1 Sample-Prune on Maximum Submodular Coverage Problem

1.1 Recap from Maximum Submodular Coverage Problem

Recall the maximum submodular coverage problem.

Given a universe U of elements as input, for a function f, define $f_A(e) := f(A \cup \{e\}) - f(A)$ to be the marginal increase of f when e is added to the current set A.

Definition 1.1. A function $f: 2^{|U|} \to \mathbb{R}^+$ is said to be submodular if for every $S' \subseteq S \subseteq U$ and $u \in U \setminus S$, we have $f_{S'}(u) \ge f_S(u)$. A function f is said to be monotone if $S' \subseteq S \Rightarrow f(S) \ge f(S')$.

In the maximum submodular coverage problem, the f is assumed to be non-negative. The goal is to choose an S, such that |S| = k, to maximize f(S).

The greedy algorithm for this problem, which we mentioned in previous classes, is described as follows:

Algorithm 1 Greedy for Maximum Submodular Coverage Problem

Input: A set U, a monotone, submodular, nonnegative function f defined on all the subsets of U, a number k.

Output: A subset S of U, |S| = k, such that S maximizes f(S).

1: Let $S = \emptyset$.

2: while |S| < k do

2: Select an element e such that $f_S(e) = \max_{e \in U \setminus S} f_S(e)$. Add e to S.

3: end while

2 Using Sample-Prune to Solve the Problem

In previous lecture we proved greedy is constant-approximation for optimal. The following theorem shows we can adapt greedy to the MPC setting.

Theorem 2.1. There is distributed algorithm that simulates an approximation of greedy using $O(kn^{\epsilon})$ memory and enough machines to store the entire data set. The algorithm runs in $O(\log k)$ iterations.

Prior to developing the distributed algorithm, we first give a $\frac{1}{2}$ -approximation algorithm for the problem. Let's assume for now, by some "magic", we already know the optimal value beforehand. We start the analysis with the following lemma.

Lemma 2.2. Fix any $\gamma > 0$. Let OPT be the value of an optimal solution S^* and $\tau = \text{OPT} \cdot \frac{\gamma}{2k}$. Consider any $S = \{s_1, \ldots, s_t\} \subseteq U$, $|S| = t \leq k$, with the following properties:

(i) There is an ordering of elements in S such that for all $0 \le i < t$, $f_{\{s_1,\ldots,s_i\}}(s_{i+1}) \ge \tau$.

(ii) If t < k, then $f_S(u) \le \tau$, for all $u \in U$.

Then, $f(S) \geq \text{OPT} \cdot \min\left\{\frac{\gamma}{2}, 1 - \frac{\gamma}{2}\right\}$.

Proof. Let $S_i = \{s_1, ..., s_i\}$ for i = 1, ..., t. Let $S_0 = \emptyset$. If t = k, then $f(S) = \sum_{i=0}^{k-1} f_{S_i}(s_{i+1}) \ge \sum_{i=0}^{k-1} \tau = k\tau = \text{OPT}\gamma/2$.

If t < k, we know that $f_S(u^*) \le \tau$, for any element $u^* \in S^*$. Furthermore, since f is submodular, let $s_{t+1}, ..., s_m$ be a sequence of elements in $S^* \setminus S$. Let $S_i = S \cup S^* \setminus \{s_{i+1}, ..., s_m\}$ for i = t, ..., m-1. Then $f_{S_i}(s_{i+1}) \leq f_S(s_{i+1}) \leq \tau$, and $m \leq k$.

$$f(S \cup S^*) - f(S) = \sum_{i=t}^{m-1} f_{S_i}(s_{i+1})$$
$$\leq \tau \cdot |S^* \setminus S| \leq \gamma \text{OPT}/2$$

We have $f(S) \ge f(S \cup (S^* \setminus S)) - \frac{\gamma \text{OPT}}{2} \ge \text{OPT} - \frac{\gamma \text{OPT}}{2} = (1 - \frac{\gamma}{2}) \text{ OPT}$, where the third step follows from the monotonicity of f.

We let $\gamma = 1$, then we have a $\frac{1}{2}$ -approximation algorithm. Then we design the following algorithm:

Algorithm 2 Threshold-greedy

Input: A set U, a monotone, submodular, nonnegative function f defined on all the subsets of U, a number k.

Output: A subset S of U, such that |S| = k.

1: Let $S = \emptyset$, and $\gamma = 1$.

2: while |S| < k do

- if $\exists e, f_S(e) \geq \text{OPT}/(2k)$ then 3:
- Add an arbitrary e such that $f_S(e) > OPT/(2k)$ to S. 4:
- 5: else
- Exit. 6:
- 7: end if
- 8: end while

It's easy to see that the solution Threshold-greedy returns satisfies the two conditions in Lemma 2.2, so it is a $\frac{1}{2}$ -approximation. Now consider the following distributed algorithm.

Algorithm 3 Distributed Algorithm for Maximum Submodular Covering Problem

Input: A set U, a monotone, submodular, nonnegative function f defined on all the subsets of U, a number k.

Output: A subset S of U, such that |S| = k.

- 1: Sample each element with probability $1/\sqrt{n}$ to get a sample S.
- 2: Run threshold-greedy on S to get A.
- 3: Discard elements *e* such that $f_A(e) \leq \text{OPT}/2k$.
- 4: Return the remaining set R with A.

Now we want to show that R has small size w.h.p.

Lemma 2.3. $|R| = O(kn^{1/2} \log n)$ with high probability.

Proof. We show that $\Pr[|R| \ge 10kn^{1/2}\log n] = O(1/n)$. We refine this bad event depending on each realization of R.

Let \mathcal{G} represent the Threshold-greedy algorithm. Note that sample S determines $A(S) := \mathcal{G}(S)$, which in turn determines remaining elements R(S).

For each possible realization A' of A, we let R(A') denote the resulting R, that is, $R(A') := \{u \in U \mid f_{A'}(u) \ge OPT/2k\}$. Note that the bad event with A = A' can happen only when no points in R(A') are included in the sample S since otherwise at least one of those points would have been added to the set A, contradicting to the condition A = A'.

Hence,

$$\begin{split} \Pr[|R| &\geq 10kn^{1/2}\log n] &\leq \Pr\left[\bigcup_{|A'| < k} \left(A = A'\right) \wedge \left(|R(A')| \geq 10kn^{1/2}\log n\right) \wedge \left(R(A') \cap S = \emptyset\right)\right] \\ &\leq \sum_{|A'| < k} \Pr\left[\left(|R(A')| \geq 10kn^{1/2}\log n\right) \wedge \left(R(A') \cap S = \emptyset\right)\right] \\ &\leq n^k \cdot (1 - \frac{1}{n^{1/2}})^{10kn^{1/2}\log n} \leq n^k \cdot \exp(-10k\log n) \leq n^{-9k} \end{split}$$

The second inequality is an easy consequence of union bound over all possible realizations of A. As mentioned before, each realization A' of A determines R which we denote as R(A'). The third inequality follows from the fact that each point in R(A') is sampled to be in S independently with probability $1/\sqrt{n}$ and because |A| < k.

Lemma 2.3 tells us that after a 2-round Sample-Prune, the remaining set R can be stored in a machine with memory $\tilde{O}(k\sqrt{n})$ with high probability. This leads to the following theorem.

Theorem 2.4. There is a 1/2 approximation to the maximum submodular coverage problem in the MPC setting. The total memory needed is $\tilde{O}(k\sqrt{n})$ and the rounds is 2.

The following algorithm is modified to exploit this framework better to use less memory with more rounds. Assume that we sample each element independently with $1/(kn^{1-\delta}\log n)$. Then, it is easy to see that $|S| = O(kn^{\delta}\log n)$ w.h.p. Let R_1 denote the U after the first iteration. Using the same argument we can show that $|R_1| = O(n^{1-\delta})$.

Finally, we discuss how we can estimate OPT to an arbitrary precision using one more round and $O(\log k)$ factor more memory.

Note that $\max_{e \in U} f(e) \leq \text{OPT} \leq k \max_{e \in U} f(e)$. Then, we guess different OPT_i 's the form $(1 + \epsilon)^i$, where ϵ is a constant chosen, such that $\max_{e \in U} f(e) \leq \text{OPT}_i \leq k \max_{e \in U} f(e)$. Apparently, there are $O((1/\epsilon) \log k)$ guesses in total.

For each OPT_i we run a separate Sample-Prune in parallel which takes a different greedy algorithm \mathcal{G} based on a different guess OPT_i/(2k). Then we use $O((1/\epsilon) \log k)$ factor more memory and one more round.

3 Approximate Greedy Algorithm and Simulation of It

Consider the following approximate greedy algorithm.

Algorithm 4 Greedy for Maximum Submodular Coverage Problem

Input: A set U, a monotone, submodular, nonnegative function f defined on all the subsets of U, a number k.

Output: A subset S of U, $|S| \le k$, such that S maximizes f(S).

1: Let $S = \emptyset$.

- 2: while |S| < k do
- 2: Choose any e such that $f_S(e) \ge \frac{1}{1+\epsilon} \max_{e'} f_S(e')$. Add e to S.
- 3: end while

Exercise: Prove that this algorithm is a $1 - \frac{1}{e} - O(\epsilon)$ approximation. Now we want to simulate this algorithm. Consider breaking it up as follows.

Algorithm 5 Simulated Greedy for Maximum Submodular Coverage Problem

Input: A set U, a monotone, submodular, nonnegative function f defined on all the subsets of U, a number k.

Output: A subset S of U, $|S| \le k$, such that S maximizes f(S). 1: Let $S = \emptyset$, i = 1. 2: Let $v^* = \max_e f(\{e\})$ be max additive value.

- 3: while $\frac{v^*}{(1+\epsilon)^i} > \frac{\epsilon v^*}{10k}$ do
- 4: for e such that $f_S(e) \ge \frac{v^*}{(1+\epsilon)^i}$ do
- 5: Add e into S.
- 6: end for
- 7: i = i + 1.
- 8: end while

Exercise: Show Sample-Prune can simulate each iteration in O(1) rounds.

Overall the algorithm runs in $O(\log_{1+\epsilon}k)$ rounds.

This algorithm perfectly simulates the approximate greedy algorithm. Consider e added in iteration i. We have $f_S(e) \ge \frac{v^*}{(1+\epsilon)^i}$, and every element e gives value at most $f_S(e) \le \frac{v^*}{(1+\epsilon)^{i-1}}$ by sub-modularity (otherwise this element will be added in the previous iteration). These are the elements the approximate greedy would have picked in the same iteration. It stops when either |S| = k, or the value of $f_S(u)$ of $u \in U \setminus S$ is at most $\frac{\epsilon v^*}{10k}$. Total remaining value that can be obtain is at most k times this, which is no more than $\frac{\epsilon v^*}{10}$. This is negligible since we obtain value at least v^* . Therefore, there is no need to further add any element into the set.