Basics -- 2

From: <u>Data Structures and Their Algorithms</u>, by Harry R. Lewis and Larry Denenberg (Harvard University: Harper Collins Publishers)

Review: Logarithms, Powers and Exponentials

Let *b* be any real greater than 1 and let *x* be any real greater than 0. The logarithm to the base *b* of *x*, denoted $\log_b x$ is defined to be the number *y* such that

$$b^{v} = x$$

$$log_b 1 = 0$$

 $log_b x > 0$ if $x > 1$
 $log_b b = 1$
 $log_b x < 0$ if $0 < x < 1$

Any logarithmic function is a monotone increasing function of its argument, that is

 $\log_b x_1 > \log_b x_2$ provided that $x_1 > x_2$

Doubling the argument increases the base 2 logarithm by 1. That is,

 $\log_2 2x = (\log_2 x) + 1$

Why?

$$2^{(\log_2 x) + 1} = 2^{\log_2 x} \cdot 2 = 2 \cdot x$$
$$2^{\log_2 2x} = 2x$$

Review: Logarithms

$$\log_b (x_1 \cdot x_2) = \log_b x_1 + \log_b (x_2)$$
$$\log_b (x_1 / x_2) = \log_b x_1 - \log_b x_2$$
$$\log_b x^c = \mathbf{c} \cdot \log_b x$$

Suppose *a* and *b* are both greater than 1, what is the relation of $\log_a x$ to $\log_b x$?

For example, suppose we know that an algorithm executes lg x instructions, where x is the size of the input. $lg x = lg(10^{log_{10}x})$

$$= \log_{10} x \cdot \lg 10$$

~ 3.32 * $\log_{10} x$

The number of bits in the usual binary notation for the positive integer N is $\lfloor LgN \rfloor + 1$.

For example, how many bits are required to represent

41 0 1 0 1 0 0 1 64 32 16 8 4 2 1 3 0 1 1 41 6 bits $\lfloor Lg41 \rfloor + 1 = 5+1 = 6$ 3 0 1 1 4 2 1 2 bits $\lfloor Lg3 \rfloor + 1 = 1+1 = 2$

The number of digits in the usual base 10 notation for the positive integer N is $\lfloor Log_{10}N \rfloor + 1$.

For example, how many digits are required to represent 31?

31 3 1 2 digits $\lfloor Log_{10} 31 \rfloor + 1 = 1 + 1 = 2$ 10 1

Any function from reals to reals of the form $g(x) = x^{\alpha}$ for some constant $\alpha > 0$ is called a <u>simple power</u>. Any simple power is an increasing function of its argument.

Examples:

 x^2 , x^3 and $x^{1/3}$ are simple powers

An exponential function is one of the form $h(x) = c^x$ for some constant c > 1.

Examples:

2^x and 100^x are exponential functions of x

Dominates

- •Let f and g be functions from reals to reals. f dominates g if the ratio f(n) / g(n) increases without bound as n increases without bound. In other words, if for any c > 0there is an $n_0 > 0$ such that $f(n) > c \cdot g(n)$ for all $n > n_0$.
- Examples: $f(n) = n^2$ dominates g(n) = 2n since for any c $n^2 > c \cdot 2n$ whenever n > 2c.
- f(n) = 10n does not dominate g(n) = 2n since the ratio of f(n) / g(n) is never larger than 5.

Theorem:

Any exponential function dominates any simple power, any simple power dominates any logarithmic function.

Let N be the set of nonnegative integers $\{0,1,\ldots\}$. Let R be the set of real numbers and let R^* be the set of nonnegative real numbers.

Let g be a function from N to R^* . Then O(g) is the set of all functions f from N to R^* such that, for some constants c > 0 and $N_0 \ge 0$.

$$f(N) \leq c \cdot g(N)$$
 for all $N \geq N_0$.

In other words, $f \in O(g)$ if the value of f is bounded from above by a fixed multiple of the value of g for all sufficiently large values of the argument.

Examples:

For any f it is the case that $f \in O(f)$. Any constant multiple of f is in O(f). F(n) = 13n + 7 is in O(n).

Why?

 $13n + 7 \le 14n$ for $n \ge 7$

So the definition is satisfied with c = 14, $n_0 = 7$.

 $1000n \in O(.0001n^2)$

Why?

Let $c = 10^7$ and $n_0 = 0$ in the definition of O().

f(n) = n $f(n) \in O(n^2)$

Little o

For any function g, o(g) is the set of all functions that are dominated by g. That is, the set of all functions f such that for each constant c > 0 there is an $n_0 > 0$ such that

 $f(n) < c \cdot g(n)$ for all $n > n_0$.

Examples:

Let f(n) = n and $g(n) = n^2$ then $f(n) \in o(g(n))$

Let $f(n) = n^2$ and $g(n) = 2^n$ then $f(n) \in o(g(n))$

Theorem: Growth Rates

1. The power n^{α} is in $O(n^{\beta})$ if and only if $\alpha \leq \beta$ ($\alpha, \beta > 0$); and n^{α} is in $o(n^{\beta})$ if and only if $\alpha < \beta$.

Examples:	Intuitively	
	. 3	

n $\in O(n^3)$ $n <= n^3$ n $\in o(n^3)$ $n < n^3$

2. $\log_b n \in o(n^{\alpha})$ for any *b* and α .

Examples:

$$\log_{10} n \in o(n)$$

 $\log_2 n \in o(n^{1/2})$

3. $n^{\alpha} \in o(c^n)$ for any $\alpha > 0$ and c > 1.

Examples:

 $n^2 \in o(4^n)$

 $n^{100} \in o(2^n)$

4. $\log_a n \in O(\log_b n)$ for any *a* and *b*.

 $\log_2 n \in O(\log_{10} n)$

 $\log_{10} n \in O(\log_2 n)$

5. $c^n \in O(d^n)$ if and only if $c \le d$, and $c^n \in o(d^n)$ if and only if $c \le d$.

Examples:

 $\mathcal{Z}^n \in O(\mathcal{Z}^n)$

 $\mathcal{3}^n \in o(\mathcal{4}^n)$

6. Any constant function f(n) = c is in O(1).

For example:

A 32-bit add instruction O(1).

Big-O only provides an upper bound.

For example:

 $17n^2 \in O(n^2)$ but $17n^2 \in O(n^{37})$ $17n^2 \in O(2^n)$

Big Omega (Big- Ω):

Big- Ω notation is exactly the converse of Big-O notation; $f \in \Omega(g)$ if and only if $g \in O(f)$.

 $f \in O(g)$ implies that f grows at most as quickly as g. $f \in \Omega(g)$ implies that f grows at least as quickly as g.

> Examples: let f(n) = n $f(n) \in O(n^2)$ $n^2 \in \Omega(n)$

Big theta (Big \theta):

 $\theta(f) = O(f) \cap \Omega(f)$

Example:

Let f(n) = 4n then $f(n) \in O(n)$ $f(n) \in \Omega(n)$ so $f(n) \in \theta(n)$

The set of functions $\theta(f)$ is the order of f.

Suppose we use a phone book to look up a number in the standard way. Let T(n) be the number of operations (comparisons) required.

In the worst case $T(n) \in O(Log N)$.

True or False:

Also, in the w	orst case,
$T(n) \in O(n)$	
$T(n) \in \theta(n)$	
$\mathbf{T}(\mathbf{n})\in\Omega(\mathbf{n})$	

Suppose we use a phone book to look up a number in the standard way. Let T(n) be the number of operations (comparisons) required.

In the <u>worst</u> case $T(n) \in O(Log N)$.

True or False:

Also, in the worst case, $T(n) \in O(n)$ True $T(n) \in \theta(n)$ False $T(n) \in \Omega(n)$ False

Suppose we use a phone book to look up a number. Let T(n) be the number of operations (comparisons) required.

In the <u>best</u> case $T(n) \in O(1)$.

True or False:

Also, in	the best case,
$T(n) \in C$	D(n)
$T(n) \in \mathcal{E}$	H(n)
$T(n) \in \mathcal{G}$	Q (n)

Suppose we use a phone book to look up a number. Let T(n) be the number of operations (comparisons) required.

In the <u>best</u> case $T(n) \in O(1)$.

True or False:

Also, in the best case, $T(n) \in O(n)$ True $T(n) \in \theta(n)$ False $T(n) \in \Omega(n)$ False

Suppose we want to delete the last item on a singly linked list. Let T(n) be the number of operations (comparisons) required.

There are no cases to consider: $T(n) \in O(n)$.

True or False:

 $T(n) \in O(Lg n)$ $T(n) \in \theta(n)$ $T(n) \in \Omega(Lg n)$

Suppose we want to delete the last item on a singly linked list. Let T(n) be the number of operations (comparisons) required.

There are no cases to consider: $T(n) \in O(n)$.

True or False:

 $T(n) \in O(Lg n) \quad False$ $T(n) \in \theta(n) \quad True$ $T(n) \in \Omega(Lg n) \quad True$

Remember

When working with Big O, Big θ and Big Ω , be sure to always consider only large n.

In addition, pin the case down first and then consider Big O, Big θ , and Big Ω .

Lastly, remember that some times "case" does not apply.

Algorithms and Problems

In this class, we will mostly be analyzing algorithms (counting operations) in terms of Big O, Big θ and Big Ω .

Problems may also be analyzed. The lower bound for a particular problem is the worst case running time of the fastest algorithm that solves that problem.

Later, we will look at an argument that comparison based sorting is $\Omega(n \text{ Log } n)$. What does that mean?