95-771 Data Structures and Algorithms Carnegie Mellon University

95-771 Data Structures and Algorithms Project 1

Due: Tuesday, September 9, 2025 at 11:59:00 PM

This project has three objectives. First, the student will be
introduced to the linked 1list data structure using Michael Main’s
ObjectNode. java. Second, the student will use the linked list
class created in Part 1 to implement Merkle-Hellman Knapsack
cryptography. Third, the student will use the same linked list to
build a Merkle Tree.

The Java collection classes may not be used for this assignment.

Part 1.Building a LinkedList class 30 points

Create a Java application in IntelliJ with the name ObjectNode-
Project. Download Michael Main’s ObjectNode.java class.

Documentation for the ObjectNode class may be found here:
http://www.cs.colorado.edu/~main/docs/

The source code (which you need to get running in Intellil]) 1is
found on our course schedule at this location:

http://www.andrew. cmu.edu/user/mm6/95-771/Homeworks/ObjectNode. java

Make the following modifications to ObjectNode.java.

@. We will be using packages. Leave ObjectNode.java in the
package within which it is defined (edu.colorado.nodes).
Later, you will place your own code in a package named
edu.cmu.andrew.<your ID>. For example, my SinglylLinkedList
class is found within the package edu.cmu.andrew.mm6.

1. Add a recursive listCopy() called listCopy_rec(). This new
method will behave the same way as Main’s listCopy() method
but will be recursive.

2. Add a recursive listlLength() called listLength_rec(). This
new method will behave the same way as Main’s listLength()
method but will be recursive.

3. Add a method called displayEveryThird() that displays every
third node on the list. If the 1list contains 1-2-3-4-5-6



95-771 Data Structures and Algorithms Carnegie Mellon University

then your routine will display 3 and 6. If the list

contains 1-2-3-4-5 then your routine will display only 3.

4. Add a comment to each method in ObjectNode.java. Your
comment will describe its runtime in big theta notation.

5. Add pre-conditions comments just prior to ListCopy() and
ListCopyWithTail(). What precondition makes sense?

6. Add an instance method String toString() to the ObjectNode
class. This method returns a string holding the data of
each node on the list beginning with head.

7. Provide a main routine (a driver) for this class. The main
routine will do the following activities.

a. Create a list containing 26 nodes. Each node will contain
the letters of the English language in order in lower
case. The list will hold “a” > “b” > “c” > .. -> “z”--1|

b. Call toString() on the front node of the 1list to display
the list data. The output will be abcd..z.

c. Call displayEveryThird(). The output will be cfi etc.

d. Print the size of this list twice. Once with listlLength()
and again with listlLength_rec().

e. Make a copy of the list into a new list, use listCopy(),
with the front node of the new list being pointed to by
an ObjectNode named k.

f. On the ObjectNode named k, call its toString() method.
The output will be abcd..z.

g. Print the size of the list k twice. Once with
listLength() and again with listlLength_rec.

h. Make a copy of the list into a new list, use
listCopy_rec(), with the front node of the new list being
pointed to by an ObjectNode named k2.

1. On k2, call its toString() method. The output will be
abcd. .z.

j. Print the size of the list k2 twice. Once with
listLength() and again with listlLength_rec.

k. Leave this main driver in your submission for part 1. The
grader will be able to run the main routine of the
ObjectNode class.

1. Your output from this section will look like the

following:
abcdefghijklmnopgrstuvwxyz
cfil etc.

Number of nodes = 26
Number of nodes = 26

abcdefghijklmnopgrstuvwxyz
Number of nodes in k = 26



95-771 Data Structures and Algorithms Carnegie Mellon University

8.

10.

Number of nodes in k = 26

abcdefghijklmnopgrstuvwxyz
Number of nodes in k2 = 26
Number of nodes in k2 = 26

Write a class named SinglylinkedlList.java that uses a head
and tail pointer. The head reference always points to the
head of the list and the tail reference always points to
the last node on the 1list. Javadoc for this class 1is
provided here. Also, included is Javadoc for the ObjectNode
class. It is found under

http://www.andrew.cmu.edu/~mmo/
95-771/0bjectNodeProject/dist/javadoc/index.html

. Write code in the main method of SinglylLinkedList.java.

This code should test each method of the class. In
particular, it must include testing of list iteration using
reset(), hasNext() and next(). You need to add these three
methods to the linked list class. If s is a list, this code
will display its contents from the main routine:

s.reset();

while(s.hasNext()) {
System.out.println(s.next());

ks

Also, see the Javadoc on the schedule for a description of
these three methods.

Write a class called OrderedLinkedListOfIntegers. This
class will be of your own design. You are free to use any
code that you have written or worked on above. It must
allow integers to be added to the list by making calls to a
instance method named sortedAdd(). The sortedAdd() method
always maintain the 1list of integers in increasing order.

It will also provide for 1list iteration (as in 9).

Provide an efficient static method named merge() that
returns a new OrderedlLinkedListOfIntegers that holds the
merged contents of its two OrderedlLinkedListOfIntegers
parameters. Write a main routine that demonstrates adding 20
random values to two OrderedlLinkedlListOfIntegers and merging
them into a third list of size 40. In order for the main
routine to merge the contents, it must call the merge()



95-771 Data Structures and Algorithms Carnegie Mellon University

method that you have written. Duplicate integers may be
present in your lists. Of course, the number 20 is just for
testing and your solution must accommodate a larger or
smaller number. If two empty lists are passed to merge()
then merge() will return an empty list.

An inefficient way to write merge() would be to simply call
sortedAdd() during a traversal of the first list, and then
the second. Your solution should be better than that and run
in worst case time of ®©(m + n) where m is the size of the
first list and n is the size of the second. Be sure to state
an appropriate pre-condition on your merge() method.

Part 1 Grading:
Comment with your name, course, and assignment number
Working code with three working main routines: 70%
Comments describing big theta of each routine and
preconditions and postconditions where appropriate 20%
Screenshots demonstrating program execution: 10%
Be sure to site the source of any code that you copy.



95-771 Data Structures and Algorithms Carnegie Mellon University

Part 2. Use Part 1 to implement a Merkle-Hellman
Knapsack Cryptosystem 30 Points

Create a Java application in Intelli] with the name Merkle-
Hellman-Knapsack-Crypto-Project

In this part you will implement key generation, encryption and
decryption using the Merkle-Hellman Knapsack Cryptosystem. A very
clear and well-written description of this algorithm can be found
at the following link. This is a required reading for the course
and should be understood prior to writing code:

http://en.wikipedia.org/wiki/Merkle-Hellman_knapsack cryptosystem

Note that the example provided on the wiki is an example using
small integers with w = {2, 7, 11, 21, 42, 89, 180, 354}. In this
project, w will consist of 640 huge integers.

You will use your singly linked list class of objects (from part
1) to hold two lists of Java BigIntegers. One list, w, will be
used to hold the superincreasing sequence of integers that make
up part of the private key and used for decryption. You are
required to use powers of 7 to make up your superincreasing
sequence. The second list, b, will be used to hold the public key
material used for encryption. Your list class should encapsulate
all of the work associated with 1lists and should not know
anything about Merkle-Hellman.

Using a singly linked list for this problem is appropriate but
not ideal. It is very appropriate for a first course in data
structures. Hence, use it for this project but you should be
aware that there are alternatives.

Use the built in methods of the BigInteger class provided by
Java. These methods make it fairly easy to implement some of the
tedious but essential parts of Merkle-Hellman.

To do a practice example, you might like to use Wolfram Alpha at
http://www.wolframalpha.com. It accepts operations such as

(3 * 5) mod 2, gcd(32,5) and PowerMod(15,-1,64) to find the
multiplicative inverse of 15 modulo 64.



95-771 Data Structures and Algorithms Carnegie Mellon University

Your program will be interactive and will behave in a similar
manner as mine. An example run of my program appears below. You
will need to submit several screenshots showing example
executions of your code. Note that you may assume that the user
will enter a string of less than 8@ characters in length. If the
user enters a longer string, inform them that the string entered
is too long and ask the user to try again.

Hint: Since your program must handle 8@ characters of input and
since each character can be represented in 8 bits, your 1lists
will have (80 * 8) 640 nodes. Note that key generation is
typically done once. Then, the key is used. It is not typical
that the key size would depend on the size of the input (which
may vary).



95-771 Data Structures and Algorithms Carnegie Mellon University

Example execution:

Enter a string and I will encrypt it as single large integer.
Welcome to Data Structures and Algorithms

Clear text:

Welcome to Data Structures and Algorithms

Number of clear text bytes = 41

Welcome to Data Structures and Algorithms is encrypted as
31781707635014578526065699773962137393146911980721711052928064933
29427247281741202240955878424846358843053671591632658963978560563
90477056525611299805189287161133817602808317806202994211855425964
73702222421097456164453381759945091903934594297517891581810563293
3959978787221138943336909734004773052722627400695

Result of decryption: Welcome to Data Structures and Algorithms

Part 2 Grading:
You need to submit:

Comments with your name, course, and assignment number

Working code performing key generation, encryption and decryption
and using the singly linked lists from Part 1 to hold
BigIntegers: 70%

Comments in your code describing how key generation and the
Merkle Hellman Knapsack cryptography is being performed: 20%

Screenshots demonstrating program execution: 10%
Be sure to site the source of any code that you copy.

Part 3. Using Part 1 to implement a Merkle tree. 40
Points

Create a Java application in IntelliJ with the name MerkleTree-
Project.

In this part, you will use the classes from Part 1 to build a
Merkle tree from a text file and compute the Merkle root of the
Merkle tree.

You will read a UTF-8 file of text lines - delimited by line
breaks. Each line will be stored in a node on a list.



95-771 Data Structures and Algorithms

Carnegie Mellon University

Once each line is stored in a node - forming a list of lines, a
second list will be created containing the cryptographic hashes
of these nodes. If, after completing a list, it is found that the
list has an odd number of nodes, your program will copy the last
node and then add it to the end of the list - forcing all lists
to be even in size - except, of course, for the Merkle root.

Your program will create a new list for each level in the Merkle
tree. In the example below, your program will store these data in
four distinct 1lists. L1, L2, L3, and L4 would be four nodes of
the first list. Hash(11), hash(12), hash(13) and hash(14) will
live in nodes on the second list, and so on.

hash(

Hash

HasQO-O
Hash 0-1

)

/

AN

hash(

Hash

Has_f:_ 1-0
Hash 1-1

)

/

AN

Hash
0-0

hash(L1)

Hash
0-1

hash(L2)

Hash
1-0

hash(L3)

Hash
1-1

hash(L4)

1

A

1

!

L1

L2

L3

L4

Data
Blocks

Your program will implement this tree within a list of lists. The
first 1list in the 1ist of lists will contain the list: L1, L2,

L3,L4.

A very nice description of Merkle Trees is found here:

https://en.wikipedia.org/wiki/Merkle_tree

Your program will prompt the user for a file name. Your program
will then read the file name, read the file, build the Merkle
tree as a list of lists and display the Merkle root.

For all hashing, you are required to use the following method:



95-771 Data Structures and Algorithms Carnegie Mellon University

public static String h(String text) throws
NoSuchAlgorithmException {
MessageDigest digest = MessageDigest.getInstance("SHA-256");
byte[] hash =
digest.digest(text.getBytes(StandardCharsets.UTF_8));
StringBuffer sb = new StringBuffer();
for (int 1 = 0; 1 <= 31; i++) {
byte b = hash[1i];
sb.append(String.format("%02X", b));
ks
return sb.toString();

}

For example, suppose we have a single letter 'A' in a file. The
line in the file has length 1. We are not including newlines at
the end of the line.

The SHA 256 hash of 'A' is
559AEADQ8264D5795D3909718CDDA5ABD49572E84FES5590EEF31A88AQ8FDFFD

To force the number of leaves in the initial Merkle tree to be
even, we create a new leaf

with 'A'. So far, our initial list looks like LO --> 'A' --> 'A'
-—-11

We construct the first list of hashes from the initial list of
values.

Initial 1list of hashes is L1 --> h('A') ---> h('A") ---->1|

The actual hashes appear as follows:
559AEADQ8264D5795D3909718CDDO5ABD49572E84FES5590EEF31A88A08FDFFD
559AEADQ8264D5795D3909718CDDO5ABD49572E84FES5590EEF31A88A08FDFFD

We concatenate these two hashes and hash the concatenation to
compute a new hash.

BE263C0044B95044951327BODOABBD7E4E3719CC1AES9B57DF059945616219C1
Since we have only a single line in the file, we are done.

The Merkel root is
BE263C0044B95044951327BAD9ABBD7E4E3719CC1AES59B57DF059945616219C1



95-771 Data Structures and Algorithms Carnegie Mellon University

There are four files provided for your use. Use you program to
determine which of these four files has the Merkle root of:

AS5A74A770EQC3922362202DAD62A97655F8652064CCCBE7D3EAZB588C7EQ7B5S.

These files are at https://www.andrew.cmu.edu/~mm6/
95-771/Homeworks/homeworkl S21/smallFile.txt
95-771/Homeworks/homeworkl1_S21/CrimeLatLonXY.csv
95-771/Homeworks/homeworkl S21/CrimelatlonXY199@ SizeZ.csv
95-771/Homeworks/homework1_S21/CrimeLatLonXY1990_Size3.csv

In the comments of your main routine, show all four Merkle roots
and be sure to say which one of these four files has the Merkle
root that we seek.

Part 3. Grading:

You need to submit:

Working code: 70%

Comments with your name, course, and assignment number

Comments in your code describing the tree building process: 20%
Screenshots demonstrating program execution: 5%

Good style and a clean submission: 5%

Be sure to site the source of any code that you copy.

Note: A complete submission of Project 1 will contain three
directories submitted to Canvas. The three directories will all
be contained within a single zipped file named
<yourAndrewID>Projectl.zip.

10



