget spent, consider the expected
amount spent:

E[B] = n∗ · q · P ∗(y) · EP∗ [x : x < y]

= n∗ ·
D

n · P (y)
· P ∗(y) · EP∗ [x : x < y]

= B ·
n∗

n
·
P ∗(y)

P (y)
·

EP∗ [x : x < y]

EP [x : x < y]

Since EP [x : x < y] = 1
P (y)

R y

b=0
bp(b)db, we can simplify to:

E[B] = B ·
n∗

n

R y

b=0
bp∗(b)db

R y

b=0
bp(b)db

∈

»

B

(1 + δ)(1 + γ)
,

B

(1− δ)(1− γ)

–

,

where the last line follows because p∗(b) ∈ p(b)
1±γ

for all b.

At this point we have shown that a simple algorithm will
have bounded error in the expected budget spent and the ex-
pected number of auctions won. However, this error maybe
quite large depending on the exact values of δ and γ. In the
next section we show that a myopic adaptive algorithm can
dramatically reduce the overall error.

4. ADAPTIVE ALGORITHM
We show that the simplest adaptive strategy, which pe-

riodically reruns the SingleRound Algorithm using updated
budget and impressions targets, can be very powerful in lim-
iting the effect of the forecast errors. The only intermedi-
ate information required to rerun SingleRound is the total
amount spent and total number of impressions won during
the previous time period. We state our results more broadly
for any optimization algorithm A that takes a supply fore-
cast, bid landscape forecast, desired demand and remaining
budget.

4.1 Analysis
For the purposes of the analysis, we assume that impres-

sions begin arriving at time t = 0 and denote by T the
expiration date of the contract. Let k ∈ N

+ denote the
number of optimization routines performed in time T . We
will assume that supply is distributed uniformly during the
T time steps. This assumption does not hold in practice,
but makes for a simpler analysis. We investigate its effect
on the algorithm’s performance in Section 5. If n∗ is the
total available supply, then n∗ · (1 − i

k
) opportunities are

available after time T · i/k, which will also serve as the time
of the i + 1-st optimization by A.

Our goal is to bound the expected budget spent and the
expected demand received by the optimization algorithm as
a function of the forecast errors δ and γ and the number
of optimization cycles, k. We will show that as k increases,
the total error in the demand received and budget spent
decreases as a function of k. To do this, we abstract both
problems into one general problem. In this problem there are
n∗ events. During each event the algorithm makes a decision
and experiences some reward. Let Yi be the random variable

denoting the reward during the ith event. Let X =
Pn∗

i=1 Yi.
The goal of the algorithm is to make decisions on each event
so that the expected value of X is equal to a goal parameter,
α. In the case of analyzing the demand, α = D and Yi is the
probability of winning the impression. In case of analyzing
the total spend, α = B and Yi is the expected spend per
impression.

The goal of this section is to prove the following theo-
rem, which roughly shows that the error experienced by the
algorithm drops as 1/k, and so even a small number of re-
optimization cycles can go a long way towards improving
performance. (We note that a more specialized version of
this theorem geared specifically for performance of target
demand appears in [2].)

Theorem 4.1. Let ε, ε′ > 0. If A ensures that

(1− ε′)
α

n∗
≤ E[Yi] ≤ (1 + ε)

α

n∗

for any possible value of n∗, α and i ∈ [n∗] then re-running
A k ≥ 1 times every n∗/k events, guarantees:

−αε′
„

1

k

«1−ε′

≤ E[X − α] ≤ αε

„

1

k

«1−ε′

.

The algorithm A’s goal is to have E[X] = α, however the
algorithm may not be able to achieve this in expectation.
This is because the algorithm may have some bounded error
as described by ε and ε′. Now, if we use the algorithm to
optimize k times, then the algorithm converges on E[X] = α
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at a rate of
`

1
k

´1−ε′

. Thus, simply optimizing k times makes
the algorithm converge on the correct value quickly. For a
concrete example, let A be SingleRound, ε = δ+γ−δγ

(1−δ)(1−γ)
,

ε′ = δ+γ+δγ
(1+δ)(1+γ)

and α to be either the budget or the demand.

In this case, using previous theorem with Theorem 3.1 we
have the following corollary.

Corollary 4.2. If the SingleRound is rerun k times at
even time intervals between 0 and T , then:

(1− ε′
„

1

k

«1−ε′

)D ≤ E[D] ≤ (1 + ε

„

1

k

«1−ε′

)D

and

(1− ε′
„

1

k

«1−ε′

)B ≤ E[B] ≤ (1 + ε

„

1

k

«1−ε′

)B

As an example, suppose that both supply and price fore-
casts are off by 25%: δ = γ = 1/4. Then, a single opti-
mization may lead to an underdelivery factor of 36% = ε′,
or a budget overspend of 78% = ε. A single additional re-
topimization (setting k = 2), reduces both by a factor of
1
2

1−ε′

≈ 0.78, or over 20%. Having k = 10 re-optimizations,
leads to a reduction in error of more than half (≈ 56%).

To show the previous theorem, let Xi =
Pn∗i/k

j=1 Yi be
the expected value given to the algorithm just before the
ith optimization where 1 ≤ i ≤ k + 1. (Xk+1 denotes the
value remaining in the end.) Define the recurrence R(i) =
α−E[Xi]. Intuitively, R(i) is either the remaining demand or
budget just before the ith optimization. Note that R(1) :=
α. Further, R(i+1) = α−E[Xi+1] = α−E[Xi]−(E[Xi+1]−
E[Xi]) = R(i) − (E[Xi+1] − E[Xi]). The goal is to find a
lower bound and upper bound on R(k + 1). To do this, the
proof proceeds as follows. First, we bound R(i) in terms
of R(i − 1). Using this we can upper bound R(k). With
an upper bound on R(k) we can derive the final bounds on
R(k + 1).

Lemma 4.3. (1 − 1+ε
k−i+1

)E[R(i)] ≤ E[R(i + 1)] ≤ (1 −
1−ε′

k−i+1
)E[R(i)] for any 1 < i ≤ k.

Proof. Consider the time the ith optimization is per-
formed. At this time there are n∗(1− i−1

k
) events remaining.

There will be n∗/k events available before the (i+1)st opti-
mization. Therefore a 1/(k− i+1) fraction of the remaining
events occur in the ith stage. We have that,

E[R(i + 1)] =
X

x

E[R(i + 1)|R(i)] ·Pr[R(i) = x]

≥
X

x

(1−
1 + ε

k − i + 1
)R(i) ·Pr[R(i) = x]

[Definition of A and R]

= (1−
1 + ε

k − i + 1
)E[R(i)]

and similarly we have,

E[R(i + 1)] =
X

x

E[R(i + 1)|R(i)] ·Pr[R(i) = x]

≤
X

x

(1−
1− ε′

k − i + 1
)R(i) ·Pr[R(i) = x]

[Definition of A and R]

= (1−
1− ε′

k − i + 1
)E[R(i)]

Using the previous lemma we upper bound E[R(k)].

Lemma 4.4. We have that E[R(k)] ≤ α
`

1
k

´(1−ε′)
.

Proof.

E[R(k)] ≤ α
k
Y

j=2

(1−
1− ε′

k − j + 2
)

[Lemma 4.3 and R(1) = α]

≤ α
k
Y

j=2

exp

„

−
1− ε′

k − j + 2

«

≤ α exp

 

−(1− ε′)
k
X

j=2

1

k − j + 2

!

≤ α exp
`

−(1− ε′) log k
´

≤ α

„

1

k

«(1−ε′)

Now we find upper and lower bounds on E[R(k + 1)].

Lemma 4.5. −αε
`

1
k

´(1−ε′)
≤ E[R(k+1)] ≤ −αε′

`

1
k

´(1−ε′)

Proof. We have that,

E[R(k + 1)] ≥ −εE[R(k)] [Lemma 4.3]

≥ −αε

„

1

k

«(1−ε′)

[ε > 0 and Lemma 4.4]

and

E[R(k + 1)] ≤ ε′E[R(k)] [Lemma 4.3]

≤ αε′
„

1

k

«(1−ε′)

[ε′ > 0 and Lemma 4.4]

Lemma 4.5 and the definition of R gives Theorem 4.1.

5. OVERVIEW OF EXPERIMENTS
The previous sections described a bidding algorithm that

is tolerant of errors in the supply and price forecasts, and
presented a theoretical analysis showing that, under certain
simplifying assumptions, an advertiser using this bidding
algorithm can nearly hit a campaign’s demand target and
spending target, with errors that become smaller when the
campaign’s lifetime is divided into more time blocks (thus
causing more re-optimizations to occur).

Because the problem addressed by this paper is real, that
theoretical analysis is only the first step. It is also important
to find out whether the simplifying assumptions made dur-
ing the analysis are reasonable, and whether the algorithm
is sufficiently practical and robust to work under realistic
conditions. Among the simplifying assumptions were the
following:
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• The analysis assumes that the supply which a cam-
paign encounters during its lifetime is divided equally
between the time intervals. In reality, the amount of
supply in the various time intervals can be highly un-
equal.

• The analysis makes a feasibility assumption that D
impressions can be obtained while spending B. In the
experiments, we will examine the assumption-violating
case where the bid z leading to the correct demand is
greater than the bid y leading to the correct spend.

• The analysis assumes that the forecasts are being used
as-is, with no updates. This is a reasonable assumption
given that it would be expensive to obtain the feedback
necessary to update the forecasts. Nevertheless, it is
natural to ask whether better performance could be
obtained if the forecasts could be updated.

The next couple of sections contain experiments that ad-
dress the following 5 questions:

1 Do the errors decrease with increasing k?

2 Is the algorithm robust enough to still work when the
assumption about equal time intervals is violated?

3 Is the algorithm robust enough to work with real price
distributions.?

4 What should the algorithm do when the assumption that
z ≤ y is violated?

5 Can updating the forecasts yield better results?

Since there is value both in using real data, and in us-
ing non-proprietary data, we will present two sets of exper-
iments in the next two sections. In Section 6 we will use
real data to address questions 1,2,3 from the list above. In
Section 7 we will use synthetic (and hence non-proprietary)
data to address questions 1,2,4,5 from the list above.

6. EXPERIMENTS ON RMX DATA
In this section we give an experimental study of the algo-

rithm introduced in this paper. The goal of this section is to
show that the algorithm does not only perform well theoret-
ically, but the algorithm, in fact, performs well on real world
data sets and is robust. All of the data used in the experi-
ments was gathered from live auctions from the RightMedia
exchange. RightMedia is currently the largest ad exchange
currently in industry with over nine billion transactions daily
[13].

The highest bid from 100,000 auctions was collected from
four separate days. We will refer to these as four separate
datasets. These bids were used to represent the bid land-
scape. To construct the bid forecast we used the bid dis-
tribution from one of the datasets. One of the goals of the
experiments was to show the robustness of the algorithm.
To this end, we constructed the bid forecast on only 10,000
auctions from one of the datasets. Then we ran the algo-
rithm, using this forecast, on the 100,000 auctions from the
other three datasets, separately. For each experiment we ran
the algorithm 5 times and took the average of the outputs
considered (e.g. the budget spent or demand received).

Convergence of Budget and Demand with Supply and
Landscape Error:.

Our first experiment is designed to show that the budget
spent and demand received converges to the desired budget
B and demand D as the number of optimizations increase.
First we focus on the case which we call the ‘non-varying in-
terval’ case. In this case, when the number of optimizations
is k, the algorithm is optimized after each 1/k fraction of the
total number of opportunities have occurred. To exemplify
that the algorithm is robust, we set two parameters δ and
β. The value of δ represents the error in the supply forecast.
Here the forecasted supply which was input to the algorithm
is (1 + δ) multiplied by the actual supply. For this experi-
ment δ was set to 1/2 and therefore the forecasted supply for
each of the experiments was 150, 000 while the actual supply
was 100, 000. In practice, this would be a quite large margin
of error in the supply forecast. Now consider the bid land-
scape forecast. In the experiment, a small sample of real
bids were used to construct the supply forecast. It would
seem somewhat surprising that using this as the forecast
would accurately forecast bids from another day’s auctions.
However, the following data shows that the optimization al-
gorithm overcomes this. To further show the robustness of
the algorithm, we also used a parameter β, which is the error
in the bid landscape forecast.2 When using this parameter,
the real bids used to construct the forecast were multiplied
by (1−β). In the following experiment we set β = .5. Thus,
each bid in the training data set used for the bid landscape
forecast was scaled by a factor of .5. Still the optimization
algorithm performed well.

The second experiment performed we call the ‘varying in-
terval’ case. In this case, the number of opportunities be-
tween each optimization is random. Here we choose k − 1
random numbers between 0 and the total supply 100, 000.
When the number of opportunities which occurred previ-
ously was equal to the one of the random numbers then an
optimization was performed. In practice, the number of auc-
tions which occur during a time period do vary and here we
essentially consider the worst cast scenario.

For the advertiser we set the demand D to be 10, 000,
one tenth of the total supply. The advertiser’s budget was
set at about 2.3% of the total sum of the bids. Thus, the
advertiser desires a large fraction of the total supply (10%)
while using a relatively small budget (2.3%). When bidding
in the auction, if there was a tie between the advertiser
and the external bid then it was assumed that the external
bidder won the auction. We used the advertiser with these
parameters on the auctions from the three different datasets
using a different number of optimizations during each run.
The data from each of the three datasets was quite similar
and the graph in Figure 1 and Figure 2 shows one of the
datasets.

First consider the non-varying interval case. Figure 1
shows that if the algorithm performs only a single optimiza-
tion, then an average of 6349.8 auctions are won, which is
about 63.5% of the desired demand. However, if the algo-
rithm were to optimize 15 times then the demand received
would increase to about 9000, within 10% of the desired
demand. This shows that with a small number of optimiza-
tions the algorithm converges to the desired demand. Fur-

2This β controls the error in the values of the bids, and so
is slightly different from the γ in the theoretical analysis,
which bounds the error in the probabilities of bids.
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ther, if the number of optimizations is as large as 50 then
the algorithm is within 5% of the desired demand. Being
able to optimize frequently can be difficult to do in practice
because it is time consuming to receive feedback from the
system. However, even if the optimizations can not be done
often, the algorithm still converges well.

Figure 2 shows the corresponding budget. It can be seen
that the budget has 3% error when no optimizations were
performed. With a large number of optimizations the bud-
get converges with less than .4% error with 50 optimizations.
Thus, converging on the desired demand comes at little rel-
ative expense in the budget spent.
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Now consider the varying interval case. It can be seen that
the demand received and the budget spent is more variable
in this case. The demand received converges to within 10%
of the desired demand when the number of optimizations
is larger than 10. The budget is more variable, however,

once the number of optimizations is larger than 10 the over
spent budget was no larger than 10%. This shows that the
algorithm is fairly robust to there being fluctuations in the
number of opportunities available during a single optimiza-
tion.

Similar results were obtained as above when the parame-
ters δ and β were varied up to .8. However, once the error
parameters became too large, the algorithm could not over-
come the error in the forecasts. Further, similar results were
obtain when the budget and demand were varied. However,
once the demand becomes too close to the total number of
opportunities, there were not enough remaining opportuni-
ties for the algorithm to converge on the budget and de-
mand. Also when the budget was quite small the algorithm,
naturally, was unable to win enough auctions.

In summary, this section contained experiments using real
price distributions which yielded the answer “yes” for ques-
tions 1-3 in Section 5.

Forecasted Supply

Fcast. Prices too high accurate too low

too low δ=0.4 β= 0.4 δ=0.0 β= 0.4 δ= -0.2 β= 0.4

accurate δ=0.4 β= 0.0 δ=0.0 β= 0.0 δ= -0.2 β= 0.0

too high δ=0.4 β= -0.6 δ=0.0 β= -0.6 δ= -0.2 β= -0.6

Figure 3: The 9 scenarios tested in Section 7.

7. EXPERIMENTS ON SYNTHETIC DATA
This section describes some additional experiments that

are easier to replicate because they use synthetic rather
than proprietary data. First, in Section 7.1, the experimen-
tal setup is described, and some basic results are presented
that once again demonstrate that the errors in hitting the
campaign’s demand and spending targets decrease with in-
creasing k, and also that the algorithm is robust to unequal
subdivision of supply between time intervals. Then in Sec-
tions 7.2 and 7.3, the previously unaddressed questions 4
and 5 are empirically investigated.

7.1 Experimental Setup and Basic Results

• True supply N = 100000 auctions.

• Forecasted supply Nf = N · (1 + δ), where (1 + δ) is
the simulation’s forecast error factor.

• Demand Target D = 10000 auction wins.

• Budget Target B = 2500 units of money.

• Implied target spend per win = 0.25.

• Competitors’ bids are drawn from the lognormal dis-
tribution exp(gaussian(mean=0,sigma=4/3)).

• The price forecast given to the bidding agent is repre-
sented by a separate ensemble of samples drawn from
the same lognormal distribution, but then multiplied
by the simulation’s price error factor (1− β).

• Simulations were run with two different schemes for
subdividing the supply amongst the time intervals: nearly
equal random subdivision, which is probably better
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Figure 4: Left: Simulation results for k=1. The 9 obvious clusters correspond to the 9 scenarios listed in

Table 3, with the same layout. Middle: Results for k in {1,4,16,64}. Notice that as k is increased, the

distribution of outcomes contracts towards the target demand of 10000 and target price of 0.25. Right:

the results are more scattered, but the same kind of contraction is evident when the supply is subdivided

arbitrarily rather than equally between intervals.

Campaign Inputs: (D, B, k)
Model Inputs: (Nf , Pf )
Control Inputs: (favorDemand, updateModels)

SM ← initSM(Nf , k) // supply model
PM ← initPM(Pf ) // price model
Da ← 0; Ba ← 0
for ka = 0 to k − 1 do // loop over time blocks

Dr ← D −Da; Br ← B −Ba; kr ← k − ka

Ne ← estimateRemainingSupply(SM, kr)
Pe ← estimatePriceDistribution(PM)

define: Fe(y) = 1
Pe(y)

R y

0
b · pe(b)db

winratez ← Dr/Ne // aim for D
spendratey ← Br/Dr // aim for B

bidz = P−1
e (winratez)

bidy = F−1
e (spendratey)

winratey = Pe(bidy)
if (bidz ≤ bidy) then // “feasible” case

curBid ← bidy;
bidProb ← winratez/winratey

else // “infeasible” case where (bidz > bidy)

if (favorDemand) then curBid ← bidz

else curBid ← bidy end if

bidProb ← 1.0

end if

(numWins, amtSpent, numAuctions, competingBids)
← ResultsOfBlock (curBid, bidProb)

Da ← Da + numWins
Ba ← Ba + amtSpent
if updateModels then

updateSupplyModel (SM, numAuctions)
updatePriceModel (PM, competingBids)

end if

end for

Outputs: (Da, Ba)

Figure 5: Pseudocode for bidding algorithm.

than reality, and unconstrained random subdivision,
as described in section 6, which is probably worse than
reality.

• Nine different error scenarios were tested, each speci-
fied by values for the supply error δ and the price error
β. These scenarios are listed in Table 3.

• 25 simulations were performed for every combination
of (intervalScheme, ErrorScenario, k).

• The results are presented as scatter plots, with number
of auctions won on the x axis, and average spend per
win on the y axis.

• Pseudocode for the simulated bidding agent appears in
Figure 5. There are control flags called favorDemand
and updateModels. These will be explained in Sections
7.2 and 7.3, but were both set to false for the basic
simulations whose results we will now discuss.

Consider the plots in Figure 4. The leftmost pane shows
results for k=1 and equalIntervals. There are nine obvi-
ous clusters of points which correspond to the nine error
scenarios, and in fact have the same spatial layout as the
table in Figure 3. We will mention a couple of the clusters.
The middle cluster in this leftmost plot is for the accurate-
forecast scenario (δ = 0, β = 0). Naturally, this cluster of
outcomes is centered on the target demand of 10000 and the
target price of 0.25. The upper left cluster is for the scenario
(δ = 0.4, β = 0.4). The inaccurate forecasts are causing the
bidding agent to under-deliver (5000 wins) and over-spend
per win (price of about 0.28).

Now consider the center pane of Figure 4, in which k
ranges over {1,4,16,64}. Evidently the ensemble of outcomes
(comprising 25 runs each for 9 scenarios) is contracting to-
wards the target demand and target price as k increases.
This re-affirms the earlier answer of “yes” for question 1.

Now consider the rightmost pane of Figure 4, which dif-
fers from the center pane in that the simulator subvided the
supply unequally rather than equally between the time in-
tervals. The results for the unequal subdivision are much
more more scattered, but still there is an overall pattern of
contraction towards the target demand and target price as
k increases. This re-affirms the earlier answer of “yes” for
question 2.
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Figure 6: These plots are discussed in §7.2.

7.2 Investigation of Z > Y Case
In this section we investigate Question 4: what should

the algorithm do when the demand-based bid z exceeds the
spending-based bid y? This case can occur in reality, but it
violates a simplifying assumption that was made during the
theoretical analysis. The experimental investigation of this
case involves new algorithmic details:

7.2.1 New Algorithmic Details for Z > Y Case
The favorDemand flag in the pseudocode of Figure 5 de-

termines which bid is used in the assumption-violating “in-
feasible” case where the demand-based bid z is greater than
the spending-based bid y. If favorDemand=true, then the
algorithm will use the demand-based bid z, and will attempt
to fulfill the demand even though that might result in over-
spending. If favorDemand=false, then the algorithm will use
the spending-based bid y, and will avoid overspending but
will tend to fall short of satisfying the demand. It is worth
pointing out that in the “feasible” case z ≤ y (which was as-
sumed in the theoretical analysis) there is no corresponding
policy question because it is possible to simultaneously hit
the demand and spending targets.

7.2.2 Experimental Results for Z > Y Case
To study the policy question for the z > y case, we ran

all of the experiments on synthetic data twice, once with
favorDemand=false and once with favorDemand=true.

Some of the results are shown in Figure 6. Both panes
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Figure 7: These plots are discussed in §7.2.

contain scatter plots showing the outcomes of 25 runs each
of the 9 error scenarios, with 4 different values of k, all with
with unequal division of supply between time blocks. The
top pane shows results for favorDemand=false, while the
bottom pane shows results for favorDemand=true. The re-
sults are qualitatively similar, except for the larger number
of magenta squares near the top of the bottom plot, indicat-
ing that some of the 25*9 runs for k = 64 ended up paying
an excessive average price per auction win.

Further investigation showed that the runs in which the
k = 64 runs overpaid were mostly for the (δ = 0.4, β =
0.4) error scenario, which for k=1 causes a bidder to under-
deliver and over-pay per auction win.

To more clearly illustrate what is going on, consider the
plots in Figure 7, which only contains results for the (δ =
0.4, β = 0.4) scenario, and which were obtained under the
less-noisy simulation conditions where supply is equally di-
vided between time intervals.

The top pane in Figure 7, which is for favorDemand=false,
shows that as k is increased, the algorithm’s demand achieved
and average price paid initially moves towards the target val-
ues, but then seems to asymptote at values that fall short
of the targets.

The bottom pane in Figure 7, which is for favorDemand=true,
shows a very different behavior. The amount of demand sat-
isfied continues to increase with increasing k, but the price
paid stops decreasing and starts increasing around k = 24.
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Figure 8: These plots are discussed in §7.3.

This is actually a general phenomenon that can occur
whenever the following three conditions are met:

1. Large errors in the forecasts cause the algorithm to fall
behind in satisfying the demand target.

2. Only a small fraction of the campaign’s lifetime re-
mains. This can only happen for larger values of k.

3. The algorithm is allowed to climb arbitrarily far up
the price curve in pursuit of the faster win rates that
would allow it to catch up.

Notice that the favorDemand=true policy can climb too
far up the price curve, but the favorDemand=false policy
cannot.

In summary, when forecast errors are such that the z > y
case arises, one can adopt the favorDemand=false policy and
end up with some demand that is unsatisfied even for large
k, or one can adopt the favorDemand=true policy and end
up with an excessive average price that is exacerbated by
large k.

It is in this situation, where increasing k does not strictly
improve the outcome, that the idea of updating the erro-
neous forecasts begins to sound attractive. That idea is
explored in the next section.

7.3 Updating the Forecasts
In this section we investigate Question 5: Can updating

the forecasts yield better results? This involves some new
algorithmic details.

7.3.1 New Algorithmic Details for Updates
The updateModels flag in the pseudocode of Figure 5 de-

termines whether the supply and price models are updated
after each time block. We note that the basic algorithm, as
considered in all previous sections, corresponds to update-
Models=false. This paper does not address the question of
how to optimally update the models given the hypotheti-
cal feedback that would enable those updates. Instead, the
models are updated in a very simple way that suffices to give
some preliminary insight into question 5.

7.3.2 Updating the Supply Model
When updateModels = false, remaining supply is esti-

mated as follows: (the variables here are explained in Ta-
ble 9)

Ne = kr ·
Nf

k

When updateModels = true, remaining supply is esti-
mated as follows:

Ne = kr ·
wNf + Na

wk + ka

The rate at which observations overcome the forecast is
affected by the parameter w. In these experiments, w = 1,
so at the end of the simulation, the initial forecast and the
observed data have approximately equal weight.

7.3.3 Updating the Price Model
The initial price model is represented by a set of samples

drawn from the true price distribution and multiplied by the
error factor (1− β).
If updateModels = false, this initial model is never changed,
but if updateModels = true, the model is updated after each
time block by unioning the model’s current set of samples
with the set of competing bids observed during that time
block.
The rate at which observations overcome the forecast is af-
fected by the size of the initial set of samples. In these ex-
periments, there are 100000 samples in the initial forecast,
and 100000 opportunities during the campaign, so at the
end of the simulation the initial forecast and the observed
data have equal weight.

7.3.4 Experimental Results for Forecast Updates
To study the question of whether a simple scheme for up-

dating forecasts can yield improved performance, we ran all
of the experiments on synthetic data twice, once with up-
dateModels=false, and once with updateModels = true. In
all, we performed 23400 simulations, which are (25 tries) *
(9 error scenarios) * (13 values of k) * (2 supply subdivision
schemes) * (2 values for favorDemand) * (2 values for up-
dateModels). The general impression one obtains from look-
ing at all of the resulting plots is that updating the models
tends to give a tighter concentration of results around the
target values, but not greatly so.

Due to space limitations, here we will just exhibit the
plots in Figure 8, which correspond directly to the plots
in Figure 7, except that the models are being updated in
Figure 8.

A comparison of the top panes in the two figures, which
are both for favorDemand=false, shows that the updating
algorithm was able to get past the demand value of about
9000 at which the non-updating algorithm was asymptoting.
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variable meaning
D Demand Target
Dr Demand Remaining Unsatisfied
Da Demand Already Satisfied
B Budget Target
Br Budget Remaining Unspent
Ba Budget Already Spent
k Number of Time Blocks
kr Time Blocks Remaining
ka Time Blocks Already Occurred
Nf Forecasted Total Supply
Ne Estimated Remaining Supply
Na Supply actually observed so far
Pf Forecasted Price Distribution
Pe Estimated Price Distribution

The following are hidden from the bidder.
N∗ True total Supply
P∗ True Price Distribution
δ Supply Error: Nf = N∗ · (1 + δ)
β Price Error: Pf = P ∗ · (1− β)

Figure 9: Explanation of variables appearing in the

pseudocode of Figure 5.

A comparison of the bottom panes in the two figures,
which are both for favorDemand=true, shows that the aver-
age price paid by both algorithms starts to increase above a
certain value of k. However, the average price paid for any
given value of k is less for the updating algorithm.

8. CONCLUSION
Most online advertising today is sold via real-time auc-

tions in which advertisers are represented by automated bid-
ding agents that bid strategically in an attempt to achieve
various goals including hitting demand targets and spend-
ing targets over a specified period of time. The inputs to
these agents typically include machine-learned models of the
world which facilitate extrapolation from the past to the fu-
ture and from common events to rare events. Given their
extrapolative function, it is not surprising that these models
are imperfect.

While improving the accuracy of the models is a worth-
while research goal, in this paper, we have instead assumed
that the models of future supply and future prices are inac-
curate, and investigated the question of how a bidding agent
can win the right number of impressions and spend the right
amount of money given this inaccuracy.

In Theorem 4.1, we proved that, subject to certain feasi-
bility conditions, a very simple bidding strategy, which only
requires occasional feedback of the number of auctions actu-
ally won and the amount of money actually spent, quickly
converges to the bidder’s desired budget and demand.

We have also provided experimental evidence in Sections 5
through 7 that the proposed bidding strategy is robust enough
to work even when some of the simplifying assumptions in
the formal analysis are violated.
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