Algorithms for Massive Data Science Lecture date: April 1 and 3, 2019
Instructor: Ben Moseley Scribe: Arash Haddadan

1 Partitioning based submodular optimization

In this lecture we introduce a partitioning based greedy algorithm for submodular maximization.
First, we review the preliminaries of submodular function maximization.

1.1 Preliminaries on submodular maximization
For the whole lecture let U be a finite ground set, or the universe, where |U| = n. Let f : 2V — R.
Definition 1 Function f is submodular if
J(A)+ f(B) = f(AUB) + f(ANB), for A,BCU. (1)
For i € U and A C U, let fa(i) = f(AU{i}) — f(A). Then f is submodular if and only if
fa(i) > fp(i) forall AC B CU and ¢ € U\ B. A submodular function f is monotone if f4(i) >0
forall ACU and i€ U.

Problem 1 (Submodular coverage) Given universe U and monotone submodular function f :
2V 5 Ry, find a set S C U with k elements such that f(S) is mazimized.

Nemhauser, Wolsey and Fisher [2] showed a (1 — %)—approximation for this problem. Their
approximation algorithm is the following greedy procedure.

Algorithm 1 GREEDY-SUB(U)
LX<+ 0
2: while | X| < k do
3: u < arg maxycy fx(u)
4 X+~ XUu

Theorem 1 ([2]) GREEDY-SUB is a (1—1)-approzimation algorithm for the submodular coverage
problem.

1.2 A distributed algorithm for submodular coverage

Our goal in this lecture is to prove the following theorem.

Theorem 2 (Barbosa et. al [1]) There is 2-round MPC approzimation algorithm which achieves
1

approzimation ratio of %(1 — 2) for submodular coverage. The algorithm uses O(max{ -, mk})

memory per machine and O(mk) communication.



In this section we introduce the algorithm and prove a simple observation about the GREEDY-
SUB algorithm that will become handy later. Next, we introduce continuous extensions of sub-
modular functions. In particular we introduce Lovasz extension and its properties. We finish this
lecture with the proof of Theorem

The distributed partitioning algorithm for submodular coverage is a follows:

e Randomly partition U into sets Ui,..., Uy, with |U;j] = 1. Sub-universe U; is the set of
elements on machine 7.

e Each machine ¢ computes G; = GREEDY-SUB(Uj;).

e One machine computes T' = GREEDY-SUB(|J;~; G;).
o Let G* = argmax;—1,m{f(Gi)}.

e Output arg max{f(G*), f(T)}.

In fact, it is essential to distribute the data randomly between the machines.

Exercise 1 Prove that if the data is distributed deterministically the algorithm above is not an
O(1)-approzimation algorithm.

The following lemma will be useful in proving Theorem

Lemma 3 Let A,B C U and AN B = 0. Suppose that for each e € B we have GREEDY-SUB(A U
{e}) = GREEDY-SUB(A). Then GREEDY-SUB(A U B) = GREEDY-SUB(A).

Proof: Suppose not, and choose the smallest ¢ such that the i-th element e} added by GREEDY-SUB(AU
B) is different from the i-th element e; added by GREEDY-SUB(A). The additive value of e} is
more than e;, so GREEDY-SUB(A U {e!}) would pick e}. This is a contradiction. O

1.3 Lovasz extension

Submodular functions are discrete set functions. A common technique is to extend the definition
to the continuous setting for algorithm analysis. There are two common continuous extensions: (1)
Lovész extension and (2) multi-linear extention.

For the purpose of this lecture we only need Lovész extension.

Definition 2 Let f : 2V — R be a submodular function. The Lovdsz extension of f is function
f:10,1)Y — Ry such that

I (X) = EGNUniform(O,l)[f({i 1 X 2 9})]7 Jor X € [07 1]U' (2)

For a set S C U, let 15 € RY be the characteristic vector of S. Lovéasz extension has the following
properties:

L f~(1s) = f(9),
2. f~ is a convex function,

3. f(c-X)>c-f(X) for a scalar ¢ € [0, 1].



1.4 Proof of Theorem [2

Let OPT be the optimal solution to the submodular coverage problem. Let V(%) be a random
subset of U were each element in U is in V(%) with probably % independently at random. Also,
let p € [0,1]Y be the vector defined as follows:

pe= Pr [e € GREEDY-SUB(A U {e})] for e € OPT and p. = 0 otherwise. (3)
AV()

Lemma 4 Let S be a random subset of U such that E[1s] = c¢-p. Then, E[f(S)] > c- f~(p).
Proof: We have

E[f(S)] =E[f (1s)] (by first property of Losédsz ext.)
> f(E[lg]) (f~ is convex by second property, and Jensen’s inequality)
=f"(c-p) (E[ls] =c-p)
>c-f(p) (Third property of Lovész ext.)

O
The next lemma characterizes the quality of the solution G; constructed on machine ¢ using the
Lovasz extension.

Lemma 5 For each machine i = 1,...,m we have E(f(G;))] > (1 = 1) f~(1op — p).

Proof: Let O; = {e : e € OPT and e ¢ GREEDY-SUB(U; U {e})} for i = 1,...,m. By Lemma|3]
we have GREEDY-SUB(U;) = GREEDY-SUB(U; U O;). Moreover, we have f(G;) > (1 — 1)f(0;) by
Theorem 1| Notice that U; ~ V(). Hence, we have

Prlec O;] =1—Prle¢ O;] =1 — p, for e € U.
This implies E[1p,] = 1opT — p. Therefore,

1

E(/(G)) > (1 - E((0))
> (1- %)f_(loPT - D) (By Lemma [4)

a

The following lemma bounds the quality of the final solution obtained (which we denoted earlier
by T') in terms of f~(p).

Lemma 6 We have E[GREEDY-SUB(U"; G;)] > (1 — 1) f~(p).

Proof: Let S = J;”, G;. By Theoremwe have f(GREEDY-SUB(S)) > (1—1)f(OPTNS), since
OPT N S is a feasible solution for the submodular coverage problem on sub-universe S. Fix edge
e € OPT. We have

Prle € S] = Prle € GREEDY-SUB(Uj;)le € Uj]

= Pr [e € GREEDY-SUB(A U {e})]
ANV(35)

= DPe-



This implies that E[1opTns| = p. By Lemma 4| we can conclude

E[f(GREEDY-SUB(S))] > (1 — 1)IE[f(S NOPT)]

We can now prove the main result.

Proof of Theorem 2| Let D be the output of the distributed partitioning algorithm described in
Section [[L2l We have
f(D) =z max{f(T), f(G1),..., f(Gm)}. (4)

By Lemmas [5] and [6] we have

SE(F(D)] > (1~ 1)~ () + F~(lowr —))

Claim 7 We have f~(p) + f~ (lopT —p) > f(OPT).

Proof: Let OPT = {ey,...,ex}. Fori=1,...,k, let S; = {e1,...,e;}, and let Sy = (). For vector

q € [0,1]Y denote by X(q,0) the of elements e; in OPT where g, > 6, and X;(q,0) = X(q,0) N S;.
By submodularity of f, for i = 1,...,k we have fx, (4 (€i) > fs;,_,(ei). Moreover

/0 ZfXZ 1 q,9) ez

011

/0 Zfsl L (€3)

0 i=1
> Z Qe; sz‘—1 (el)
i=1

Let g = p, then we have f~(q) > Zle De; [s;_,(€i). Now, let ¢ = 1opt —p. We get f~(lopr—p) >

Zle(l — Pe;) fs;_,(e;). Combining the two we get

f=(p)+f (Lopr —p >ZfS1€z— (OPT)

This conclude the proof of Theorem O
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