Basics -- 2

From: <u>Data Structures and Their Algorithms</u>, by Harry R. Lewis and Larry Denenberg (Harvard University: Harper Collins Publishers)

Review: Logarithms, Powers and Exponentials

Let b be any real greater than 1 and let x be any real greater than 0. The logarithm to the base b of x, denoted $\log_b x$ is defined to be the number y such that

$$b^y = x$$

$$\log_b 1 = 0$$

$$\log_b x > 0 \text{ if } x > 1$$

$$\log_b b = 1$$

$$\log_b x < 0 \text{ if } 0 < x < 1$$

Any logarithmic function is a monotone increasing function of its argument, that is

$$\log_b x_1 > \log_b x_2$$
 provided that $x_1 > x_2$

Doubling the argument increases the base 2 logarithm by 1. That is,

$$\log_2 2x = (\log_2 x) + 1$$

Why?

$$2^{(\log_2 x) + 1} = 2^{\log_2 x} \cdot 2^1 = 2x$$
$$2^{\log_2 2x} = 2x$$

Review: Logarithms

$$\log_b(x_1\cdot x_2) = \log_b x_1 + \log_b(x_2)$$

$$\log_b (x_1 / x_2) = \log_b x_1 - \log_b x_2$$

$$\log_b x^c = \mathbf{c} \cdot \log_b x$$

Suppose a and b are both greater than 1, what is the relation of $\log_a x$ to $\log_b x$?

Since
$$x = a^{\log_a x}$$

$$\log_b x = \log_b(a^{\log_a x})$$

$$= \log_a x \cdot \log_b a$$

This is a constant. So, any two logarithmic functions differ only by a constant factor.

For example, suppose we know that an algorithm executes lg x instructions, where x is the size of the input.

$$\lg x = \lg(10^{\log_{10}x})$$

$$= \log_{10} x \cdot \lg 10$$

$$= \log_{10} x * \sim 3.32$$
Data Structures and Algorithms

The number of bits in the usual binary notation for the positive integer N is $\lfloor LgN \rfloor + 1$.

For example, how many bits are required to represent

6 bits
$$\lfloor Lg41 \rfloor + 1 = 5 + 1 = 6$$

2 bits
$$\lfloor Lg3 \rfloor + 1 = 1 + 1 = 2$$

The number of digits in the usual base 10 notation for the positive integer N is $\lfloor Log_{10}N \rfloor + 1$.

For example, how many digits are required to represent 31?

31 2 digits
$$\lfloor Log_{10}31 \rfloor + 1 = 1+1=2$$

Any function from reals to reals of the form $g(x) = x^{\alpha}$ for some constant $\alpha > 0$ is called a <u>simple power</u>. Any simple power is an increasing function of its argument.

Examples:

 x^2 , x^3 and $x^{1/3}$ are simple powers

An exponential function is one of the form $h(x) = c^x$ for some constant c > 1.

Examples:

 2^x and 100^x are exponential functions of x

Dominates

- •Let f and g be functions from reals to reals. f dominates g if the ratio f(n)/g(n) increases without bound as n increases without bound. In other words, if for any c > 0 there is an $n_0 > 0$ such that $f(n) > c \cdot g(n)$ for all $n > n_0$.
- Examples: $f(n) = n^2$ dominates g(n) = 2n since for any c $n^2 > c \cdot 2n$ whenever n > 2c.
- f(n) = 10n does not dominate g(n) = 2n since the ratio of f(n) / g(n) is never larger than 5.

Theorem:

Any exponential function dominates any simple power, any simple power dominates any logarithmic function.

Let N be the set of nonnegative integers $\{0,1,\ldots\}$. Let R be the set of real numbers and let R^* be the set of nonnegative real numbers.

Let g be a function from N to R^* . Then O(g) is the set of all functions f from N to R^* such that, for some constants c > 0 and $N_0 \ge 0$.

$$f(N) \le c \cdot g(N)$$
 for all $N \ge N_0$.

In other words, $f \in O(g)$ if the value of f is bounded from above by a fixed multiple of the value of g for all sufficiently large values of the argument.

Examples:

For any
$$f$$
 it is the case that $f \in O(f)$.
Any constant multiple of f is in $O(f)$.
 $F(n) = 13n + 7$ is in $O(n)$.

Why?

$$13n + 7 \le 14n \text{ for } n \ge 7$$

So the definition is satisfied with c = 14, $n_0 = 7$.

$$1000n \in O(.0001n^2)$$

Why?

Let $c = 10^7$ and $n_0 = 0$ in the definition of O().

$$f(n) = n$$
$$f(n) \in O(n^2)$$

Little o

For any function g, o(g) is the set of all functions that are dominated by g. That is, the set of all functions f such that for each constant c > 0 there is an $n_0 > 0$ such that

$$f(n) < c \cdot g(n)$$
 for all $n > n_0$.

Examples:

Let
$$f(n) = n$$
 and $g(n) = n^2$ then $f(n) \in o(g(n))$

Let
$$f(n) = n^2$$
 and $g(n) = 2^n$ then $f(n) \in o(g(n))$

Theorem: Growth Rates

1. The power n^{α} is in $O(n^{\beta})$ if and only if $\alpha \leq \beta$ (α , $\beta > 0$); and n^{α} is in $o(n^{\beta})$ if and only if $\alpha < \beta$.

Examples:

Intuitively

$$n \in O(n^3)$$

$$n \in o(n^3)$$

$$n \leq n^3$$

$$n < n^3$$

2. $\log_b n \in o(n^{\alpha})$ for any b and α .

Examples:

$$\log_{10} n \in o(n)$$

$$\log_2 n \in o(n^{1/2})$$

3. $n^{\alpha} \in o(c^n)$ for any $\alpha > 0$ and c > 1.

Examples:

$$n^2 \in o(4^n)$$

$$n^{100} \in o(2^n)$$

4. $\log_a n \in O(\log_b n)$ for any a and b.

$$\log_2 n \in O(\log_{10} n)$$

$$\log_{10} n \in O(\log_2 n)$$

5. $c^n \in O(d^n)$ if and only if $c \le d$, and $c^n \in o(d^n)$ if and only if c < d.

Examples:

$$3^n \in O(4^n)$$

$$3^n \in o(4^n)$$

6. Any constant function f(n) = c is in O(1).

For example:

A 32-bit add instruction O(1).

Big-O only provides an upper bound.

For example:

$$17n^{2} \in O(n^{2})$$
 but $17n^{2} \in O(n^{37})$ $17n^{2} \in O(2^{n})$

Big Omega (Big- Ω):

Big- Ω notation is exactly the converse of Big-O notation; $f \in \Omega(g)$ if and only if $g \in O(f)$.

 $f \in O(g)$ implies that f grows at most as quickly as g. $f \in \Omega(g)$ implies that f grows at least as quickly as g.

Examples:

let
$$f(n) = n$$

 $f(n) \in O(n^2)$
 $n^2 \in \Omega(n)$

Big theta (Big θ):

$$\theta(f) = \mathcal{O}(f) \cap \Omega(f)$$

Example:

Let
$$f(n) = 4n$$
 then
 $f(n) \in O(n)$
 $f(n) \in \Omega(n)$
so
 $f(n) \in \theta(n)$

The set of functions $\theta(f)$ is the order of f.

Suppose we use a phone book to look up a number in the standard way. Let T(n) be the number of operations (comparisons) required.

In the worst case $T(n) \in O(Log N)$.

True or False:

Also, in the worst case, $T(n) \in O(n)$

 $T(n) \in \theta(n)$ _____

 $T(n) \in \Omega(n)$

Suppose we use a phone book to look up a number in the standard way. Let T(n) be the number of operations (comparisons) required.

In the worst case $T(n) \in O(Log N)$.

True or False:

Also, in the worst case,

 $T(n) \in O(n)$ True

 $T(n) \in \theta(n)$ False

 $T(n) \in \Omega(n)$ False

Suppose we use a phone book to look up a number. Let T(n) be the number of operations (comparisons) required.

In the <u>best</u> case $T(n) \in O(1)$.

True or False:

Also, in the best case, $T(n) \in O(n)$ $T(n) \in \theta(n)$ $T(n) \in \Omega(n)$

Suppose we use a phone book to look up a number. Let T(n) be the number of operations (comparisons) required.

In the <u>best</u> case $T(n) \in O(1)$.

True or False:

Also, in the best case,

 $T(n) \in O(n)$ True

 $T(n) \in \theta(n)$ False

 $T(n) \in \Omega(n)$ False

Suppose we want to delete the last item on a singly linked list. Let T(n) be the number of operations (comparisons) required.

There are no cases to consider: $T(n) \in O(n)$.

True or False:

$$T(n) \in O(Lg n)$$

$$T(n) \in \theta(n)$$

$$T(n) \in \Omega(Lg n)$$

Suppose we want to delete the last item on a singly linked list. Let T(n) be the number of operations (comparisons) required.

There are no cases to consider: $T(n) \in O(n)$.

True or False:

$$T(n) \in O(Lg n)$$
 False
 $T(n) \in \theta(n)$ True
 $T(n) \in \Omega(Lg n)$ True

Remember

When working with Big O, Big θ and Big Ω , be sure to always consider only large n.

In addition, pin the case down first and then consider Big O, Big θ , and Big Ω

Lastly, remember that sometimes "case" does not apply.

Algorithms and Problems

In this class, we will mostly be analyzing algorithms (counting operations) in terms of Big O, Big θ and Big Ω .

Problems may also be analyzed. The lower bound for a particular problem is the worst case running time of the fastest algorithm that solves that problem.

Later, we will look at an argument that comparison based sorting is $\Omega(n \text{ Log } n)$. What does that mean?