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1 Partitioning based submodular optimization

In this lecture we introduce a partitioning based greedy algorithm for submodular maximization.
First, we review the preliminaries of submodular function maximization.

1.1 Preliminaries on submodular maximization

For the whole lecture let U be a finite ground set, or the universe, where |U | = n. Let f : 2U → R.

Definition 1 Function f is submodular if

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B), for A,B ⊆ U . (1)

For i ∈ U and A ⊆ U , let fA(i) = f(A ∪ {i}) − f(A). Then f is submodular if and only if
fA(i) ≥ fB(i) for all A ⊆ B ⊆ U and i ∈ U \B. A submodular function f is monotone if fA(i) ≥ 0
for all A ⊆ U and i ∈ U .

Problem 1 (Submodular coverage) Given universe U and monotone submodular function f :
2U → R+, find a set S ⊆ U with k elements such that f(S) is maximized.

Nemhauser, Wolsey and Fisher [2] showed a (1 − 1
e )-approximation for this problem. Their

approximation algorithm is the following greedy procedure.

Algorithm 1 Greedy-Sub(U)

1: X ← ∅
2: while |X| < k do
3: u← arg maxu∈U fX(u)
4: X ← X ∪ u

Theorem 1 ([2]) Greedy-Sub is a (1− 1
e )-approximation algorithm for the submodular coverage

problem.

1.2 A distributed algorithm for submodular coverage

Our goal in this lecture is to prove the following theorem.

Theorem 2 (Barbosa et. al [1]) There is 2-round MPC approximation algorithm which achieves
approximation ratio of 1

2(1 − 1
e ) for submodular coverage. The algorithm uses O(max{ nm ,mk})

memory per machine and O(mk) communication.



In this section we introduce the algorithm and prove a simple observation about the Greedy-
Sub algorithm that will become handy later. Next, we introduce continuous extensions of sub-
modular functions. In particular we introduce Lovász extension and its properties. We finish this
lecture with the proof of Theorem 2.

The distributed partitioning algorithm for submodular coverage is a follows:

• Randomly partition U into sets U1, . . . , Um, with |Ui| = n
m . Sub-universe Ui is the set of

elements on machine i.

• Each machine i computes Gi = Greedy-Sub(Ui).

• One machine computes T = Greedy-Sub(
⋃m
i=1Gi).

• Let G∗ = arg maxi=1,...,m{f(Gi)}.

• Output arg max{f(G∗), f(T )}.

In fact, it is essential to distribute the data randomly between the machines.

Exercise 1 Prove that if the data is distributed deterministically the algorithm above is not an
O(1)-approximation algorithm.

The following lemma will be useful in proving Theorem 2.

Lemma 3 Let A,B ⊂ U and A ∩B = ∅. Suppose that for each e ∈ B we have Greedy-Sub(A ∪
{e}) = Greedy-Sub(A). Then Greedy-Sub(A ∪B) = Greedy-Sub(A).

Proof: Suppose not, and choose the smallest i such that the i-th element e∗i added by Greedy-Sub(A∪
B) is different from the i-th element ei added by Greedy-Sub(A). The additive value of e∗i is
more than ei, so Greedy-Sub(A ∪ {e∗i }) would pick e∗i . This is a contradiction. 2

1.3 Lovász extension

Submodular functions are discrete set functions. A common technique is to extend the definition
to the continuous setting for algorithm analysis. There are two common continuous extensions: (1)
Lovász extension and (2) multi-linear extention.

For the purpose of this lecture we only need Lovász extension.

Definition 2 Let f : 2U → R+ be a submodular function. The Lovász extension of f is function
f− : [0, 1]U → R+ such that

f−(X) = Eθ∼Uniform(0,1)[f({i : Xi ≥ θ})], for X ∈ [0, 1]U . (2)

For a set S ⊂ U , let 1S ∈ RU be the characteristic vector of S. Lovász extension has the following
properties:

1. f−(1S) = f(S),

2. f− is a convex function,

3. f−(c ·X) ≥ c · f−(X) for a scalar c ∈ [0, 1].



1.4 Proof of Theorem 2

Let OPT be the optimal solution to the submodular coverage problem. Let V( 1
m) be a random

subset of U were each element in U is in V( 1
m) with probably 1

m independently at random. Also,
let p ∈ [0, 1]U be the vector defined as follows:

pe = Pr
A∼V( 1

m
)
[e ∈ Greedy-Sub(A ∪ {e})] for e ∈ OPT and pe = 0 otherwise. (3)

Lemma 4 Let S be a random subset of U such that E[1S ] = c · p. Then, E[f(S)] ≥ c · f−(p).

Proof: We have

E[f(S)] = E[f−(1S)] (by first property of Losász ext.)

≥ f−(E[1S ]) (f− is convex by second property, and Jensen’s inequality)

= f−(c · p) (E[1S ] = c · p)
≥ c · f−(p) (Third property of Lovász ext.)

2

The next lemma characterizes the quality of the solution Gi constructed on machine i using the
Lovász extension.

Lemma 5 For each machine i = 1, . . . ,m we have E(f(Gi))] ≥ (1− 1
e )f−(1OPT − p).

Proof: Let Oi = {e : e ∈ OPT and e /∈ Greedy-Sub(Ui ∪ {e})} for i = 1, . . . ,m. By Lemma 3
we have Greedy-Sub(Ui) = Greedy-Sub(Ui ∪ Oi). Moreover, we have f(Gi) ≥ (1− 1

e )f(Oi) by
Theorem 1. Notice that Ui ∼ V( 1

m). Hence, we have

Pr[e ∈ Oi] = 1− Pr[e /∈ Oi] = 1− pe for e ∈ U.

This implies E[1Oi ] = 1OPT − p. Therefore,

E(f(Gi)) ≥ (1− 1

e
)E(f(Oi))

≥ (1− 1

e
)f−(1OPT − p) (By Lemma 4)

2

The following lemma bounds the quality of the final solution obtained (which we denoted earlier
by T ) in terms of f−(p).

Lemma 6 We have E[Greedy-Sub(
⋃m
i=1Gi)] ≥ (1− 1

e )f−(p).

Proof: Let S =
⋃m
i=1Gi. By Theorem 1 we have f(Greedy-Sub(S)) ≥ (1− 1

e )f(OPT∩S), since
OPT ∩ S is a feasible solution for the submodular coverage problem on sub-universe S. Fix edge
e ∈ OPT. We have

Pr[e ∈ S] = Pr[e ∈ Greedy-Sub(Ui)|e ∈ Ui]
= Pr

A∼V( 1
m
)
[e ∈ Greedy-Sub(A ∪ {e})]

= pe.



This implies that E[1OPT∩S ] = p. By Lemma 4 we can conclude

E[f(Greedy-Sub(S))] ≥ (1− 1

e
)E[f(S ∩OPT)]

≥ (1− 1

e
)f−(p).

2

We can now prove the main result.

Proof of Theorem 2. Let D be the output of the distributed partitioning algorithm described in
Section 1.2. We have

f(D) ≥ max{f(T ), f(G1), . . . , f(Gm)}. (4)

By Lemmas 5 and 6 we have

2E[f(D)] ≥ (1− 1

e
)(f−(p) + f−(1OPT − p)).

Claim 7 We have f−(p) + f−(1OPT − p) ≥ f(OPT).

Proof: Let OPT = {e1, . . . , ek}. For i = 1, . . . , k, let Si = {e1, . . . , ei}, and let S0 = ∅. For vector
q ∈ [0, 1]U denote by X(q, θ) the of elements ei in OPT where qei ≥ θ, and Xi(q, θ) = X(q, θ)∩ Si.

By submodularity of f , for i = 1, . . . , k we have fXi−1(q,θ)(ei) ≥ fSi−1(ei). Moreover

f−(q) =

∫ 1

θ=0

k∑
i=1

fXi−1(q,θ)(ei)

≥
∫ 1

θ=0

k∑
i=1

fSi−1(ei)

≥
k∑
i=1

qeifSi−1(ei).

Let q = p, then we have f−(q) ≥
∑k

i=1 peifSi−1(ei). Now, let q = 1OPT−p. We get f−(1OPT−p) ≥∑k
i=1(1− pei)fSi−1(ei). Combining the two we get

f−(p) + f−(1OPT − p) ≥
k∑
i=1

fSi−1(ei) = f(OPT)

2

This conclude the proof of Theorem 2. 2
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