Finite State Machines 3

95-771 Data Structures and Algorithms for Information Processing
Notes taken with modifications from “Introduction to Automata Theory, Languages, and Computation” by John Hopcroft and Jeffrey Ullman, 1979
Deterministic Finite-State Automata (review)

- A DFSA can be formally defined as $A = (Q, \Sigma, \delta, q_0, F)$:
 - Q, a finite set of states
 - Σ, a finite alphabet of input symbols
 - $q_0 \in Q$, an initial start state
 - $F \subseteq Q$, a set of final states
 - δ (delta): $Q \times \Sigma \rightarrow Q$, a transition function
Pushdown Automata (review)

• A pushdown automaton can be formally defined \(M = (Q, \Sigma, \Gamma, \delta, q_0, F) \):

 – \(Q \), a finite set of states
 – \(\Sigma \), the alphabet of input symbols
 – \(\Gamma \), the alphabet of stack symbols
 – \(\delta \), \(Q \times \Sigma \times \Gamma \rightarrow Q \times \Gamma \)
 – \(q_0 \), the initial state
 – \(F \), the set of final states
Turing Machines

• The basic model of a Turing machine has a finite control, an input tape that is divided into cells, and a tape head that scans one cell of the tape at a time.
• The tape has a leftmost cell but is infinite to the right.
• Each cell of the tape may hold exactly one of a finite number of tape symbols.
• Initially, the n leftmost cells, for some finite n >= 0, hold the input, which is a string of symbols chosen from a subset of the tape symbols called the input symbols.
• The remaining infinity of cells each hold the blank, which is a special symbol that is not an input symbol.
A Turing machine can be formally defined as

\[M = (Q, \Sigma, \Gamma, \delta, q_0, B, F) \]

Where

- \(Q \), a finite set of states
- \(\Gamma \), is the finite set of allowable *tape symbols*
- \(B \), a symbol of \(\Gamma \), is the *blank*
- \(\Sigma \), a subset of \(\Gamma \) not including \(B \), is the set of input symbols
- \(\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\} \) (\(\delta \) may, however, be undefined for some arguments)
- \(q_0 \) in \(Q \) is the initial state
- \(F \subseteq Q \) is the set of final states
Turing Machine Example

The design of a Turing Machine M to decide the language \(L = \{0^n1^n, n \geq 1\} \). This language is decidable.

- Initially, the tape of M contains \(0^n1^n \) followed by an infinity of blanks.
- Repeatedly, M replaces the leftmost 0 by X, moves right to the leftmost 1, replacing it by Y, moves left to find the rightmost X, then moves one cell right to the leftmost 0 and repeats the cycle.
- If, however, when searching for a 1, M finds a blank instead, then M halts without accepting. If, after changing a 1 to a Y, M finds no more 0’s, then M checks that no more 1’s remain, accepting if there are none.
Let $Q = \{ q_0, q_1, q_2, q_3, q_4 \}$, $\Sigma = \{0,1\}$, $\Gamma = \{0,1,X,Y,B\}$ and $F = \{q_4\}$

δ is defined with the following table:

<table>
<thead>
<tr>
<th>STATE</th>
<th>0</th>
<th>1</th>
<th>X</th>
<th>Y</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>(q_1, X, R) -</td>
<td>-</td>
<td>(q_3, Y, R) -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q1</td>
<td>$(q_1, 0, R)$ (q_2, Y, L) -</td>
<td>(q_1, Y, R) -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q2</td>
<td>$(q_2, 0, L)$ -</td>
<td>(q_0, X, R) (q_2, Y, L) -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(q_3, Y, R) (q_4, B, R)</td>
<td></td>
</tr>
<tr>
<td>q4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

As an exercise, draw a state diagram of this machine and trace its execution through 0011, 001101 and 001.
The Turing Machine as a computer of integer functions

- In addition to being a language acceptor, the Turing machine may be viewed as a computer of functions from integers to integers.
- The traditional approach is to represent integers in unary; the integer i \(\geq 0 \) is represented by the string \(0^i \).
- If a function has more than one argument then the arguments may be placed on the tape separated by 1’s.
For example, proper subtraction $m - n$ is defined to be
$m - n$ for $m \geq n$, and
zero for $m < n$.

The TM $M = (\{q0, q1, ..., q6\}, \{0, 1\}, \{0, 1, B\}, \partial, q0, B, \{})$

defined below, if started with $0^m 10^n$ on its tape, halts with 0^{m-n} on its
tape. M repeatedly replaces its leading 0 by blank, then searches
right for a 1 followed by a 0 and changes the 0 to a 1. Next, M
moves left until it encounters a blank and then repeats the cycle.
The repetition ends if

- Searching right for a 0, M encounters a blank. Then, the n 0’s
 in $0^m 10^n$ have all been changed to 1’s, and $n+1$ of the m 0’s have
 been changed to B. M replaces the $n+1$ 1’s by a 0 and n B’s,
 leaving $m-n$ 0’s on its tape.

- Beginning the cycle, M cannot find a 0 to change to a blank,
because the first m 0’s already have been changed. Then $n \geq m$,
 so $m - n = 0$. M replaces all remaining 1’s and 0’s by B.
The function ∂ is described below.

$\partial(q_0,0) = (q_1,B,R)$ Begin. Replace the leading 0 by B.

$\partial(q_1,0) = (q_1,O,R)$ Search right looking for the first 1.
$\partial(q_1,1) = (q_2,1,R)$

$\partial(q_2,1) = (q_2,1,R)$ Search right past 1’s until encountering a 0. Change that 0 to 1.
$\partial(q_2,0) = (q_3,1,L)$

$\partial(q_3,0) = (q_3,0,L)$ Move left to a blank. Enter state q0 to repeat the cycle.
$\partial(q_3,1) = (q_3,1,L)$
$\partial(q_3,B) = (q_0,B,R)$

If in state q2 a B is encountered before a 0, we have situation i described above. Enter state q4 and move left, changing all 1’s to B’s until encountering a B. This B is changed back to a 0, state q6 is entered and M halts.

$\partial(q_2,B) = (q_4,B,L)$
$\partial(q_4,1) = (q_4,B,L)$
$\partial(q_4,0) = (q_4,0,L)$
$\partial(q_4,B) = (q_6,0,R)$

If in state q0 a 1 is encountered instead of a 0, the first block of 0’s has been exhausted, as in situation (ii) above. M enters state q5 to erase the rest of the tape, then enters q6 and halts.

$\partial(q_0,1) = (q_5,B,R)$
$\partial(q_5,0) = (q_5,B,R)$
$\partial(q_5,1) = (q_5,B,R)$
$\partial(q_5,B) = (q_6,B,R)$

As an exercise, trace the execution of this machine using an input tape with the symbols 0010.
Modifications To The Basic Machine

- It can be shown that the following modifications do not improve on the computing power of the basic Turing machine shown above:
 - Two-way infinite tape
 - Multi-tape Turing machine with k tape heads and k tapes
 - Multidimensional, Multi-headed, RAM, etc., etc.,...
 - Nondeterministic Turing machine
- Let’s look at a Nondeterministic Turing Machine...
Nondeterministic Turing Machine (NTM)

• The transition function has the form:
• $\delta: Q \times \Gamma \rightarrow P(Q \times \Gamma \times \{L, R\})$
• So, the domain is an ordered pair, e.g., $(q_0, 1)$.
• $Q \times \Gamma \times \{L, R\}$ looks like $\{(q_0, 1, R), (q_0, 0, R), (q_0, 1, L), \ldots\}$.
• $P(Q \times \Gamma \times \{L, R\})$ is the power set.
• $P(Q \times \Gamma \times \{L, R\})$ looks like $\{\{\}, \{(q_0, 1, R)\}, \{(q_0, 1, R), (q_0, 0, R)\}, \ldots\}$
• So, if we see a 1 while in q_0 we might have to perform several activities...
Computing using a NTM

• A tree corresponds to the different possibilities. If some branch leads to an accept state, the machine accepts. If all branches lead to a reject state, the machine rejects.

• Solve subset sum in linear time with NTM:
• Set $A = \{a,b,c\}$ and $\text{sum} = x$. Is there a subset of A summing to x? Suppose $A = \{1,2\}$, $x = 3$.
• for each element e of A

 take paths with and without e
 accept if any path sums to x

 1 no 1 2 no 2 2 no 2

 accept reject reject reject
Church-Turing Hypothesis

Notes taken from “The Turing Omnibus”, A.K. Dewdney

• Try as one might, there seems to be no way to define a mechanism of any type that computes more than a Turing machine is capable of computing.

• Note: On the previous slide we answered an NP-Complete problem in linear time with a non-deterministic algorithm.

• Quiz? Why does this not violate the Church-Turing Hypothesis?

• With respect to computability, non-determinism does not add power.
The Halting Problem

Notes taken from “Algorithmics The Sprit of Computing” by D. Harel

Consider the following algorithm A:

```
while(x != 1) x = x - 2;
stop
```

Assuming that its legal input consists of the positive integers <1,2,3,...>, it is obvious that A halts precisely for odd inputs. This problem can be expressed as a language recognition problem. How?

Now, consider Algorithm B:

```
while (x != 1) {
    if (x % 2 == 0) x = x / 2;
    else x = 3 * x + 1;
}
```

No one has been able to offer a proof that B always terminates. This is an open question in number theory. This too may be expressed as a language recognition problem.

The halting problem is “undecidable”, meaning that there is no algorithm that will tell, in a finite amount of time, whether a given arbitrary program R, will terminate on a data input X or not.
But let’s build such a device anyway…

Program or algorithm \(R \) \quad Input \(X \)

- Yes, \(R \) terminates when reading input \(X \)
- No, \(R \) loops forever when reading input \(X \)
And let’s use it as a subroutine…

• Build a new program S that uses Q in the following way.

• S first makes a copy of its input. It then passes both copies (one as a program and another as its input) to Q.

• Q makes its decision as before and gives its result back to S.

• S halts if Q reports that Q’s input would loop forever.

• S itself loops forever if Q reports that Q’s input terminates.
How much effort would it require for you to write S?

Assuming, of course, that Q is part of the Java API?
OK, so far so good. Now, pass S in to S as input.
• The existence of S leads to a logical contradiction. If S terminates when reading itself as input then Q reports this fact and S starts looping and never terminates. If S loops forever when reading itself as input then Q reports this to be the case and S terminates.

• The construction of S seems to be reasonable in many respects. It makes a copy of its input. It calls a function called Q. It gets a result back and uses that result to decide whether or not to loop (a bit strange but easy to program). So, the problem must be with Q. Its existence implies a contradiction. So, Q does not exist. The halting problem is undecidable.
Example: Malware Detection

• Shown to be undecidable
• Do we give up?
• No – monitoring output of processes can still be fruitful
Terminology: Recursive and Recursively Enumerable notes from Wikipedia

• A formal language is **recursive** if there exists a Turing machine which halts for every given input and always either accepts or rejects candidate strings. This is also called a **decidable** language.

• A **recursively enumerable** language requires that some Turing machine halts and accepts when presented with a string in the language. It may either halt and reject or loop forever when presented with a string not in the language. A machine can **recognize** the language.

• The set of halting program integer pairs is in R.E. but is not recursive. We can’t decide it but we can recognize it.

• All recursive (decidable) languages are recursively enumerable.
Recursive and Recursively Enumerable

• The set of halting program integer pairs is in R.E. but is not recursive.

• Are there any languages that are not recursively enumerable?

• Yes. Let L be \{ w = (\text{program } p, \text{ integer } i) \mid p \text{ loops forever on } i \}.

• L is not recursively enumerable.

• We can’t even recognize L.

• The set of languages is bigger than the set of Turing machines.
Some Results First

<table>
<thead>
<tr>
<th>Computing Model</th>
<th>Finite Automata</th>
<th>Pushdown Automata</th>
<th>Linear Bounded Automata</th>
<th>Turing Machines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language Class</td>
<td>Regular Languages</td>
<td>Context-Free Languages</td>
<td>Context-Sensitive Languages</td>
<td>Recursively Enumerable Languages</td>
</tr>
<tr>
<td>Non-determinism</td>
<td>Makes no difference</td>
<td>Makes a difference</td>
<td>No one knows</td>
<td>Makes no difference</td>
</tr>
</tbody>
</table>