
Finite	State	Machines		3

15-121	Introduction	to	Data	
Structures

115-121	Introduction	to	Data	Structures	

Notes	taken	with	modifications	from	“Introduction	to	Automata	
Theory,	Languages,	and	Computation” by	John	Hopcroft	and	Jeffrey	
Ullman,	1979

215-121	Introduction	to	Data	Structures	

Deterministic	Finite-State	Automata	(review)

315-121	Introduction	to	Data	Structures	

A DFSA can be formally defined as M = (Q,Σ, 𝛿, q0, F):
Q, a finite set of states
Σ, the alphabet of input symbols
𝛿, Q X Σ → Q , a transition function
q0, the initial state
F, the set of final states

Pushdown	Automata(review)

415-121	Introduction	to	Data	Structures	

A pushdown automaton can be formally defined as M = (Q,Σ, Γ, 𝛿, q0, F):
Q, a finite set of states
Σ, the alphabet of tape symbols
Γ, the alphabet of stack symbols
𝛿, Q X Σ X Γ → Q X Γ
q0, the initial state
F, the set of final states

Turing	Machines
• The	basic	model	of	a	Turing	machine	has	a	finite	
control,	an	input	tape	that	is	divided	into	cells,	and	a	
tape	head	that	scans	one	cell	of	the	tape	at	a	time.	

• The	tape	has	a	leftmost	cell	but	is	infinite	to	the	right.
• Each	cell	of	the	tape	may	hold	exactly	one	of	a	finite	
number	of	tape	symbols.	

• Initially,	the	n	leftmost	cells,	for	some	finite	n	>=	0,	
hold	the	input,	which	is	a	string	of	symbols	chosen	
from	a	subset	of	the	tape	symbols	called	the	input	
symbols.	

• The	remaining	infinity	of	cells	each	hold	the	blank,	
which	is	a	special	symbol	that	is	not	an	input	symbol.

515-121	Introduction	to	Data	Structures	

615-121	Introduction	to	Data	Structures	

A Turing machine can be formally defined as M= (Q, 𝛴, Γ, 𝛿, q0 , B, F):
where
Q, a finite set of states
Γ, is the finite set of allowable tape symbols
B, a symbol from Γ is the blank
𝛴, a subset of Γ not including B, is the set of input symbols
𝛿, Q x Γ → Q x Γ x { L,R} (may be undefined for some arguments)
q0 in Q is the initial state
F ⊆Q is the set of final states

Turing	Machine	Example
The	design	of	a	Turing	Machine	M	to	decide	the	language	
L	=	{0n1n,	n	>=	1}.	This	language	is	decidable.

• Initially,	the	tape	of	M	contains	0n1n followed	by	an	
infinity	of	blanks.	

• Repeatedly,	M	replaces	the	leftmost	0	by	X,	moves	
right	to	the	leftmost	1,	replacing	it	by	Y,	moves	left	to	
find	the	rightmost	X,	then	moves	one	cell	right	to	the	
leftmost	0	and	repeats	the	cycle.	

• If,	however,	when	searching	for	a	1,	M	finds	a	blank	
instead,	then	M	halts	without	accepting.	If,	after	
changing	a	1	to	a	Y,	M	finds	no	more	0’s,	then	M	
checks	that	no	more	1’s	remain,	accepting	if	there	are	
none.

715-121	Introduction	to	Data	Structures	

Let	Q	=	{	q0,	q1,	q2,	q3,	q4 },	∑	=	{0,1},		Γ=	{0,1,X,Y,B}	and	F	=	{q4}
𝛿 is	defined	with	the	following	table:

INPUT	SYMBOL

STATE 0 1 X Y B
q0								 (q1,X,R)- - (q3,Y,R) -
q1 (q1,0,R)(q2,Y,L) - (q1,Y,R) -
q2 (q2,0,L) - (q0,X,R)(q2,Y,L) -
q3 - - - (q3,Y,R) (q4,B,R)
q4 - - - - -

As	an	exercise,	draw	a	state	diagram	of	this	machine	and	trace	its	
execution	through	0011,	001101	and	001.

815-121	Introduction	to	Data	Structures	

The	Turing	Machine	as	a	computer	of	integer	
functions

• In	addition	to	being	a	language	acceptor,	the	
Turing	machine	may	be	viewed	as	a	computer	
of	functions	from	integers	to	integers.	

• The	traditional	approach	is	to	represent	
integers	in	unary;	the	integer	i	>=	0	is	
represented	by	the	string	0i.	

• If	a	function	has	more	than	one	argument	
then	the	arguments	may	be	placed	on	the	
tape	separated	by	1’s.

915-121	Introduction	to	Data	Structures	

For	example,	proper	subtraction	m	– n	is	defined	to	be	
m	– n	for	m	>=	n,	and	
zero	for	m	<	n.	

The	TM	M	=	({q0,q1,...,q6},	{0,1},	{0,1,B},	𝛿, q0,	B,	{})

defined	below,	if	started	with	0m10n on	its	tape,	halts	with	0m-n on	its	
tape.	M	repeatedly	replaces	its	leading	0	by	blank,	then	searches	
right	for	a	1	followed	by	a	0	and	changes	the	0	to	a	1.	Next,	M	
moves	left	until	it	encounters	a	blank	and	then	repeats	the	cycle.	
The	repetition	ends	if	

- Searching	right	for	a	0,	M	encounters	a	blank.	Then,	the	n	0’s	
in	0m10n have	all	been	changed	to	1’s,	and	n+1	of	the	m	0’s	have	
been	changed	to	B.	M	replaces	the	n+1	1’s	by	a	0	and	n	B’s,	
leaving	m-n	0’s	on	its	tape.
- Beginning	the	cycle,	M	cannot	find	a	0	to	change	to	a	blank,	
because	the	first	m	0’s	already	have	been	changed.	Then	n	>=	m,	
so	m	– n	=	0.	M	replaces	all	remaning	1’s	and	0’s	by	B.

1015-121	Introduction	to	Data	Structures	

The	function	𝛿 is	described	below.

𝛿(q0,0)	=	(q1,B,R)			Begin.	Replace	the	leading	0	by	B.

𝛿(q1,0)	=	(q1,0,R)			Search	right	looking	for	the	first	1.
𝛿(q1,1)	=	(q2,1,R)

𝛿(q2,1)	=	(q2,1,R)			Search	right	past	1’s	until	encountering	a	0.	Change	that	0	to	1.
𝛿(q2,0)	=	(q3,1,L)

𝛿(q3,0)	=	(q3,0,L)			Move	left	to	a	blank.	Enter	state	q0	to	repeat	the	cycle.
𝛿(q3,1)	=	(q3,1,L)			
𝛿(q3,B)	=	(q0,B,R)

If	in	state	q2	a	B	is	encountered	before	a	0,	we	have	situation	i	
described	above.	Enter	state	q4	and	move	left,	changing	all	1’s	
to	B’s	until	encountering	a	B.	This	B	is	changed	back	to	a	0,	
state	q6	is	entered	and	M	halts.

𝛿(q2,B)	=	(q4,B,L)			
𝛿(q4,1)	=	(q4,B,L)
𝛿(q4,0)	=	(q4,0,L)
𝛿(q4,B)	=	(q6,0,R)

If	in	state	q0	a	1	is	encountered	instead	of	a	0,	the	first	block	
of	0’s	has	been	exhausted,	as	in	situation	(ii)	above.	M	enters	
state	q5	to	erase	the	rest	of	the	tape,	then	enters	q6	and	halts.	

𝛿(q0,1)	=	(q5,B,R)			
𝛿(q5,0)	=	(q5,B,R)
𝛿(q5,1)	=	(q5,B,R)
𝛿(q5,B)	=	(q6,B,R).

As	an	exercise,	trace	the	execution	of	this	machine	
using	an	input	tape	with	the	symbols	0010.

1115-121	Introduction	to	Data	Structures	

Modifications	To	The	Basic	Machine
• It	can	be	shown	that	the	following	
modifications	do	not	improve	on	the	
computing	power	of	the	basic	Turing	machine	
shown	above:
– Two-way	infinite	tape
– Multi-tape	Turing	machine	with	k	tape	heads	and	
k	tapes

– Multidimensional,	Multi-headed,	RAM,	etc.,	etc.,…
– Nondeterministic	Turing	machine
– Let’s	look	at	a	Nondeterministic	Turing	Machine…

1215-121	Introduction	to	Data	Structures	

Nondeterministic	Turing	Machine	(NTM)

• The	transition	function	has	the	form:		
• 𝛿:	Q	x	Γ	→ Ρ(Q	x	Γ	x	{L,	R})	
• So,	the	domain	is	an	ordered	pair,	e.g.,	(q0,1).
• Q	x	Γ	x	{L,	R}	looks	like	{	(q0,1,R),(q0,0,R),(q0,1,L),…}.
• Ρ(Q	x	Γ	x	{L,	R})	is	the	power	set.
• Ρ(Q	x	Γ	x	{L,	R})	looks	like	{	{},	{(q0,1,R)},	
{(q0,1,R),(q0,0,R)},…}

• So,	if	we	see	a	1	while	in	q0 we	might	have	to	
perform	several	activities…

15-121	Introduction	to	Data	Structures	 13

Computing	using	a	NTM

• A	tree	corresponds	to	the	different	possibilities.	If	
some	branch	leads	to	an	accept	state,	the	machine	
accepts.	If	all	branches	lead	to	a	reject	state,	the	
machine	rejects.

• Solve	subset	sum	in	linear	time	with	NTM:
• Set	A	=	{a,b,c}	and	sum	=	x.	Is	there	a	subset	of	A	
summing	to	x?	Suppose	A	=	{1,2},	x	=	3.						/			\

• for	each	element	e	of	A																																1		no	1
take	paths	with	and	without	e														/	\ /\

accept	if	any	path	sums	to	x																	2	no	2	2	no	2
accept	reject	reject	reject

15-121	Introduction	to	Data	Structures	 14

Church-Turing	Hypothesis
Notes	taken	from	“The	Turing	Omnibus”,	A.K.	Dewdney

• Try	as	one	might,	there	seems	to	be	no	way	to	define	
a	mechanism	of	any	type	that	computes	more	than	a	
Turing	machine	is	capable	of	computing.

• Note:	On	the	previous	slide	we	answered	an	NP-
Complete	problem	in	linear	time	with	a	non-
deterministic	algorithm.

• Quiz?	Why	does	this	not	violate	the	Church-Turing	
Hypothesis?	

• With	respect	to	computability,	non-determinism	
does	not	add	power.	

1515-121	Introduction	to	Data	Structures	

The	Halting	Problem
Notes	taken	from	“Algorithmics	The	Sprit	of	Computing” by	D.	Harel

Consider	the	following	algorithm	A:

while(x	!=	1)	x	=	x	– 2;
stop

Assuming	that	its	legal	input	consists	of	the	positive	integers	<1,2,3,...>,It	is	obvious	
that	A	halts	precisely	for	odd	inputs.	This	problem	can	be	expressed	as	a	language	
recognition	problem.	How?	

Now,	consider	Algorithm	B:

while	(x	!=	1)	{
if	(x	%	2	==	0)	x	=	x	/	2;
else	x	=	3	*	x	+	1;

}
No	one	has	been	able	to	offer	a	proof	that	B	always	terminates.	This	is	an	open	

question	in	number	theory.	This	too	may	be	expressed	as	a	language	recognition	
problem.

The	halting	problem	is	“undecidable”,	meaning	that	there	is	no	algorithm	that	will	tell,	
in	a	finite	amount	of	time,	whether	a	given	arbitrary	program	R,	will	terminate	on	
a	data	input	X	or	not.

1615-121	Introduction	to	Data	Structures	

1715-121	Introduction	to	Data	Structures	

But let’s build such a device anyway…

• Build	a	new	program	S	that	uses	Q	in	the	
following	way.	

• S	first	makes	a	copy	of	its	input.	It	then	passes	
both	copies	(one	as	a	program	and	another	as	
its	input)	to	Q.	

• Q	makes	its	decision	as	before	and	gives	its	
result	back	to	S.	

• S	halts	if	Q	reports	that	Q’s	input	would	loop	
forever.	

• S	itself	loops	forever	if	Q	reports	that	Q’s	
input	terminates.

1815-121	Introduction	to	Data	Structures	

And let’s use it as a subroutine…

1915-121	Introduction	to	Data	Structures	

How much effort would
It require for you to
write S?

Assuming, of course,
that Q is part of the
Java API?

2015-121	Introduction	to	Data	Structures	

OK, so far so
good. Now, pass
S in to S as input.

• The	existence	of	S	leads	to	a	logical	contradiction.	
If	S	terminates	when	reading	itself	as	input	then	
Q	reports	this	fact	and	S	starts	looping	and	never	
terminates.	If	S	loops	forever	when	reading	itself	
as	input	then	Q	reports	this	to	be	the	case	and	S	
terminates.	

• The	construction	of	S	seems	to	be	reasonable	in	
many	respects.	It	makes	a	copy	of	its	input.	It	calls	
a	function	called	Q.	It	gets	a	result	back	and	uses	
that	result	to	decide	whether	or	not	to	loop	(a	bit	
strange	but	easy	to	program).	So,	the	problem	
must	be	with	Q.	Its	existence	implies	a	
contradiction.	So,	Q	does	not	exist.	The	halting	
problem	is	undecidable.

2115-121	Introduction	to	Data	Structures	

Example:	Malware	Detection

• Shown	to	be	undecidable
• Do	we	give	up?
• No	– monitoring	output	of	processes	can	still		
be	fruitful

15-121	Introduction	to	Data	Structures	 22

Terminology:	Recursive	and	
Recursively	Enumerable	notes	from	Wikipedia

• A	formal	language	is	recursive if	there	exists	a		Turing	machine	
which	halts	for	every	given	input	and	always	either	accepts	or	
rejects	candidate	strings.	This	is	also	called	a	decidable	
language.

• A	recursively	enumerable language	requires	that	some		Turing	
machine	halts	and	accepts	when	presented	with	a	string	in	
the	language.	It	may	either	halt	and	reject	or	loop	forever	
when	presented	with	a	string	not	in	the	language.	A	machine	
can	recognize the	language.

• The	set	of	halting	program	integer	pairs	is	in	R.E.	but	is	not	
recursive.	We	can’t	decide	it	but	we	can	recognize	it.

• All	recursive	(decidable)	languages	are	recursively	
enumerable.	 15-121	Introduction	to	Data	Structures	 23

Recursive	and	Recursively	
Enumerable

• The	set	of	halting	program	integer	pairs	is	in	R.E.	but	
is	not	recursive.

• Are	there	any	languages	that	are	not	recursively	
enumerable?

• Yes.	Let	L	be	{	w	=	(program	p,	integer	i)	|	p	loops	
forever	on	i}.

• L	is	not	recursively	enumerable.
• We	can’t	even	recognize	L.
• The	set	of	languages	is	bigger	than	the	set	of	Turing	
machines.

15-121	Introduction	to	Data	Structures	 24

15-121	Introduction	to	Data	Structures	 25

DFA

{w | w begins with 1}

PDA
{w| on1n n >= 0}

{0i 1j 2k | k = i * j } Turing decidable

Turing recognizable
L = { (M,w) | M is a TM
and M accepts w}

Co-L = {(M,w) | M is a TM and M rejects w or loops}

15-121	Introduction	to	Data	Structures	 26

Some	Results	First
Computing	
Model

Finite	
Automata

Pushdown	
Automata

Linear	
Bounded	
Automata

Turing	
Machines

Language	Class Regular	
Languages

Context-Free	
Languages

Context-
Sensitive	
Languages

Recursively	
Enumerable	
Languages

Non-
determinism

Makes	no	
difference

Makes	a	
difference

No	one	knows Makes	no	
difference

26

