
Online Batch Scheduling for Flow Objectives

Sungjin Im ∗ Benjamin Moseley †

January 16, 2013

Abstract

Batch scheduling gives a powerful way of increasing the throughput by aggregating multiple ho-
mogeneous jobs. It has applications in large scale manufacturing as well as in server scheduling. In
batch scheduling, when explained in the setting of server scheduling, the server can process requests
of the same type up to a certain number simultaneously. Batch scheduling can be seen as capacitated
broadcast scheduling, a popular model considered in scheduling theory. In this paper, we consider an
online batch scheduling model. For this model we address flow time objectives for the first time and give
positive results for average flow time, the k-norms of flow time and maximum flow time. For average
flow time and the the k-norms of flow time we show algorithms that are O(1)-competitive with a small
constant amount of resource augmentation. For maximum flow time we show a 2-competitive algorithm
and this is the best possible competitive ratio for any online algorithm.

∗Department of Computer Science, Duke University, Durham NC 27708-0129. sungjin@cs.duke.edu. Partially sup-
ported by NSF grant CCF-1008065.
†Toyota Technological Institute, Chicago IL, 60637, USA. moseley@ttic.edu

1 Introduction
Using k-norms and not `k-nroms
should we stick to requests or jobs
should be say scheduled or broadcasted
A majority of works in scheduling literature studies the case where all jobs must be processed sequen-

tially and only on a single machine at any point in time. However, more general problems arise practice.
For instance, jobs could be parallelizable. In this setting a job can be be processed on multiple machine
simultaneously. Scheduling parallelizable jobs has received a significant amount of attention in theoretical
scheduling literature, for instance [13, 9, 15, 23, 14]. The reason to address the parallelizability of a job is
to be able to process more work per unit time by using more machines.

Another way to increase the work being done per time unit is to batch homogeneous jobs. In a batch
scheduling setting, jobs of the same type can be aggregated and processed together simultaneously. Thus,
one unit of processing can decrease the work that needs to be performed on more than one job. Batch
scheduling arises in many real work systems. For example, if jobs require the same code, then the server
can let the jobs share the code loaded into the memory. Or in a multicast network, many different clients can
receive a communication simultaneously. Batch scheduling is not only restricted to computers and networks.
In particular, in manufacturing lines, such as semiconductor manufacturing, tasks are grouped together to be
processed simultaneously. See [22], for a variety of industry applications of batched scheduling.

A special type of batch scheduling, known as broadcast scheduling, has received a significant amount
of attention recently in scheduling literature. In the broadcast scheduling model, there are n pages of data
stored at a server. Over time requests arrive for specific pages. When the server broadcasts a page p, all
unsatisfied/outstanding requests are satisfied simultaneously. Broadcast scheduling finds applications in
multicast systems, LAN and wireless networks [24, 1, 2]. Notice that here any number of requests can be
satisfied simultaneously. This can be viewed as having an infinite batch size. In practice, however, there
could be a limit on the number of requests that a server can handle simultaneously, as was pointed out in [7].

In this paper, we consider online batch scheduling where there is possibly some limit on the number of
jobs that can be processed simultaneously. In the online setting, the scheduler is only aware of a request
once it is sent to the system. Inspired by the broadcast model, we consider a generalization this model to the
batched setting. As in the broadcast model, there are n pages of information stored at the sever. Requests
arrive over time for different pages. The sever can satisfy up to Bp requests for page p simultaneously. Here
Bp is different for each page p and takes some integral value in (0,∞]. We note that the model we consider
is not only restricted to applications in wireless networks. Indeed, one can think of the n pages as n different
types of jobs. Over time requests come for a specific type of job p to be done and up to Bp jobs of type p
can be done simultaneously. This model accurately captures a variety of batched settings, for instance batch
scheduling tasks in an assembly line.

The flow time of a job is the amount of time it takes the sever to satisfy a job. A client is interested
in having the flow time of their job minimized. Let Jp,i be the ith request for page p and say that this
request arrives at time rp,i. Each page p has a size `p which specifies the amount of work on page p that is
required to complete a request for page p. We assume that a page consists of a sequence of unit sized pieces
(p, 1), (p, 2), . . . , (p, `p). The sever can broadcast/schedule one piece of a page at each time step. A requests
will need to be in a batch for each piece of a page it requested to be completed. For a given schedule, let
Cp,i be the time Jp,i is completed in the system. The flow time of a job is Cp,i− rp,i. The scheduler’s goal is
to determine how jobs should be processed so that the clients are given good service. That is, the schedule’s
goal is to optimize a quality of service metric. Perhaps the most popular quality of service metrics are based
on the flow time of the jobs. In this paper, we study flow time objectives for the first time in batch scheduling
when the batch size is between 1 and∞.

The most popular flow time based quality of service metric is minimizing the total or average flow time.

1

Here the schedules goal is to minimize
∑

p,iCp,i − rp,i and this objective essentially minimizes the average
quality of service. Unfortunately, in by optimizing average flow time, the scheduler could give a few clients
poor quality of service as to optimize the flow time of other jobs. Thus, it can be seen that optimizing
average flow time is not necessarily ‘fair’ to all of the jobs. An objective that focuses on ensuring no job is
given poor quality of service is minimizing the maximum flow time. Finally, an objective that is also used to
ensure fairness while not being as stringent as maximum flow time is minimizing the k-norms of flow time.
Here the objective is to minimize k

√∑
p,i(Cp,i − rp,i)k for some k ∈ (1,∞). By focusing on minimizing

the k-norms for small values of k greater than one the scheduler optimizes the variance in the requests flow
time, which enforces fairness [6]. It can be noted that average flow time is equivalent to setting k = 1
and maximum flow time is equivalent to setting k = ∞. Each of these objectives are widely considered
in scheduling theory and it depends on the requirements of your system for which objective you would
consider optimizing.

In theoretical scheduling literature, batch scheduling has been studied only for the objective of maxi-
mizing the total throughput [7, 16]. For this objective, each request Jp,i has a release time rp,i and deadline
dp,i. If some request is completed by it deadline, then the scheduler receives some profit wp,i. The goal of
the scheduler is to maximize the profit obtained. Flow objectives are quite different from the throughput
objective. For example, there exists a simple 2-competitive greedy algorithm for the global throughput [7].1

However, it is known that any deterministic online algorithm is Ω(n)-competitive for the average flow time
objective [20]. This strong lower bound holds even in the special case of broadcast scheduling. Further any
randomized algorithm is Ω(

√
n)-competitive [3].

To give a flavor of the difficulty of batch scheduling, it would be useful to consider the following algo-
rithm. As discussed before, the main reason to consider batch scheduling is the ability to satisfy multiple
jobs simultaneously. Hence, it is natural to think that the algorithm which processes a page with the most
number of requests would perform well for batched scheduling. This algorithm is known as Most Requests
First (MRF). It is known that MRF is 2-competitive for maximizing throughput [21, 11], however it is far
from the optimum for minimizing average flow time, maximum flow time and the k-norms of flow time.
Consider the following simple example where the batch size can be at most two for each page. At time
0, n/2 requests arrive, one for each distinct page. For simplicity, assume that all pages are unit-sized and
thus can be completed in a unit time. In addition, at each integer time until time n2, the same page p is
requested twice. Then the algorithm MRF will broadcast page p at every time step until time n, thereby
leaving many requests unsatisfied for a long time. However, one can broadcast page p every other time step
and process other requests in between. This schedule’s objective is a factor of Ω(n) less for each of the
mentioned objectives over MRF.

As mentioned, there are strong lower bounds on the competitive ratio of any online algorithm in the
batched scheduling setting for the problems of minimizing average flow time and the k-norms for k ∈
(0,∞). Due to these strong lower bounds, we consider analyzing algorithms in the popular resource aug-
mentation [19]. In the resource augmentation model, an algorithm is given extra resources over the adversary
and then the competitive ratio is bounded. In previous work, the resource augmentation usually comes in the
form of being able to process jobs at a faster rate. An algorithm is said to be s-speed c-competitive if it can
process jobs s times faster than the adversary. In our setting, we will consider algorithms that possibly have
resource augmentation on how fast jobs can be processed as well as resource augmentation on the number
of jobs that can be satisfied together. We will say that an algorithm is s-speed d-capacity c-competitive if
the algorithm can process jobs s times faster than the adversary, the batches can be d times larger and the
algorithm achieves a competitive ratio of c. The ultimate goal of a resource augmentation analysis is to find
a constant competitive algorithm even with a minimum amount of extra resource augmentation.

1We note that [7] studies a more general batch scheduling setting in the offline setting.

2

Our Results: As mentioned, we consider minimizing flow time objectives for the first time in the batched
scheduling setting. First we consider the problems of minimizing average flow time and the k-norms of flow
time. Due to space constraints, the results for the k-norms can be found in the appendix. For both of these
problems we consider a generalization of an algorithm that was considered in the broadcast scheduling
setting [5]. Both of these results will follow a similar framework. We will specify two different cases
depending on the size of pages. One is when pages are all unit sized (i.e. `p = 1 for all p) and the other is
when pages are varying sized. We are able to show the following theorems for the case of unit sized pages.

Theorem 1.1. For any ε > 0, there exists an online algorithm that is (1 + ε)-speed 2-capacity O(1/ε3)-
competitive algorithm for minimizing average flow time when pages are unit-sized.

Theorem 1.2. For any ε > 0 and any fixed integer k ∈ [1,∞), there exists an online algorithm that is
(1 + ε)-speed 2-capacity O(1/ε4)-competitive algorithm for minimizing the k-norms of flow time when
pages are unit-sized.

We extend these result for varying sized pages. Here we require a further relaxation on the capacity
constraints.

Theorem 1.3. For any ε > 0, there exists an online algorithm that is (1 + ε)-speed 6-capacity O(1/ε3)-
competitive algorithm for minimizing average flow time when pages are varying-sized.

Theorem 1.4. For any ε > 0 and any fixed integer k ∈ [1,∞), there exists an online algorithm that is
(1 + ε)-speed 6-times O(1/ε4)-competitive algorithm for minimizing the k-norms of flow time when pages
are varying-sized.

Finally, we consider the problem of minimizing the maximum flow time. In this case we do use resource
augmentation at all, neither on the processing speed nor the capacity of the batch size. In this case the
algorithm considered is the natural extension of the algorithm first-in-first out which always prioritizes the
request that arrived the earliest.

Theorem 1.5. There exists a 2-competitive algorithm for minimizing the maximum flow time.

This result is tight, since any randomized online algorithm was shown to have competitive ratio larger
than 2−ε for any fixed constant ε > 0 even in the special case ofBp =∞ [10, 11]. Due to space constraints,
this result can be found in Appendix C.

Our Technical Contributions: As mentioned before, our algorithm and analysis are inspired by the pre-
vious work in broadcast scheduling [5, 14, 12]. We first give a high-level view of the approach in [5, 14]
for the k norms objectives, 1 ≤ k < ∞. The main difficulty of broadcast scheduling comes from the fact
that an optimal schedule can be very effective in processing multiple requests simultaneously compared the
the online scheduler. This is the case particularly since the optimal scheduler knows the future input while
our algorithm does not. Hence it is challenging for an online algorithm to decide when and what to broad-
cast. That is, the online algorithm may want to wait more hoping for a chance to aggregate more requests,
however, it increases the wait time of such waiting requests.

The key idea that was used in [5, 14] is to first obtain a fractionally good schedule. To illustrate the
idea, we assume that all pages are unit sized where requests arrive at integer times, and it takes a unit time
to broadcast a page p. In the real (aka integral) schedule, the scheduler is allowed to transmit only one
page per time step. However, in the fractional schedule, at each instantaneous time, multiple pages can be
broadcasted fractionally, up to a total of one unit. Then in fractional schedule, a request Jp,i is satisfied, if
page p is transmitted by one unit since its release time rp,i. They then convert their schedule for the fractional
case, to a valid real schedule, where only one page is broadcasted in a time step, in a online manner.

3

Until this, our algorithm and analysis are fairly similar to the previous work. We will also consider a
fractional schedule and convert it to a valid schedule in an online manner. However, in batch scheduling,
one has to decide which requests get satisfied in a batch; whereas, in the broadcast schedule all requests
get satisfied together. Deciding which requests get satisfied makes the problem more challenging. Our
algorithm at any point in time, will decide a single request that is wants to satisfy. However, now it also
needs to decide which requests to group in a batch with this request. Our algorithm will define ‘balls’ around
each request where a ball consists of which requests get satisfied if this request is chosen to be satisfied. The
ball will be defined on requests for the same page that arrived the most closely to this request. Using this, we
will show a fractionally good scheduler. However, the online conversion to a valid schedule is much more
challenging in our case. For the online conversion, we will need use a more intricate analysis. The reason
is that when pages have varying sizes the batch a request is in can change over time and we will need to be
careful about how the algorithm and optimal solution group requests. To do this, we will determine some
structural properties of the optimal solution that we can compare against.

Related Work: Broadcast scheduling for minimizing the average flow time is NP-hard [10]. It is also
NP-hard to optimize the maximum flow objective [10]. Since broadcast scheduling is a special case of
the problems considered in this paper, each of the problems we consider is NP-hard. The best known
approximation for the average flow in broadcast scheduling is aO(log2 n/ log logn)-approximation [4]. For
the k-norms objective, [14] gave the first scalable algorithm. For the problem of minimizing the maximum
flow time, [12] gave a 2-approximation.

2 Formal Problem Definition and Notation
There are n pages of information that are available at the server. Each request Jp,i arrives at an integer

time rp,i, and this is the first time when the scheduler is aware of this request. Here we use Jp,i to denote the
request for page p with the ith earliest arrival time; ties are broken arbitrarily but a fixed way. For any p and
i, we will say that the two requests Jp,i and Jp,i+1 are adjacent. Each page p has size `p. That is, the page
p consists of `p pieces of unit sized information, (p, 1), (p, 2), ..., (p, `p). At each time t (or equivalently
between time t and t+ 1), the server can transmit only one piece of information, and further can service up
toBp requests when transmitting a piece of information for page p. Note unlike in broadcast scheduling that
the server needs to decide which requests to serve if there are more than Bp outstanding requests. A request
Jp,i is satisfied at the first time when the request, since its release time rp,i, receives all pieces of information
(p, 1), (p, 2), ..., (p, `p) in the sequential order. However, such a sequence of transmissions does not have
to be continuous, and can be interrupted by other transmissions. We let Cp,i denote the completion time of
request Jp,i. We will distinguish two cases depending on the pages sizes: unit sized pages and varying sized
pages. In the unit sized pages case, `p = 1 for all pages p, and hence does not have to decide which piece of
information to transmit.

In all objectives we consider in this paper, the server is required to satisfy all requests. As mentioned
before, k-norms of flow time is defined as k

√∑
p,i(Cp,i − rp,i)k. This objective becomes the total (or equiv-

alently average) flow time and the maximum flow time when k = 1 and k =∞, respectively.
When the algorithm is given speed (1 + ε), we assume that the algorithm is allowed to transmit an extra

piece of information at every 1/ε time steps; here 1/ε is assumed to be an integer. When the algorithm is of
η-capacity, it can serve up to ηBp requests of the same page p.

3 Preliminaries and Overview of the Analysis
For the objectives of minimizing the average flow time and the k-norms of flow time, we will first

show that an online algorithm is fractionally scalable. The main analysis tool for this is potential functions.
Potential functions have become popular for scheduling algorithms and their analysis. See [18] for a tutorial.
Then we convert the fractional schedule into an integral one with additional speed augmentation. In this

4

section, we first define a fractional schedule, and give a quick overview of potential function based analysis.
Also we will briefly discuss the online conversion from a fractional schedule into an integral one. The
maximum flow time objective completely differs from the analysis for the k norms, and hence will be
discussed on its own in Appendix C.

Fractional Flow Time: In the fractional schedule, there are no different pieces of information for a page.
Hence when defining a fractional schedule, we only need to specify which page is being processed at a
time together with the requests that are being satisfied. Up to Bp requests for page p can be grouped in a
batch for page p. Then the (fractional) completion time Cp,i of a request Jp,i is defined as the first time
t > rp,i when Jp,i has been included in a batch for page for a total of `p during [rp,i, t]. Note that a real
(integral) schedule σ also defines the fractional completion time Cf,σp,i of a request Jp,i, and is no bigger than
its integral completion time Cσp,i. To distinguish fractional schedule from integral schedule, we will say that
a page is ‘processed’ rather than ‘broadcasted.’

The advantage of fractional flow time is two-fold. Firstly, this makes potential function based analysis
more applicable–Particularly, in the analysis of the continuous changes of the potential function. Secondly,
this allows us not to worry about restarting a broadcast due to newly arriving requests for the same page.
To see this, consider an alive request for page p that has been partially processed. Now when new requests
arrive for the same page p, we need to decide whether to start broadcasting page p from the beginning or
resume from the piece just after that by which the old request has been satisfied.

Potential Functions: We show that our online algorithms are fractionally scalable for average flow and
the k-norms of flow using potential functions. The potential function Φ(t) changes over time, and have
non-continuous and continuous changes. Non-continuous changes can occur when request arrive or are
completed by our algorithm or the optimal scheduler. Continuous changes can occur when our algorithm
or the optimal scheduler process some pages. We can without loss of generality compare our algorithm’s
fractional cost to the optimal scheduler’s fractional cost, rather than to the optimal scheduler’s integral cost,
since the fractional cost can be only smaller. The continuous change can occur also due to time elapse (this
will only be the case for the k-norms of flow time). We will show that the potential function satisfies the
following properties:

• Φ(0) = Φ(∞) = 0.
• All non-continuous changes of Φ(t) are non-positive.
• For some constants c1, c2 > 0, at any time t, d

dtΦ(t) ≤ −c1 d
dtCOSTA(t) + c2

d
dtCOSTOPT(t).

Here COSTA(t) denotes the total cumulative cost of our algorithm at time t. The A(t) be the unsatisfied
requests for page p at time t in the schedule A. Here COSTA(t) =

∑
Jp,i∈A(t)(t − rp,i) for the total

flow time objective, and note that COSTA(∞) is the final objective. For the k-norm objective, we let
COSTA(t) :=

∑
Jp,i∈A(t) k(t − rp,i)k−1 and k

√
COSTA(∞) is the final objective in this case. Likewise,

COSTOPT(t) denotes the optimal scheduler’s cumulative cost at time t. For more details of the usage of
potential functions, see the survey [18]. If the above constraints are satisfied, we can easily show that
COSTA(∞) ≤ c2

c1
COSTOPT(∞).

Online Conversion into an Integral Schedule: We give an online algorithm that converts into a fractional
schedule into an integral schedule that increases the flow time of each request only by a constant factor. To
do this, when a request Jp,i is fractionally completed, we insert the request into a queue together with its lag
ρp,i := Cfp,i − rp,i. We will give an online algorithm that satisfies all requests Jp,i within a constant times
their lag since they enter the queue. Here the lags are carefully used to prioritize the pages to broadcast
and which request should be included in a batch. We will give two conversion algorithms, one for unit-
size pages, and one for varying-sized pages. The latter will require more relaxation on the batch size. We
note that if the flow time of any request increases by at most a constant factor, for any of the objectives

5

we consider, the overall objective of the integral schedules is at most a constant factor larger than for the
fractional schedule.

Optimal Schedule’s Structure: We make the following observation regarding the fractional optimal sched-
ule’s structure .Note that the following lemma holds for the k-norms of flow time as well as maximum flow
time and average flow time.

NOTE: I do not want to consider only fractional schedulers because the FIFO proof needs this
lemma and the proof only works in the sequential (non-beffering or fractional) model

Lemma 3.1. Consider any k norm of flow time for k ∈ {1, 2, 3, ...,∞}. There exists an optimal solution in
the integral model where each request Jp,i receives the pieces (p, j) of page p before Jp,i+1 receives (p, x)
for all p, i, x. That is, requests are processed in first-in-first-out order.

Proof. Among all possible optimal schedules in the integral model, consider a schedule σ that minimizes
the number of inversions against the first-in-first-order. Here we say that a pair of requests Jp,i and Jp,j ,
i < j, and a piece of information (p, k) of page p, incur an inversion if the later arriving request Jp,j receives
the kth piece of information earlier than Jp,i. We show that there is in fact no inversion in σ. For the sake
of contradiction, suppose not. Fix any pair of requests Jp,i, Jp,j , that have an inversion. Consider changing
the way Jp,i and Jp,j are satisfied in this schedule. For each piece (p, x) of page p, let Jp,i be included in
the first batch where one of Jp,i or Jp,j receives (p, x). Let Jp,j be in the latest batch either Jp.j and Jp,i
receive (p, x). Notice that this is a valid schedule since rp,i ≤ rp,j . Further, since the objective function is
convex, this can only reduce the objective and reduces the number of inversion, which is a contradiction to
the definition of σ.

Thus, we can assume that the optimal solution satisfies requests in first-in-first-out order.

Organization: In Section 4, we present our results for average flow time and prove Theorem 1.1 and 1.3. To
do this, we will first show that a natural variant of the algorithm Latest Arrival Processor Sharing (LAPS)
[15, 5] is fractionally scalable. We complete the algorithm and analysis by providing the online conversions
into an integral schedule. As mentioned, the two conversions are for the unit-sized pages and varying-
sized pages cases, respectively. Due to the space constraints, we defer the analysis of latter conversion
to Appendix A. The k-norms results and the maximum flow result are presented in Appendix B and C,
respectively.

4 Average Flow Time
In this section we consider the problem of minimizing the average flow time of the requests. As men-

tioned, we will consider the objective of fractional flow time first. Later we will show how to convert this
to an integral schedule. For the conversion we will consider the unit sized page case and the varying sized
page case separately. However, for the fractional case, we will assume that pages can possibly have varying
sizes.

4.1 Fractional Flow Time
4.1.1 Algorithm

The algorithm we use is an adaptation of the algorithm LAPS [15, 5]. Let 0 < ε < 1/10 be a fixed
constant. We will assume that the algorithm is given s = (1 + 10ε)-speed. The algorithm essentially
distributes its processing power amongst the the latest ε fraction of the latest arriving requests. In particular,
let A(t) denote the set of unsatisfied requests at time t in LAPS’s schedule. Let A′(t) be the set of dε|A(t)|e
latest arriving requests in A(t). Let Jq,k be the earliest arriving request in A′(t). Let hp,i(t) = s/(ε|A(t)|)
for each request Jp,i ∈ A′(t) \Jq,k. For the request Jq,k, let hq,k(t) = s(ε|A(t)|− dε|A(t)|e+ 1)/(ε|A(t)|).
Intuitively, hp,i denotes the share of processing power request Jp,i receives. Note that only the requests in

6

A′(t) receive processing power at time t. It can be seen for all times t that
∑

Jp,i∈A′(t) hp,i(t) = s, the speed
the algorithm is given.

Now we need to define how the processing power is actually distributed at time t. We assume that our
algorithm is 2-factor-capacity, i.e. can serve up to 2Bp requests for page p when broadcasting page p. For
each request Jp,i ∈ A′(t), let Qp,i(t) = {Jp,j ∈ A(t) | i − Bp + 1 ≤ j ≤ i + Bp − 1}. The is a ‘ball’
of at most 2Bp requests that arrived the closed to request Jp,j . This is the set of requests Jp,i can effect.
Now each request in Qp,i is processed at a rate of hp,i(t) due to (the share of) request Jp,i. Thus, a request
Jp,j ∈ A(t) for page p is processed at a total rate of

∑
Jp,i∈A′(t),Jp,j∈Qp,i(t)

hp,i(t) at time t.

4.1.2 Analysis

In this section we analyze the algorithm LAPS. Let OPT denote some fixed optimal solution for the
fractional setting. For the sake of analysis, we define a potential function that satisfies the three properties
described in Section 3. To this end, we need to define some notation. Let ON(t1, t2, p, i) =

∫ t2
t=t1

hp,i(t) be
the total amount WLAPS devotes to request Jp,i during [t1, t2). Let τp,i be the first time that OPT works on
request Jp,i. Let OPT(t1, t2, p) denote the amount OPT processes page p during [t1, t2) up to a maximum
of `p. Now we create the following variable for each request Jp,i,

zp,i(t) = ON(t,∞, p, i) · OPT(τp,i, t, p)

Now we are almost ready to define the potential function. Let RANK(p, i, t) =
∑

Jq,k∈A(t),rq,k≤rp,i 1 be the
total number of alive requests in A(t) that arrived earlier than Jp,i. Now our potential function is,

Φ(t) =
5

ε

∑
Jp,i∈A(t)

RANK(p, i, t)
zp,i(t)

`p

Recall from Section 3 the properties we need to show. The first property Φ(0) = Φ(∞) = 0. We now
bound each of the possible changes in the potential function separately below.

Arrival Condition: Consider when Jp,i arrives at time t. Note that when a job arrives, the rank of every
other job remains unchanged. Further the term RANK(p, i, t)

zp,i(t)
`p

is added to the potential function. How-
ever, it can be seen that zp,i(t) = 0 at the time t when Jp,i arrives since OPT has not had a chance to work
on this request yet.

Completion Condition: When a request Jp,i is completed at time t then the rank of all jobs that arrived
later that Jp,i could possibly decrease. However, since the potential function is always positive, it can be
seen that this can only decrease the potential function. Also the term RANK(p, i, t)

zp,i(t)
`p

is removed from
the potential. Again, this can only decrease the potential.

We have shown that no non-continuous change is positive. We now focus on continuous changes of Φ(t)
that can occur due to our algorithm and OPT’s processing.
Running Condition: We first consider the case where OPT processes pages. We can without loss of
generality assume that OPT processes at most one page at time t. Say that OPT processes page p. LetO∗(t)
be the set of requests which OPT satisfies by working on page p. Note that |O∗(t)| ≤ Bp by definition of
page p’s batch size. Further, note that O∗ contains at most Bp ‘adjacent’ requests due to the FIFO-nature
of OPT proven in Lemma 3.1. Also note that when page p is processed by OPT, the zp,i variable remains
unaffected for all requests Jp,i where t < τp,i and for all requests Jp,i that have been satisfied by OPT.
The first case is because OPT does not start working on such requests by definition of τp,i, and hence
OPT(τp,i, t, p) for those requests does not increase. The second case is because OPT(τp,i, t, p) can be at
most `p and it must be `p if OPT completed request Jp,i, so OPT(τp,i, t, p) does not increase at time t.

Now, for any request Jp,i ∈ A(t) ∩ O∗(t) where τp,i ≤ t the variable zp,i will increase at a rate of
ON(t,∞, p, i). We bound this total increase in the following lemma.

7

Lemma 4.1. If OPT processes p at time t then
∑

Jp,i∈A(t)∩O∗(t),τp,i≤t ON(t,∞, p, i) ≤ `p.

Proof. We know thatO∗(t) contains at mostBp adjacent requests. Further, by definition of LAPS, if LAPS
works on any request in O∗(t) then it satisfies any other request in O∗(t); here the relaxation that LAPS is
of 2-factor-capacity is crucially used. However, this implies that

∑
Jp,i∈A(t)∩O∗(t),τp,i≤t ON(t,∞, p, i) can

be at most `p, because all the requests in O∗(t) will be completed by WLAPS schedule if `p amount of
processing is devoted to the requests in O∗(t) for page p.

With this lemma and by the fact that the rank of any job is at most |A(t)|, we have the total increase in
the potential due to OPT’s processing is at most

5

ε

∑
Jp,i∈A(t)∩O∗(t),τp,i≤t

ON(t,∞, p, i)
`p

RANK(p, i) ≤ 5

ε
|A(t)| (1)

Now we bound the change in the potential due to the algorithm’s processing of pages. Notice that for
each request Jp,i ∈ A′(t) it is the case that ON(t,∞, p, i) decreases at a rate of hp,i(t). Thus, zp,i(t) de-
creases at a rate of hp,i(t)OPT(τp,i, t, p). Also, notice that for any request Jp,i, it is the case that OPT(τp,i, t, p) =
`p if OPT has competed job Jp,i by time t. Let O(t) be the set of alive jobs in OPT’s schedule at time t.
The decrease in Φ(t) due to the algorithm’s processing is the following.

5

ε

∑
Jp,i∈A′(t)

RANK(p, i, t)
hp,i(t)OPT(τp,i, t, p)

`p

≥ 5

ε

∑
Jp,i∈A′(t)

(1− ε)|A(t)|hp,i(t)OPT(τp,i, t, p)

`p
[(1− ε)|A(t)| ≤ RANK(p, i, t) for all Jp,i ∈ A′(t)]

≥ 5

ε
(1− ε)|A(t)|

∑
Jp,i∈A′(t)\O(t)

hp,i(t) [OPT(τp,i, t, p) = `p for all requests Jp,i /∈ O(t)]

≥ 5

ε
(1− ε)|A(t)|

 ∑
Jp,i∈A′(t)

hp,i(t)−
∑

Jp,i∈O(t)∩A′(t)

hp,i(t)


≥ 5

ε
(1− ε)|A(t)|

s− ∑
Jp,i∈O(t)∩A′(t)

hp,i(t)

 [Since
∑

Jp,i∈A′(t) hp,i(t) = s]

≥ 5

ε
(1− ε)|A(t)|

s− ∑
Jp,i∈O(t)∩A′(t)

1

ε|A(t)|

 [hp,i(t) ≤ 1/(ε|A(t)|) by definition of LAPS]

≥ 5

ε
(1− ε)s|A(t)|s− 5s

ε2
|O(t)|

By combining this with (1), we derive the last property we want to show.

d

dt
Φ(t) ≤ 5

ε
|A(t)| − 5

ε
(1− ε)s|A(t)|s+

5s

ε2
|O(t)|

≤ 5

ε
|A(t)| − 5

ε
(1− ε)(1 + 10ε)|A(t)| − 10

ε2
|O(t)| [s = (1 + 10ε) by definition and s ≤ 2]

≤ −|A(t)|+ 10

ε2
|O(t)|

8

Since |A(t) and |O(t)| are the instantaneous increase in the LAPS and OPT’ objectives, respectively,
we conclude that our algorithm LAPS is (1 + 10ε)-speed 10

ε2
-competitive.

4.2 Unit Sized Page Conversion
In this section we show how to take the algorithm we presented for minimizing average flow time in

fractional batch scheduling and construct an online algorithm for the integral batched scheduling such that
the integral schedule has a small amount of extra resource augmentation and the no request’s flow time
increases by more than a constant factor. We note that this conversion also applies to our algorithm we
introduce for the k-norms of flow time presented in Appendix B. To show this, let A be the algorithm for
fractional batch scheduling. Say that A is given (1 + ε) speed where 0 < ε < 1. Note that we assumed that
A has (1 + 10ε) in the previous section, but we can assume it has 1 + ε speed by scaling ε. We construct
an algorithm A′ for integral batch scheduling. We will assume that A′ can schedule one unit sized pages
in a time step and four extra unit size pages every d1/εe time steps. Note that this is essentially equivalent
to A′ having 1 + 4ε speed. For the conversion, we do not consider any arbitrary algorithm that performs
well for the fractional objective because we will need some key properties of A to perform the conversion.
In particular, the algorithm A is required to group two requests Jp,i and Jp,j in the same batch only if
i−Bp + 1 ≤ j ≤ i+Bp − 1. More precisely, if this condition is not satisfied, no share that one of the two
requests receive cannot be used to satisfy the other request. This is the way our algorithms are described for
both average flow time and the k-norms of flow time.

For our online conversion algorithm, we maintain a queue Q. Whenever a request Jp,i is finished by A
in the fractional schedule, it is added to the queue Q, and waits to be completed in the integral schedule.
We let ρp,i denote the flow time of request Jp,i in A’s schedule, and call ρp,i the lag of request Jp,i. At any
time, the algorithm A′ finds (if any) a request Jp,i with the smallest lag ρp,i, and transmits page p. The batch
satisfied by this transmission will be all the requests Jp,j such that i−Bp + 1 ≤ j ≤ i+Bp − 1. Note that
the batch size is at most 2Bp. We will say that Jp,i forces A′ to schedule page p at this time.

Now our goal is to show that any request Jp,i is completed within 10
ε ρp,i time steps in A′’s schedule.

This will then imply that the average flow time of the requests in the scheduleA′ is at most a factor 10
ε larger

than that for A.

Theorem 4.2. Any request Jp,i is satisfied by time rp,i + 10
ε ρp,i in A′.

For the sake of contradiction, suppose that there exists a request Jq,k that has a flow time greater than
10
ε ρp,i in the scheduler of A′. Let t′ be the first time that Jq,k has waited more than 10

ε ρp,i time steps. Let t1
be the earliest time before time t′ such that every request that forces A′ to schedule during [t1, t

′] has lag at
most ρp,i. Let Np be the set of requests that forced A′ to schedule page p during [t1, t]. Our first goal is to
show that no two requests in Np can be satisfied at any point simultaneously in A.

Lemma 4.3. For all p, any two requests in Np cannot be satisfied simultaneously at any point in A.

Proof. Consider any page p and two distinct requests Jp,i, Jp,j in Np. We assume without loss of generality
that Jp,i forces A′ to schedule p before Jp,j . Let t∗ be the time A′ satisfies Jp,i. There are two cases. In the
first case, say that rp,j ≤ t∗. In this case, the only reason Jp,j is not satisfied is that either j < i − Bp + 1
or j > i + Bp − 1. That is, Jp,j is not included in the batch with Jp,i. However, we know that in this case
Jp,i cannot satisfied simultaneously at any point in A by definition of A. For the second case, assume that
rp,j > t∗. Note that t∗ ≥ rp,i + ρp,i since Jp,i is added to to the queue Q at the time rp,i + ρp,i when Jp,i is
completed in A. Hence no processing of Jp,i in A cannot be used to satisfy Jp,j .

Next we show that any request that forces A′ to schedule during [t1, t
′] did not arrive too early.

Lemma 4.4. For any request Jp,i that forcesA′ to schedule during [t1, t
′], it is the case that rp,i ≥ t1−ρq,k.

9

Proof. For the sake of contradiction, suppose that there is a request Jp,i that arrived before t1 − ρq,k and
forced A′ to schedule during [t1, t

′]. By definition of A′, Jp,i is available to be scheduled in A′ at time
rp,i + ρp,i. Note from the definition of t1 that ρp,i ≤ ρp,k, and hence rp,i + ρp,i ≤ rp,i + ρp,k < t1.
However, this implies that every request that forced to schedule a page during [rp,i + ρp,i, t1] has lag less
than ρp,i ≤ ρq,k. This contradicts the definition of t1.

Finally, we will show the following theorem about A′.

Proof of [Theorem 4.2] We know that A′ schedules a total of (1 + 4ε)(t′− t1) pages during t′− t1. Further,
by Lemma 4.3 these requests cannot be satisfied simultaneously in A′. We know by Lemma 4.4 that these
requests arrive no earlier than t1 − ρq,k. Finally, we know that these requests must be completed by time
t′, since no request can force A′ to schedule until they are complete in A. Thus, A must do a volume of
(1 + 4ε)(t′− t1) work during [t1− ρq,k, t′]. This implies that (1 + 4ε)(t′− t1) ≤ (t′− t1 + ρq,k). However,
we know that t1 ≤ rq,k + ρq,k by definition of t1 and t′ − rq,k ≥ 10

ε ρq,k by definition of Jq,k. However, this
is a contradiction and we derive the theorem. 2

4.3 Varying Size Page Conversion
In this section we show how to convert a fractionally good schedule into an integral schedule with a small

amount of extra speed augmentation so that no request’s flow time increases by more than a constant factor.
Like the conversion presented in Section 4.2, this conversion can be used for the average flow objective and
also for the more general k-norms of flow objective. However, this conversion is more general in that it works
for varying sized pages. However, this requires more relaxation concerning batch size–we will allow our
online conversion can use a batch of size up to 6Bp for all pages p. Furthermore, we restrict that in the input
fractional schedule, two requests Jp,i and Jp,j can be in the same batch only if i−Bp+ 1 ≤ j ≤ i+Bp−1,
which will be crucial in performing the conversion. Due to the space constraints, we here present only the
conversion algorithm. The full analysis can be found in Appendix A.

To describe this new conversion, we first set up some notation. Let A denote the fractional input sched-
ule. For simplicity, the reader may assume that A refers to the fractional algorithm we give in Section 4.1 or
Appendix B (or more precisely the resulting fractional schedule). Say that A is given (1 + ε) speed where
0 < ε < 1 (We assumed that A has (1 + 10ε) previously, but we can assume it has 1 + ε speed by scaling ε).
We construct an algorithm A′ for integral batch scheduling. We will assume that A′ can schedule one unit
sized page in a time step and four extra unit size pages every d1/εe time steps. Note that this is essentially
equivalent to A′ having 1 + 4ε speed. We will show in in Appendix A that any request Jp,i is completed
within 10

ε ρp,i time steps in A′’s schedule.
For each request Jp,i let ρp,i denote the flow time of request Jp,i in A’s schedule. We will call ρp,i the

lag of request Jp,i. We group requests for page p seamlessly into groups of size 2Bp based on the order
in which they arrive. More precisely, for each page p, let Bip contain the requests Jp,j for page p such that
2iBp + 1 ≤ j ≤ 2(i + 1)Bp. For each request Jp,i, we define the start time for Jp,i to be the last time
Jp,i was included in a batch where the first piece of page p was transmitted. Note that a request’s start time
can ‘restart’ if the first piece of page p is transmitted again and Jp,i is included in the batch. Starting times
will be crucial in our analysis. Also we need to make sure that each request keeps track of the next piece of
information it needs to receive.

More formally, each request Jp,i is associated with a tuple 〈p, i, s, a〉 where s denotes the start time for
Jp,i and a denotes the next piece of page p that Jp,i will need to receive. Initially, s = ∞ and a = 1 when
Jp,i arrives. Now at time t, the algorithm A′ finds the request Jp,i which has the smallest lag amongst those
requests which have been completed in the schedule A. The algorithm is going to broadcast a piece of page
p at this time. However, we need to be careful about which requests are satisfied in the current batch as well
as which piece of page p is broadcasted. Let 〈p, i, s, a〉 be the tuple associated with Jp,i. Then, the ath piece
of page p is broadcasted at time t. If a ≥ 2 then the requests in the batch are all those for page p with start

10

time s. For each of these requests, we increment the a value in the tuple so that it wait for the following
piece of information of page p. If a = 1 then say that Jp,i ∈ Bhp for some h. The batch will be all those
requests for p in Bh−1p ∪Bhp ∪Bh+1

p that are currently alive and unsatisfied in A′. Any request Jp,j that is in
the batch, sets its start time s to t and the next piece a to receive to 2 (here ‘restart’ can happen). Note that a
request in the batch could already have a finite start time, but in this case it just resets its start time no matter
how much of page p it has already received. At time t, we say that Jp,i forces A′ to schedule.

See Appendix A for the analysis of this algorithm.

11

References
[1] S. Acharya, M. Franklin, and S. Zdonik. Dissemination-based data delivery using broadcast disks.

Personal Communications, IEEE [see also IEEE Wireless Communications], 2(6):50–60, Dec 1995.

[2] Demet Aksoy and Michael J. Franklin. R x W: A scheduling approach for large-scale on-demand data
broadcast. IEEE/ACM Trans. Netw., 7(6):846–860, 1999.

[3] Nikhil Bansal, Moses Charikar, Sanjeev Khanna, and Joseph (Seffi) Naor. Approximating the average
response time in broadcast scheduling. In SODA ’05: Proceedings of the Sixteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 215–221, 2005.

[4] Nikhil Bansal, Don Coppersmith, and Maxim Sviridenko. Improved approximation algorithms for
broadcast scheduling. SIAM J. Comput., 38(3):1157–1174, 2008.

[5] Nikhil Bansal, Ravishankar Krishnaswamy, and Viswanath Nagarajan. Better scalable algorithms for
broadcast scheduling. In ICALP ’10: Proceedings of the Thirty-seventh International Colloquium on
Automata, Languages and Programming, pages 324–335. Springer, 2010.

[6] Nikhil Bansal and Kirk Pruhs. Server scheduling to balance priorities, fairness, and average quality of
service. SIAM J. Comput., 39(7):3311–3335, 2010.

[7] Amotz Bar-Noy, Sudipto Guha, Yoav Katz, Joseph (Seffi) Naor, Baruch Schieber, and Hadas Shachnai.
Throughput maximization of real-time scheduling with batching. ACM Trans. Algorithms, 5(2):18:1–
18:17, March 2009.

[8] Yair Bartal and S.Muthukrishnan. Minimizing maximum response time in scheduling broadcasts. In
SODA ’00: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, pages
558–559. SIAM, 2000.

[9] Ho-Leung Chan, Jeff Edmonds, and Kirk Pruhs. Speed scaling of processes with arbitrary speedup
curves on a multiprocessor. In SPAA ’09: Proceedings of the Twenty-first Annual ACM Symposium on
Parallel Algorithms and Architectures, pages 1–10, 2009.

[10] Jessica Chang, Thomas Erlebach, Renars Gailis, and Samir Khuller. Broadcast scheduling: algorithms
and complexity. In SODA ’08: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 473–482, 2008.

[11] Chandra Chekuri, Avigdor Gal, Sungjin Im, Samir Khuller, Jian Li, Richard Matthew McCutchen,
Benjamin Moseley, and Louiqa Raschid. New models and algorithms for throughput maximization
in broadcast scheduling - (extended abstract). In WAOA ’10: Proceedings of the Eighth Workshop on
Approximation and Online Algorithms, pages 71–82. Springer, 2010.

[12] Chandra Chekuri, Sungjin Im, and Benjamin Moseley. Online scheduling to minimize maximum
response time and maximum delay factor. Theory of Computing, 8(7):165–195, 2012.

[13] Jeff Edmonds, Donald D. Chinn, Tim Brecht, and Xiaotie Deng. Non-clairvoyant multiprocessor
scheduling of jobs with changing execution characteristics. J. Scheduling, 6(3):231–250, 2003.

[14] Jeff Edmonds, Sungjin Im, and Benjamin Moseley. Online scalable scheduling for the `k-norms of
flow time without conservation of work. In SODA ’11: Proceedings of the Twenty-first Annual ACM
-SIAM Symposium on Discrete Algorithms, pages 109–119, 2011.

12

[15] Jeff Edmonds and Kirk Pruhs. Scalably scheduling processes with arbitrary speedup curves. In SODA
’09: Proceedings of the Nineteenth Annual ACM -SIAM Symposium on Discrete Algorithms, pages
685–692, 2009.

[16] Regant Y. S. Hung and Hing-Fung Ting. Design and analysis of online batching systems. Algorithmica,
57(2):217–231, 2010.

[17] Sungjin Im and Benjamin Moseley. An online scalable algorithm for average flow time in broadcast
scheduling. In SODA ’10: Proceedings of the Twentieth Annual ACM -SIAM Symposium on Discrete
Algorithms, 2010.

[18] Sungjin Im, Benjamin Moseley, and Kirk Pruhs. A tutorial on amortized local competitiveness in
online scheduling. SIGACT News, 42(2):83–97, 2011.

[19] Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance. J. ACM, 47(4):617–643,
2000.

[20] Bala Kalyanasundaram, Kirk Pruhs, and Mahendran Velauthapillai. Scheduling broadcasts in wireless
networks. Journal of Scheduling, 4(6):339–354, 2000.

[21] Jae-Hoon Kim and Kyung-Yong Chwa. Scheduling broadcasts with deadlines. Theor. Comput. Sci.,
325(3):479–488, 2004.

[22] M. Mathirajan and A.I. Sivakumar. A literature review, classification and simple meta-analysis on
scheduling of batch processors in semiconductor. The International Journal of Advanced Manufactur-
ing Technology, 29(9-10):990–1001, 2006.

[23] Kirk Pruhs, Julien Robert, and Nicolas Schabanel. Minimizing maximum flowtime of jobs with ar-
bitrary parallelizability. In WAOA ’10: Proceedings of the Eighth Workshop on Approximation and
Online Algorithms, pages 237–248, 2010.

[24] J. Wong. Broadcast delivery. Proceedings of the IEEE, 76(12):1566–1577, 1988.

13

A Analysis for the Online Conversion to an Integral Schedule for Varying
Sized Pages

In this section, we analyze the online conversion algorithm we presented in Section 4.3, and prove the
following theorem.

Theorem A.1. In the schedule A′, any request Jp,i is satisfied by time rp,i + 10
ε ρp,i.

For the sake of contradiction, suppose that there exists a request Jq,k that waits longer than 10
ε ρq,k time

in A′ to be satisfied. Let t′ be the first time that Jq,k has waited more than 10
ε ρq,k time steps. Let t1 be the

earliest time before time t such that every request that forces A′ to schedule during [t1, t
′] has lag at most

ρq,k. Let Np be the set of requests that forced A′ to schedule page p during [t1, t]. Let Sp be the set of start
times for page p which occur during [t1, t

′]. Notice that |Np| = |Sp|. It is important to note that not every
request which forces A′ to process a page during [t1, t

′] has a start time during this interval. In particular,
some requests can start being satisfied in A′’s schedule before they are completed in A’s schedule. Recall
that they cannot force A′ to schedule until they are completed by A. It is this set of requests that most of the
proof will need to focus on. Let N ′p be the set of requests that force A′ to schedule during [t1, t

′] whose start
time is before t1, and let S′p contain this start time. Note that S′p particularly contains the last time a request
in N ′p was started before t1.

Our proof can be summarized as follows. We will first show that the total volume of work A′ does
during [t1, t

′] is (1 + 4ε)(t′ − t1) ≤
∑

p |Sp|`p +
∑

p |S′p|`p. We will then show that the total amount of
work A must do during [t1 − ρk, t′] is

∑
p |Sp|`p, and

∑
p |S′p|`p ≤ 8ρk. Given that A′ has more speed than

A this will be sufficient to derive a contradiction to Jq,k’s large waiting time.

Proposition A.2. Consider any start time s in Sp ∪ S′p, and count the total number of pieces of page p that
are scheduled during [t1, t

′] when a request with the final start time s forces A′ to broadcast. Then the total
number is at most `p.

Proof. This proposition easily follows from definition of A′. All requests for page p having the same (final)
start time s are started (or restarted) at the same time s, and continue to be satisfied altogether when one of
those requests force A′ to broadcast a piece of page p. In other words, the piece is ‘right’ one for all those
requests.

Lemma A.3. Any request that forces A′ to schedule during [t1, t
′] arrives at earliest t1 − ρq,k.

Proof. For the sake of contradiction say that there is a request Jp,i that arrived before t1 − ρq,k and forced
A′ to schedule during [t1, t

′]. By definition of A′, Jp,i is available to be scheduled in A′ at time rp,i + ρp,i ≤
rp,i + ρq,k < t1. However, this implies that every request scheduled during [rp,i + ρp,i, t1] has lag less than
ρp,i ≤ ρq,k. This contradicts the definition of t1.

Lemma A.4. Any two distinct requests Jp,i and Jp,j in Np cannot be satisfied at any point simultaneously
in A.

Proof. Fix some page p and consider any two distinct requests Jp,i, Jp,j ∈ Np. Without loss of generality,
assume that the first time Jp,i forces A′ to schedule p is before the first time Jp,j forces A′ to schedule.
Let t∗ be the first time A′ is forced to be scheduled by Jp,i. There are two cases. In the first case, say
that rp,j ≤ t∗. Say that Jp,i is in Bi′p . In this case, the only reason Jp,j is not started at time t∗ is that
Jp,j /∈ Bi

′−1
p ∪Bi′p ∪Bi

′+1
p . However this implies that either j < i−Bp + 1 or j > i+Bp− 1. That is, Jp,j

is not included in the batch with Jp,i at any point in A’s schedule.
Now consider the second case that rp,j > t∗. We know that t∗ ≥ rp,i + ρp,i since no request can force

A′ to schedule until it is completed in A. However, we know that A completes Jp,i at time rp,i + ρp,i. This
implies that Jp,i is completed in A before Jp,j arrives. Hence the claim follows.

14

Corollary A.5. The schedule A must broadcast |Sp|`p units of page p during [t1 − ρq,k, t′] for all pages p.

Proof. By Lemma A.3 all the requests in Np arrive at earliest t − ρq,k and since these requests force A′ to
schedule during [t1, t

′] it must be the case that these requests are completed by time t′ in A, by definition
of A′. By Lemma A.4 each request in Np must be satisfied separately in A. The corollary follows from the
fact that |Sp| = |Np|.

Lemma A.6. It is the case that A schedules at least |S′p|`p/2 units of p during [t1 − ρq,k, t1 + ρq,k].

Proof. For each start time sj ∈ S′p, let Rp contain the request Jp,i if Jp,i is the first request to force A′ to
broadcast at a time t during [t1, t

′] which had start time sj at time t. Our goal is to show that all all times, at
most two requests in Rp can be satisfied simultaneously in A and these requests must all be satisfied during
[t1 − ρq,k, t1 + ρq,k]. This will then imply the lemma.

Consider any three start times sx, sy, sz ∈ Sp for any fixed page p and let Jp,x, Jp,y and Jp,z be the
requests in Rp associated with these start times. First notice that rp,x, rp,y, rp,z < t1 since these requests
start being satisfied before t1. Further, these requests arrive after t1 − ρq,k by Lemma A.3. Finally, these
requests have lag at most ρq,k since they force A′ to schedule during [t1, t

′]. These facts imply that these
three requests are satisfied by A during [t1 − ρq,k, t1 + ρq,k].

To prove the lemma, it suffices to show that these three requests cannot be satisfied at any point simul-
taneously in A. There are two cases. In the first case say that it is not the case that that there exists some
integer j such that j −Bp + 1 ≤ x, y, z ≤ j +Bp − 1. In this case, by definition of A all of these requests
cannot be satisfied simultaneously at any point. For the second case say there exists some integer j such
that j − Bp + 1 ≤ x, y, z ≤ j + Bp − 1. This implies that there exists some integer j′ such that at least
two of these requests are in Bj′

p . Without loss of generality, say that these two requests are Jp,x and Jp,y and
say that sx > sy. Note that this implies that both Jp,x and Jp,y are alive and unsatisfied at time sx. Since
these two requests are in Bj′

p , A′ would update the start time of both requests at time sx. However, then Jp,y
would not have start sy when it forces A′ to schedule during [t1, t

′], a contradiction.

Corollary A.7.
∑

p |S′p|`p ≤ 8ρq,k.

Proof. By the previous lemma,A schedules at least |S′p|`p/2 units of p during [t1−ρq,k, t1+ρq,k]. Knowing
that A has speed (1 + ε) ≤ 2, it follows that

∑
p |S′p|`p/2 ≤ 2(t1 + ρq,k − (t1 − ρq,k)) ≤ 4ρq,k.

Finally we are ready to prove the theorem.

Proof of [Theorem A.1] By Proposition A.2 the total volume of work scheduled by A′ during [t1, t
′] is less

than
∑

p |Sp ∪ S′p|`p. Knowing that A′ is always busy during [t1, t
′] by definition of t1 and A′ has speed

(1 + 4ε), we know that (1 + 4ε)(t′ − t1) ≤
∑

p |Sp ∪ S′p|`p ≤
∑

p(|Sp| + |S′p|)`p. By Corollary A.7, we
derive (1 + 4ε)(t′ − t1)− 8ρq,k ≤

∑
p |Sp|`p.

Also, by Lemma A.5 we know thatA does at least a total amount of work
∑

p |Sp|`p during [t1−ρq,k, t′].
From the fact that A has speed (1 + ε), it follows that (1 + ε)(t′ − t1 + ρq,k) ≥

∑
p |Sp|`p. Combining this

with the above inequality, we obtain that (1+4ε)(t′− t1)−8ρq,k ≤ (1+ ε)(t′− t1 +ρq,k), which simplifies
to t′ − t1 ≤ 10

3ερq,k. This contradicts to the assumption that t′ − t1 ≥ 10
ε ρq,k. 2

B k-norms of Flow Time
In this section we study the k-norms of flow time. As we did for the average flow objective, we will

first show that an online algorithm is scalable in the fractional batch scheduling, and will convert it using the
online conversion presented either in Section 4.2 or 4.3. We will deal with the total kth power of flow time,∑

p,i(Cp,i− rp,i)k, and will take kth root at the end of analysis. We begin with presenting our algorithm for
the fractional kth power of flow time.

15

B.1 Algorithm
We use an adaption of the algorithm Weighted Latest Arrival Processor Sharing (WLAPS) [14]. Let

β = ε2k−1 > 0 and 0 < ε < 1
10 be fixed constants. We assume that our algorithm is given s = 1 + 10ε

speed. Let A(t) denote the set of unsatisfied requests at time t in WLAPS’s schedule. For request Jp,i, we
define Jp,i’s weight at time t as wp,i(t) = k(t − ap,i)k−1. Note that Jp,i’s contribution to the kth power of
flow time increase at a rate of wp,i(t) (if Jp,i is still alive at time t). Let w(t) =

∑
Jp,i∈A(t)wp,i(t). LetA′(t)

denote the minimum set of alive requests in A(t) with the most recent release times whose total weight is
no smaller than βw(t). Except the oldest request in A′(t), each request Jp,i ∈ A′(t) is processed at a rate
of hp,i(t) = s

wp,i(t)
βw(t) . We will refer to hp,i(t) as Jp,i’s share. The total share is s, the speed A is given, and

the oldest request in A′(t) receives the remaining share. To make our analysis more transparent, we assume
that

∑
p,iwp,i(t) = βw(t), and for all requests Jp,i ∈ A′(t), hp,i(t) = s

wp,i(t)
βw(t) . One can easily remove this

simplifying analysis. The only difference of WLAPS from LAPS in Section 4 is that WLAPS distributes
the processing power to the recent requests in proportion to their weights.

How the ‘share’ of each request is used to satisfy other requests remains the same as for LAPS. We
assume that our algorithm is 2-capacity, i.e. can serve up to 2Bp requests for page pwhen processing page p.
For each request Jp,i ∈ A′(t), let Qp,i(t) = {Jp,j ∈ A(t) | i−Bp + 1 ≤ j ≤ i+Bp− 1}. This is the set of
requests Jp,i can effect. Now each request inQp,i is processed at a rate of hp,i(t) due to (the share of) request
Jp,i. Thus, a request Jp,j ∈ A(t) for page p is processed at a total rate of

∑
Jp,i∈A′(t),Jp,j∈Qp,i(t)

hp,i(t) at
time t.

B.2 Analysis
In this section we analyze the algorithm WLAPS. The analysis of WLAPS will be very similar to that

of LAPS. Let OPT denote some fixed optimal solution for the fractional setting. By Lemma 3.1, we can
assume that OPT processes requests for the same page in a first-in-first-out order. For the sake of analysis,
we define a potential function that satisfies the three properties described in Section 3. To this end, we need
to define some notation. Let ON(t1, t2, p, i) =

∫ t2
t=t1

hp,i(t) be the total amount WLAPS devotes to request
Jp,i during [t1, t2). Let τp,i be the first time that OPT works on request Jp,i. Let OPT(t1, t2, p) denote the
amount OPT processes page p during [t1, t2) up to a maximum of `p. Now we create the following variable
for each request Jp,i,

zp,i(t) = ON(t,∞, p, i) · OPT(τp,i, t, p)

Now our potential function is,

Φ(t) =
∑

Jp,i∈A(t)

(t− rp,i +
1

ε

∑
Jq,j ∈ A(t)
rq,j ≥ rp,i

zq,j(t))
k

Recall from Section 3 the properties we need to show. The first property Φ(0) = Φ(∞) = 0 is satisfied
trivially. We now bound each of the possible changes in the potential function separately below.

Arrival Condition: When a request Jp,i arrives at time t = rp,i, the potential function does not change
since t − rp,i = 0 and zp,i(t) = 0. It follows that zp,i(t) = 0 since OPT has not had a chance to work on
this request yet.

Completion Condition: When the optimal schedule completes a request, the potential function makes no
change. When WLAPS completes a request Jp,i the potential function can only decrease, since all terms
are positive.

We have shown that no non-continuous change is positive. We now focus on continuous changes of
Φ(t) that can occur due to our algorithm and OPT’s processing. Unlike for the average flow objective, we

16

also need to consider the effect of time elapse. For the sake of notation, define Wp,i(t) := k(t − rp,i +
1
ε

∑
rq,j∈A(t),rq,j≥rp,i zq,j(t))

k−1.

Running Condition: Recall that we deal with the kth power of flow time first. Let d
dtWLAPS(t) =∑

Jp,i∈A(t) k(t − rp,i)
k−1dt and let d

dtOPT(t) =
∑

Jp,i∈O(t) k(t − rp,i)
k−1dt. Note that the quantities

d
dtWLAPS(t) and d

dtOPT(t) are the increase rate of the kth power flow time of BLAPS’ schedule and
OPT’s, respectively.

Our goal is to show that during a time interval [t, t+ dt] when no jobs arrive or are completed:

d

dt
Φ(t) ≤ (1+

1

ε

∑
Jp,i∈A(t)

Wp,i(t)−
s(1− ε)

ε
(1−β(1+

1

ε
)k−1)

∑
Jp,i∈A(t)

Wp,i(t)+−
s(1− ε)

ε
(
2

ε
)k−1

d

dt
OPT(t)

(2)
Then by a simple algebra, and the following lemma and proposition, we can show that BLAPS ≤

2k+1

ε3k
OPT. By taking the kth root, and applying the online conversions, we derive Theorem 1.2 and 1.4.

Before we proceed, we introduce two facts that follow immediately from proofs given in [14].

Lemma B.1. [14] For any request Jp,i ∈ A(t) it is the case that
∑

rq,j∈A(t),rq,j≥rp,i zq,j(t) ≤ (t− rp,j).

Proposition B.2. [14]
∑

Jp,i∈A(t)Wp,i(t) ≤
∑

Jp,i∈A(t)(1 + 1
ε)
k−1wp,i(t) ≤ (2ε)

k−1 d
dtWLAPS(t).

We address each of the possible changes in Φ(t). First it is easy to see that the change in Φ(t) due to
time is

∑
Jp,i∈A(t)Wp,i(t).

We now address the change in Φ(t) due to OPT’s processing. We can without loss of generality assume
that OPT processes at most one page at time t. Let O∗(t) be the set of requests which OPT satisfies
by working on page p. Note that |O∗(t)| ≤ Bp by definition of page p’s batch size. Further, note that O∗

contains at mostBp ‘adjacent’ requests due to the FIFO-nature of OPT proven in Lemma 3.1. Also note that
when page p is processed by OPT, recall that the zp,i variable remains unaffected for all requests Jp,i where
t < τp,i and for all requests Jp,i that have been satisfied by OPT. Now, for any request Jp,i ∈ A(t) ∩O∗(t)
where τp,i ≤ t the variable zp,i will increase at a rate of ON(t,∞, p, i). Let Sp(t) be such requests. By
Lemma 4.1, and due to the fact that d

dtOPT(τp,j , t, p) ≤ 1, for any request Jp,i ∈ A(t) we can bound the
change in

∑
Jp,j∈A(t),rp,j≥rp,i zp,j(t) by

∑
Jp,j∈Sp(t),rp,j≥rp,i

ON(t,∞,p,j)
σp

· d
dtOPT(τq,j , t, p) ≤ 1. This allows

us to upper bound the change in Φ(t) due to OPT’s processing to be 1
ε

∑
Jp,i∈A(t)Wp,i(t).

Now it can easily be seen that the change in Φ(t) due to our algorithm’s processing is non-positive. For
the remainder of the analysis, we will consider two case. The case that d

dtWLAPS(t) ≤ 1
βε

d
dtOPT(t) is

easy, so assume that d
dtWLAPS(t) > 1

βε
d
dtOPT(t). In this case, the decrease in Φ(t) due to our algorithm’s

processing will play a crucial role to offset other increases. By a simple calculation, the total change rate of
Φ(t) due to our algorithm’s processing is at most,

1

ε
(

∑
Jp,i∈A′(t)\O(t)

d

dt
zp,i(t))

∑
Jp,i∈A(t)\A′(t)

Wp,i(t) (3)

Note that for any Jp,i ∈ A′(t) \ O(t), it is the case that d
dtzp,i(t) ≤

d
dtON(t,∞, p, i) = −wp,i(t)

βw(t) by

definition of WLAPS. Using the assumption that 1
βε

d
dtOPT(t) < d

dtWLAPS(t), we have that

∑
Jp,i∈A′(t)\O(t)

d

dt
zp,i(t) = −

∑
Jp,i∈A′(t)\O(t)

swp,i(t)

βw(t)
≤ −

∑
i∈A′(t)

swp,i(t)

βw(t)
+

∑
Jp,i∈O(r)

swp,i(t)

βw(t)
≤ −s(1− ε).

17

By simple algebra and Proposition B.2 we have that∑
Jp,i∈A(t)\A′(t)

Wp,i(t) =
∑

Jp,i∈A(t)

Wp,i(t)−
∑

Jp,i∈A′(t)

Wp,i(t) ≥
∑

Jp,i∈A(t)

Wp,i(t)− (1 +
1

ε
)k−1

∑
i∈A′(t)

wp,i(t)

≥ (1− β(1 +
1

ε
)k−1)

∑
Jp,i∈A(t)

Wp,i(t) [Since
∑

Jp,i∈A′(t)

wp,i(t) = β
∑

Jp,i∈A(t)

≤ β
∑

Jp,i∈A(t)

Wp,i(t)]

Thus we obtain (3) ≤ − s(1−ε)
ε (1− β(1 + 1

ε)
k−1)

∑
Jp,i∈AWp,i(t).

Hence the change rate of Φ(t) due to WLAPS’s processing is bounded by

−s(1− ε)
ε

(1− β(1 +
1

ε
)k−1)

∑
Jp,i∈A(t)

Wp,i(t)

Now consider the easier case that d
dtWLAPS(t) ≤ 1

βε
d
dtOPT(t). In this case using Proposition B.2, we

can easily show that the change rate of Φ(t) due to WLAPS’s processing is bounded by

−s(1− ε)
ε

(
2

ε
)k−1

d

dt
OPT(t)

By aggregating all the changes due to WLAPS’s and OPT’s processing and time elapse, we obtain (2).

C Maximum Flow Time
In this section we consider the problem of minimizing the maximum flow time. For this problem, we

consider the algorithm First-In-First-Out (FIFO). In the analysis in this section, we will not use fractional
flow time, but rather address the integral objective directly. The definition of the algorithm FIFO we con-
sider is the following. Let A(t) denote the set of unsatisfied requests at time t. At a fixed integral time t let
Jp,i be the oldest request in A(t). Here ties are broken in an arbitrary but consistent way. Let j be as small
as possible such that Jp,i has not received the jth piece of page p, (p, j). To describe how FIFO batches
requests, say FIFO processes the (p, j) piece of page p at time t. Here we will say that Jp,i forces FIFO to
schedule at time t. The requests in the batch satisfied in this time step are the earliest arriving requests for
page p that have received all preceding pieces of page p, and are waiting for the piece (p, j). We do not relax
the batch size, and hence the batch can contain at most Bp requests. Note that the request Jp,i that forces
FIFO to schedule at time t is the oldest one in the batch at time t. Notation-wise, for an interval I , we let
R(I) denote the set of requests that forced FIFO to schedule during I . One important property of FIFO
is that it is non-preemptive, which will be useful in our analysis. That is, once any request forces FIFO to
schedule then that request will be the request which forces FIFO to schedule until it is satisfied.

We now show that FIFO is 2-competitive. Consider any fixed sequence of requests and let OPT denote
the optimal solution (or its maximum flow time depending on the context). As discussed in Section 3, we
consider the optimal schedule OPT in the buffer model. This allows us to assume that OPT processes
requests for the same page in the first-in-first-out manner. Let t′ be the first time that some request Jq,k in
FIFO’s schedule has response time larger than 2OPT. Let t1 be as small as possible such that all requests
in R([t1, t

′]) have flow time no smaller than OPT in FIFO’s schedule. We begin by showing that all of the
requests in R([t1, t

′]) cannot be satisfied simultaneously in any optimal solution.

Lemma C.1. Any two distinct requests in R([t1, t
′]) cannot be satisfied simultaneously in OPT.

Proof. Consider any two distinct requests Jp,i and Jp,j in R([t1, t
′]). We assume without loss of generality

that i < j, which implies that rp,i ≤ rp,j and Jp,i forces FIFO to schedule before Jp,j . Let t∗ be the time
FIFO is first forced to schedule because of request Jp,i. There are two cases. First say that rp,j > t∗.

18

Due to the non-preemptive nature of FIFO, Jp,i is satisfied at time t∗ + `p. However, by definition of the
interval [t1, t

′], the request Jp,i has flow time at least OPT. It follows that if OPT satisfies Jp,i and Jp,j
simultaneously at any point, then OPT has to start satisfying Jp,i later than FIFO, thereby making Jp,i’s
flow time greater that OPT, which is a contradiction.

We consider the other case is when t∗ ≤ rp,j . In this case, the only reason Jp,j and Jp,i are not satisfied
together is that Jp,j did not ‘fit’ into the batch that was satisfied when Jp,i forced FIFO to schedule. That is,
there must beBp−1 requests that arrive between Jp,i and Jp,j for page pwhich were satisfied simultaneously
with request Jp,i. However, by assumption OPT processes requests in a first-in-first-out fashion for each
page, hence Jp,i and Jp,j cannot be in the same batch in OPT.

Next we show that no request in R([t1, t
′]) arrives too early.

Lemma C.2. All of the requests in R([t1, t
′]) arrive no earlier than t1 − OPT.

Proof. For the sake of contradiction, say there exists a request Jp,i in R([t1, t
′]) that arrives before time

t1 − OPT. Then it follows that every request in R([rp,i + OPT, t1]) has flow time at least OPT in FIFO’s
schedule, which contradicts the definition of t1.

Finally we are ready to prove that FIFO is 2-competitive, proving Theorem 1.5.

Proof of [Theorem 1.5] We consider the pieces of information that are processed by FIFO during requests
in R([t1, t

′]). The total amount of this information is (t′ − t1). By Lemma C.1, we know that all requests
in R([t1, t

′]) cannot be merged in OPT. We now argue that OPT must complete all these requests during
[t1−OPT, rq,k+OPT]. The starting point immediately follows from Lemma C.2. The ending point follows
from the fact that all the requests in R([t1, t

′]) arrive before time rq,k. Since OPT has to do at least (t′− t1)
amount of work during [t1 − OPT, rq,k + OPT], and we derive (t − t1) ≤ (rq,k + OPT) − (t1 − OPT).
This contradicts the fact that t′ > rq,k + 2OPT. 2

19

	Introduction
	Formal Problem Definition and Notation
	Preliminaries and Overview of the Analysis
	Average Flow Time
	Fractional Flow Time
	Algorithm
	Analysis

	Unit Sized Page Conversion
	Varying Size Page Conversion

	Analysis for the Online Conversion to an Integral Schedule for Varying Sized Pages
	k-norms of Flow Time
	Algorithm
	Analysis

	Maximum Flow Time

