Finite State Machines 3

15-121 Introduction to Data
 Structures

Notes taken with modifications from "Introduction to Automata Theory, Languages, and Computation" by John Hopcroft and Jeffrey Ullman, 1979

Deterministic Finite-State Automata (review)

A DFSA can be formally defined as $M=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, F\right)$:
Q, a finite set of states
Σ, the alphabet of input symbols
$\delta, \mathrm{Q} \times \Sigma \rightarrow \mathrm{Q}$, a transition function
q_{0}, the initial state
F, the set of final states

Pushdown Automata(review)

A pushdown automaton can be formally defined as $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$:
Q, a finite set of states
Σ, the alphabet of tape symbols
Γ, the alphabet of stack symbols
$\delta, \mathrm{Q} \times \Sigma \mathrm{X} \Gamma \rightarrow \mathrm{Q} \times \Gamma$
q_{0}, the initial state
F, the set of final states

Turing Machines

- The basic model of a Turing machine has a finite control, an input tape that is divided into cells, and a tape head that scans one cell of the tape at a time.
- The tape has a leftmost cell but is infinite to the right.
- Each cell of the tape may hold exactly one of a finite number of tape symbols.
- Initially, the n leftmost cells, for some finite $\mathrm{n}>=0$, hold the input, which is a string of symbols chosen from a subset of the tape symbols called the input symbols.
- The remaining infinity of cells each hold the blank, which is a special symbol that is not an input symbol.

A Turing machine can be formally defined as $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{0}, \mathrm{~B}, \mathrm{~F}\right)$: where
Q, a finite set of states
Γ, is the finite set of allowable tape symbols
B, a symbol from Γ is the blank
Σ, a subset of Γ not including B, is the set of input symbols
$\delta, \mathrm{Q} \times \Gamma \rightarrow \mathrm{Q} \times \Gamma \times\{\mathrm{L}, \mathrm{R}\}$ (may be undefined for some arguments)
q_{0} in Q is the initial state
$\mathrm{F} \subseteq \mathrm{Q}$ is the set of final states

Turing Machine Example

The design of a Turing Machine M to decide the language $L=\left\{0^{n} 1^{n}, n>=1\right\}$. This language is decidable.

- Initially, the tape of M contains $0^{n} 1^{n}$ followed by an infinity of blanks.
- Repeatedly, M replaces the leftmost 0 by X , moves right to the leftmost 1, replacing it by Y, moves left to find the rightmost X, then moves one cell right to the leftmost 0 and repeats the cycle.
- If, however, when searching for a $1, \mathrm{M}$ finds a blank instead, then M halts without accepting. If, after changing a 1 to a Y, M finds no more 0 ' s , then M checks that no more 1's remain, accepting if there are

Let $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}, \Sigma=\{0,1\}, \Gamma=\{0,1, X, Y, B\}$ and $F=\left\{q_{4}\right\}$ δ is defined with the following table:

INPUT SYMBOL

STATE	0	1	X	Y	B
$q 0$	$(q 1, X, R)-$	-	$(q 3, Y, R)-$		
$q 1$	$(q 1,0, R)(q 2, Y, L)$	-	$(q 1, Y, R)-$		
$q 2$	$(q 2,0, L)-$	$(q 0, X, R)(q 2, Y, L)-$			
$q 3$	-	-	-	$(q 3, Y, R)(q 4, B, R)$	
$q 4$	-	-	-	-	-

As an exercise, draw a state diagram of this machine and trace its execution through 0011, 001101 and 001.

The Turing Machine as a computer of integer functions

- In addition to being a language acceptor, the Turing machine may be viewed as a computer of functions from integers to integers.
- The traditional approach is to represent integers in unary; the integer $\mathrm{i}>=0$ is represented by the string 0^{i}.
- If a function has more than one argument then the arguments may be placed on the tape separated by 1's.

For example, proper subtraction $\mathrm{m}-\mathrm{n}$ is defined to be

$$
\mathrm{m}-\mathrm{n} \text { for } \mathrm{m}>=\mathrm{n} \text {, and }
$$

zero for m < n.

The TM $M=(\{q 0, q 1, \ldots, q 6\},\{0,1\},\{0,1, B\}, \delta, q 0, B,\{ \})$
defined below, if started with $0^{m} 10^{n}$ on its tape, halts with 0^{m-n} on its tape. M repeatedly replaces its leading 0 by blank, then searches right for a 1 followed by a 0 and changes the 0 to a 1 . Next, M moves left until it encounters a blank and then repeats the cycle. The repetition ends if

- Searching right for a $0, \mathrm{M}$ encounters a blank. Then, the n 0 ' s in $0^{m} 10^{n}$ have all been changed to $1^{\prime} s$, and $n+1$ of the $m 0^{\prime} s$ have been changed to B. M replaces the $n+11$ ' s by a 0 and $n B$ ' s, leaving $m-n 0$ ' s on its tape.
- Beginning the cycle, M cannot find a 0 to change to a blank, because the first m 0 ' s already have been changed. Then $\mathrm{n}>=\mathrm{m}$, so $m-n=0$. M replaces all remaning 1 ' s and 0 ' s by B.

The function δ is described below.

```
\(\delta(q 0,0)=(q 1, B, R) \quad\) Begin. Replace the leading 0 by \(B\).
\(\delta(q 1,0)=(q 1,0, R)\) Search right looking for the first 1.
\(\delta(\mathrm{q} 1,1)=(\mathrm{q} 2,1, \mathrm{R})\)
```

$\delta(\mathrm{q} 2,1)=(\mathrm{q} 2,1, \mathrm{R})$ Search right past 1 's until encountering a 0 . Change that 0 to 1 .
$\delta(\mathrm{q} 2,0)=(\mathrm{q} 3,1, \mathrm{~L})$
$\delta(q 3,0)=(q 3,0, L)$ Move left to a blank. Enter state $q 0$ to repeat the cycle.
$\delta(q 3,1)=(q 3,1, L)$
$\delta(q 3, B)=(q 0, B, R)$

If in state q2 a B is encountered before a 0 , we have situation i described above. Enter state q4 and move left, changing all 1's to B ' s until encountering a B. This B is changed back to a 0 , state q 6 is entered and M halts.
$\delta(\mathrm{q} 2, \mathrm{~B})=(\mathrm{q} 4, \mathrm{~B}, \mathrm{~L})$
$\delta(q 4,1)=(q 4, B, L)$
$\delta(q 4,0)=(q 4,0, L)$
$\delta(q 4, B)=(q 6,0, R)$
If in state $q 0$ a 1 is encountered instead of a 0 , the first block of 0 's has been exhausted, as in situation (ii) above. M enters state $q 5$ to erase the rest of the tape, then enters $q 6$ and halts.
$\delta(q 0,1)=(q 5, B, R)$
$\delta(q 5,0)=(q 5, B, R)$
$\delta_{a}\left(q L_{R}, q\right)=(q 5, B, R)$
$18(49, B)=(q 6, B, R)$

As an exercise, trace the execution of this machine using an input tape with the symbols 0010.

Modifications To The Basic Machine

- It can be shown that the following modifications do not improve on the computing power of the basic Turing machine shown above:
- Two-way infinite tape
- Multi-tape Turing machine with k tape heads and k tapes
- Multidimensional, Multi-headed, RAM, etc., etc.,...
- Nondeterministic Turing machine

Sinlein- Let's look at a Nondeterministic Turing Machine...

Nondeterministic Turing Machine (NTM)

- The transition function has the form:
- $\delta: \mathrm{Q} \times \Gamma \rightarrow P(\mathrm{Q} \times \Gamma \times\{\mathrm{L}, \mathrm{R}\})$
- So, the domain is an ordered pair, e.g., $\left(q_{0}, 1\right)$.
- $Q \times \Gamma \times\{L, R\}$ looks like $\left\{\left(q_{0}, 1, R\right),\left(q_{0}, 0, R\right),\left(q_{0}, 1, L\right), \ldots\right\}$.
- $P(\mathrm{Q} \times \Gamma \times\{\mathrm{L}, \mathrm{R}\})$ is the power set.
- $P(Q \times \Gamma \times\{L, R\})$ looks like $\left\{\left\},\left\{\left(q_{0}, 1, R\right)\right\}\right.\right.$, $\left.\left\{\left(q_{0}, 1, R\right),\left(q_{0}, 0, R\right)\right\}, \ldots\right\}$
- So, if we see a 1 while in q_{0} we might have to perform several activities...

Computing using a NTM

- A tree corresponds to the different possibilities. If some branch leads to an accept state, the machine accepts. If all branches lead to a reject state, the machine rejects.
- Solve subset sum in linear time with NTM:
- Set $A=\{a, b, c\}$ and sum $=x$. Is there a subset of A summing to x ? Suppose $A=\{1,2\}, x=3$. / \}
- for each element e of A
take paths with and without e
$\substack{\text { Gan } \\ \text { Hellon }}$ accept if any path sums to x

Church-Turing Hypothesis

Notes taken from "The Turing Omnibus", A.K. Dewdney

- Try as one might, there seems to be no way to define a mechanism of any type that computes more than a Turing machine is capable of computing.
- Note: On the previous slide we answered an NPComplete problem in linear time with a nondeterministic algorithm.
- Quiz? Why does this not violate the Church-Turing Hypothesis?
- With respect to computability, non-determinism

Carnegie

Mellgn

The Halting Problem

Notes taken from "Algorithmics The Sprit of Computing" by D. Harel
Consider the following algorithm A:

$$
\begin{aligned}
& \text { while(} x \text { ! }=1) x=x-2 \text {; } \\
& \text { stop }
\end{aligned}
$$

Assuming that its legal input consists of the positive integers $<1,2,3, \ldots>$, It is obvious
that A halts precisely for odd inputs. This problem can be expressed as a language recognition problem. How?

Now, consider Algorithm B:

```
while (x != 1) \{
            if ( \(x\) \% \(2==0\) ) \(x=x / 2\);
            else \(x=3 * x+1\);
        \}
```

No one has been able to offer a proof that B always terminates. This is an open question in number theory. This too may be expressed as a language recognition problem.
The halting problem is "undecidable", meaning that there is no algorithm that will tell, in a finite amount of time, whether a given arbitrary program R, will terminate on a data input X or not.

But let's build such a device anyway...

Program or algorithm $R \quad$ Input X

And let's use it as a subroutine...

- Build a new program S that uses Q in the following way.
- S first makes a copy of its input. It then passes both copies (one as a program and another as its input) to Q .
- Q makes its decision as before and gives its result back to S .
- S halts if Q reports that Q's input would loop forever.
- S itself loops forever if Q reports that Q's cuale finput terminates.

- The existence of S leads to a logical contradiction. If S terminates when reading itself as input then Q reports this fact and S starts looping and never terminates. If S loops forever when reading itself as input then Q reports this to be the case and S terminates.
- The construction of S seems to be reasonable in many respects. It makes a copy of its input. It calls a function called Q. It gets a result back and uses that result to decide whether or not to loop (a bit strange but easy to program). So, the problem must be with Q. Its existence implies a contradiction. So, Q does not exist. The halting Gun problem is undecidable.

Example: Malware Detection

- Shown to be undecidable
- Do we give up?
- No - monitoring output of processes can still be fruitful

Terminology: Recursive and

Recursively Enumerable mese fommumedeta

- A formal language is recursive if there exists a Turing machine which halts for every given input and always either accepts or rejects candidate strings. This is also called a decidable language.
- A recursively enumerable language requires that some Turing machine halts and accepts when presented with a string in the language. It may either halt and reject or loop forever when presented with a string not in the language. A machine can recognize the language.
- The set of halting program integer pairs is in R.E. but is not recursive. We can't decide it but we can recognize it.
© GirneAll recursive (decidable) languages are recursively Mellan enumerable.

Recursive and Recursively
 Enumerable

- The set of halting program integer pairs is in R.E. but is not recursive.
- Are there any languages that are not recursively enumerable?
- Yes. Let L be \{ w = (program p, integer i) | p loops forever on i\}.
- L is not recursively enumerable.
- We can't even recognize L.
- The set of languages is bigger than the set of Turing $\underset{\substack{\text { chanemmachines. } \\ \text { Uellen }}}{ }$

Some Results First

Computing Model	Finite Automata	Pushdown Automata	Linear Bounded Automata	Turing Machines
Language Class	Regular Languages	Context-Free Languages	Context- Sensitive Languages	Recursively Enumerable Languages
Nondeterminism	Makes no difference	Makes a difference	No one knows	Makes no difference

