Finite State Machines 3

15-121 Introduction to Data
Structures

15-121 Introduction to Data Structures

Notes taken with modifications from “Introduction to Automata

Theory, Languages, and Computation” by John Hopcroft and Jeffrey
Ullman, 1979

egie
on
15-121 Introduction to Data Structures

Deterministic Finite-State Automata (review)

A DFSA can be formally defined as M = (Q,2, 8, qq, F):
Q, a finite set of states

2, the alphabet of input symbols

5, QX Z — Q, a transition function

do, the initial state

F, the set of final states

Pushdown Automata(review)

A pushdown automaton can be formally defined as M = (Q,Z, T, 8, qq, F):
Q, a finite set of states

2, the alphabet of tape symbols

[, the alphabet of stack symbols

5, QXZIXTI—-=QXT

o, the initial state

F, the set of final states

E;

Turing Machines

The basic model of a Turing machine has a finite
control, an input tape that is divided into cells, and a

tape head that scans one ce
The tape has a leftmost cell

| of the tape at a time.
out is infinite to the right.

Each cell of the tape may ho
number of tape symbols.

Initially, the n leftmost cells,

d exactly one of a finite

for some finite n >=0,

hold the input, which is a string of symbols chosen
from a subset of the tape symbols called the input

symbols.

The remaining infinity of cells each hold the blank,
which is a special symbol that is not an input symbol.

gie

Finite Control

A Turing machine can be formally defined as M= (Q, 2, T, §, qo, B, F):
where

Q, a finite set of states

[, is the finite set of allowable tape symbols

B, a symbol from I" is the blank

2, a subset of [not including B, is the set of input symbols

5, QxI - QxTI x{L,R} (may be undefined for some arguments)
Join Q is the initial state

F ©Q is the set of final states

Turing Machine Example

The design of a Turing Machine M to decide the language
L ={0"1", n >= 1}. This language is decidable.

* [nitially, the tape of M contains 0"1" followed by an
infinity of blanks.

* Repeatedly, M replaces the leftmost 0 by X, moves
right to the leftmost 1, replacing it by Y, moves left to
find the rightmost X, then moves one cell right to the
leftmost 0 and repeats the cycle.

* |f, however, when searching for a 1, M finds a blank
instead, then M halts without accepting. If, after
changingaltoaY, M finds no more 0’ s, then M
checks that no more 1’ s remain, accepting if there are

';mone.

Let Q = { qO) q1; q2; CI3; CI4 }) Z = {011}) I-= {OllleYlB} and F = {q4}
§ is defined with the following table:

INPUT SYMBOL
STATE O 1 X Y B
q0 (91,X,R)- - (a3,Y,R) -
ql (q1,0,R)(q2,Y,L) - (q1,Y,R) -
q2 (q2,0,L) - (qd0,X,R)(q2,Y,L) -
q3 - - - (a3,Y,R) (a4,B,R)

as - : - : :

As an exercise, draw a state diagram of this machine and trace its
execution through 0011, 001101 and 001.

The Turing Machine as a computer of integer
functions

* |[n addition to being a language acceptor, the
Turing machine may be viewed as a computer
of functions from integers to integers.

* The traditional approach is to represent
integers in unary; the integeri >=0is
represented by the string 0'.

* |f a function has more than one argument
then the arguments may be placed on the
tape separated by 1’ s.

For example, proper subtraction m — n is defined to be
m — n for m >=n, and
zero for m < n.

The TM M = ({q0,q1,...,96}, {0,1}, {0,1,B}, 6, 9O, B, {})

defined below, if started with 0™10" on its tape, halts with 0™™ on its
tape. M repeatedly replaces its leading 0 by blank, then searches
right for a 1 followed by a 0 and changes the O to a 1. Next, M
moves left until it encounters a blank and then repeats the cycle.
The repetition ends if

- Searching right for a 0, M encounters a blank. Then, the n0's
in 0M10" have all been changed tols, and n+1 of the m O s have
been changed to B. M replacesthen+l1’sbyaOandnB’s,
leaving m-n 0" s on its tape.

- Beginning the cycIe M cannot find a O to change to a blank,
because the first m 0" s already have been changed Then n >=m,

gSieo m —n = 0. M replaces all remaning 1’ sand 0" s by B.

The function ¢ is described below.
6(90,0) = (q1,B,R) Begin. Replace the leading 0 by B.

6(91,0) =(q1,0,R) Search right looking for the first 1.
6(q1,1) = (q2,1,R)

5(g2,1) = (92,1,R) Search right past 1’ s until encountering a 0. Change that 0 to 1.
6(q2,0) = (a3,1,L)

6(93,0) =(g3,0,L) Move left to a blank. Enter state g0 to repeat the cycle.
5(93,1) =(a3,1,1)
5(a3,B) = (q0,B,R)
If in state g2 a B is encountered before a 0, we have situation i
described above. Enter state g4 and move left, changing all 1’ s
to B’ s until encountering a B. This B is changed back to a 0,
state g6 is entered and M halts.
(a2,B) = (q4,B,L)
(a4,1) = (q4,B,L)
5(94,0) = (q4,0,L)
(a4,B) = (q6,0,R)
If in state g0 a 1 is encountered instead of a 0, the first block
of 0’ s has been exhausted, as in situation (ii) above. M enters
state g5 to erase the rest of the tape, then enters q6 and halts.
6(90,1) = (a5,B,R)

o qS'gi; - qu'g'g As an exercise, trace the execution of this machine
=(g5,B,

$18) = (q6,5,R) using an input tape with the symbols 0010.
15-121 Ihtroduction to Data Structures 11

Modifications To The Basic Machine

* |t can be shown that the following
modifications do not improve on the
computing power of the basic Turing machine

shown above:

— Two-way infinite tape

— Multi-tape Turing machine with k tape heads and
k tapes

— Multidimensional, Multi-headed, RAM, etc., etc.,...
— Nondeterministic Turing machine

ngic— Let’s look at a Nondeterministic Turing Machine...

Nondeterministic Turing Machine (NTM)

* The transition function has the form:

e 0:QxI > P(QxTx{L, R}

* So, the domain is an ordered pair, e.g., (go,1).

* QxTIx{L, R}looks like { (g4,1,R),(90,0,R),(qy,1,L),...}.
e P(QxT x{L, R}) is the power set.

 P(QxT x{L, R}) looks like { {}, {(q0,1,R)},
{(90,1,R),(90,0,R)},...}

* So, if we see a 1 while in gy we might have to

perform several activities...

Computing using a NTM

* Atree corresponds to the different possibilities. If
some branch leads to an accept state, the machine
accepts. If all branches lead to a reject state, the
machine rejects.

e Solve subset sum in linear time with NTM:

 Set A={a,b,c} and sum = x. Is there a subset of A
summing to x? Suppose A ={1,2}, x=3. / \

 for each element e of A 1 nol
take paths with and without e /\ /\
n;aeccept if any path sums to x 2n022no?2

accept reject reject reject

Church-Turing Hypothesis

Notes taken from “The Turing Omnibus”, A.K. Dewdney

* Try as one might, there seems to be no way to define
a mechanism of any type that computes more than a
Turing machine is capable of computing.

 Note: On the previous slide we answered an NP-
Complete problem in linear time with a non-
deterministic algorithm.

* Quiz? Why does this not violate the Church-Turing
Hypothesis?

* With respect to computability, non-determinism

fgoes not add power.

The Halting Problem

Notes taken from “Algorithmics The Sprit of Computing” by D. Harel

Consider the following algorithm A:

while(x 1= 1) x =x—2;
stop

Assuming that its legal input consists of the positive integers <1,2,3,...>,It is obvious
that A halts precisely for odd inputs. This problem can be expressed as a language
recognition problem. How?

Now, consider Algorithm B:

while (x 1= 1) {
if(x%2==0)x=x/2;
elsex=3*x+1;
}

No one has been able to offer a proof that B always terminates. This is an open
quegflon in number theory. This too may be expressed as a language recognition
problem.

The halting problem is “undecidable”, meaning that there is no algorithm that will tell,
in a finite amount of time, whether a given arbitrary program R, will terminate on
a data input X or not.

But let’ s build such a device anyway...

Program or algorithm R Input X

l i

Turing Machine Q

Yes, R terminates when
reading input X

15-121 Introduction to Data Structures

No, R loops forever

when reading input X

17

And let’ s use it as a subroutine...

* Build a new program S that uses Q in the
following way.

* S first makes a copy of its input. It then passes
both copies (one as a program and another as

its input) to Q.

* Q makes its decision as before and gives its
result back to S.

* S halts if Q reports that Q' s input would loop
forever.

* Sitself loops forever if Q reports that Qs

"gi'enput terminates.

Program S

How much effort would
It require for you to
write S?

Assuming, of course,

that Q is part of the
Java API?

Can
Mell

Frogram ¥

Qix of P copy of P

Algorithm Q

T

Yes—P
terminates on P

S goes into a
self-imposed
infinite loop

No —P Loops
forever on P.

S halts

15-121 Introduction to Data Structures

19

Program S

OK, so far so
good. Now, pass

Sinto S as input.

Ca
E

Proglram S

copy of S copy of S

v

v

Algorithm Q

./\‘

Yes—S
terminateson S

S goes into a
self-imposed
infinite loop

No —S Loops
forever on S.

S halts

15-121 Introduction to Data Structures

20

* The existence of S leads to a logical contradiction.
If S terminates when reading itself as input then
Q reports this fact and S starts looping and never
terminates. If S loops forever when reading itself
as input then Q reports this to be the case and S
terminates.

* The construction of S seems to be reasonable in
many respects. It makes a copy of its input. It calls
a function called Q. It gets a result back and uses
that result to decide whether or not to loop (a bit
strange but easy to program). So, the problem
must be with Q. Its existence implies a
contradiction. So, Q does not exist. The halting

problem is undecidable.

Example: Malware Detection

* Shown to be undecidable
* Do we give up?

* No — monitoring output of processes can still
be fruitful

15-121 Introduction to Data Structures

22

Terminology: Recursive and
Recu rSiVely Enumerable notes from Wikipedia

A formal language is recursive if there exists a Turing machine
which halts for every given input and always either accepts or

rejects candidate strings. This is also called a decidable
language.

* Arecursively enumerable language requires that some Turing
machine halts and accepts when presented with a string in
the language. It may either halt and reject or loop forever
when presented with a string not in the language. A machine
can recognize the language.

* The set of halting program integer pairs is in R.E. but is not
recursive. We can’t decide it but we can recognize it.

ﬁll recursive (decidable) languages are recursively
enumera ble 15-121 Introduction to Data Structures 23

Recursive and Recursively
Enumerable

* The set of halting program integer pairs is in R.E. but
IS not recursive.

* Are there any languages that are not recursively
enumerable?

* Yes. Let L be { w = (program p, integeri) | p loops
forever on i}.

* Lis not recursively enumerable.
 We can’t even recognize L.
* The set of languages is bigger than the set of Turing

machmes

{0112k k=i*j} Turing decidable

{w| o™ n >= 0}

PDA

DFA

{w | w begins with 1}

L={(Mw)|MisaTM
and M accepts w}

gie Co-L={(M,w) | Mis a TM and M rejects w or loops}
Oon
15-121 Introduction to Data Structures 25

Turing recognizable

Some Results First

Computing Finite Pushdown Linear Turing

Model Automata Automata Bounded Machines
Automata

Language Class Regular Context-Free Context- Recursively

Languages Languages Sensitive Enumerable

Languages Languages

Non- Makes no Makes a No one knows Makes no

determinism difference difference difference

egie
on
15-121 Introduction to Data Structures 26

26

