
15-121 Intro to Data Structures 1

Basics -- 2
From: Data Structures and Their Algorithms,
by Harry R. Lewis and Larry Denenberg
(Harvard University: Harper Collins
Publishers)

15-121 Intro to Data Structures 2

Review: Logarithms, Powers and Exponentials

Let b be any real greater than 1 and let x be any real greater than 0.
The logarithm to the base b of x, denoted logbx is defined to be the
number y such that

by = x

logb1 = 0
logb x > 0 if x > 1
logbb = 1
logbx < 0 if 0 < x < 1

Any logarithmic function is a monotone increasing function of its
argument, that is

logbx1 > logbx2 provided that x1 > x2

15-121 Intro to Data Structures 3

Doubling the argument increases the base 2 logarithm by 1.
That is,

log22x = (log2x) + 1

Why?

2(log2x) + 1 = 2log2x× 2 = 2 × x
2log22x = 2x

15-121 Intro to Data Structures 4

Review: Logarithms

logb (x1 × x2) = logb x1 + logb (x2)

logb (x1 / x2) = logb x1 - logb x2

logb xc = c × logb x

15-121 Intro to Data Structures 5

Suppose a and b are both greater than 1, what is the
relation of loga x to logb x?

Since x = aloga x

logbx = logb(alogax)

= logax × logba

This is a constant. So, any
two logarithmic functions
differ only by a constant
factor.

For example, suppose we know that an algorithm executes
lg x instructions, where x is the size of the input.
lg x = lg(10log10x)

= log10x × lg 10
~ 3.32 * log10x

15-121 Intro to Data Structures 6

The number of bits in the usual binary notation for the
positive integer N is ëLgNû + 1.

For example, how many bits are required to represent

41 0 1 0 1 0 0 1 6 bits ëLg41û + 1 = 5+1 = 6
64 32 16 8 4 2 1

3 0 1 1 2 bits ëLg3û + 1 = 1+1 = 2
4 2 1

15-121 Intro to Data Structures 7

The number of digits in the usual base 10 notation for
the positive integer N is ëLog10Nû + 1.

For example, how many digits are required to represent
31?

31 3 1 2 digits ëLog1031û + 1 = 1+1 = 2
10 1

15-121 Intro to Data Structures 8

Any function from reals to reals of the form g(x) = xa for
some constant a > 0 is called a simple power. Any simple
power is an increasing function of its argument.

Examples:

x2, x3 and x1/3 are simple powers

15-121 Intro to Data Structures 9

An exponential function is one of the form h(x) = cx for
some constant c > 1.

Examples:

2x and 100x are exponential functions of x

15-121 Intro to Data Structures 10

•Let f and g be functions from reals to reals. f dominates
g if the ratio f(n) / g(n) increases without bound as n
increases without bound. In other words, if for any c > 0
there is an n0 > 0 such that f(n) > c × g(n) for all n > n0.

• Examples: f(n) = n2 dominates g(n) = 2n since for any c
n2 > c× 2n whenever n > 2c.

• f(n) = 10n does not dominate g(n) = 2n since the ratio of
f(n) / g(n) is never larger than 5.

Dominates

15-121 Intro to Data Structures 11

Theorem:

Any exponential function dominates any simple power,
any simple power dominates any logarithmic function.

15-121 Intro to Data Structures 12

Let N be the set of nonnegative integers {0,1,…}. Let
R be the set of real numbers and let R* be the set of
nonnegative real numbers.

Let g be a function from N to R*. Then O(g) is the set
of all functions f from N to R* such that, for some
constants c > 0 and N0 ³ 0.

f(N) £ c × g(N) for all N ³ N0 .

In other words, f Î O(g) if the value of f is bounded from
above by a fixed multiple of the value of g for all
sufficiently large values of the argument.

15-121 Intro to Data Structures 13

Examples:

For any f it is the case that f Î O(f).
Any constant multiple of f is in O(f).
F(n) = 13n + 7 is in O(n).

Why?

13n + 7 £ 14n for n ³ 7

So the definition is satisfied with c = 14, n0 = 7.

1000n Î O(.0001n2)

Why?

Let c = 107 and n0 = 0 in the definition of O().

f(n) = n
f(n) Î O(n2)

15-121 Intro to Data Structures 14

Little o

For any function g, o(g) is the set of all functions that are
dominated by g. That is, the set of all functions f such that
for each constant c > 0 there is an n0 > 0 such that

f(n) < c × g(n) for all n > n0.

Examples:

Let f(n) = n and g(n) = n2 then
f(n) Î o(g(n))

Let f(n) = n2 and g(n) = 2n then
f(n) Î o(g(n))

15-121 Intro to Data Structures 15

Theorem: Growth Rates

1. The power na is in O(nb) if and only if a £ b (a, b > 0);
and na is in o(nb) if and only if a < b .

Examples: Intuitively

n Î O(n3) n <= n3

n Î o(n3) n < n3

15-121 Intro to Data Structures 16

2. logb n Î o(na) for any b and a.

log10 n Î o(n)

log2 n Î o(n1/2)

Examples:

15-121 Intro to Data Structures 17

3. naÎ o(cn) for any a > 0 and c > 1.

Examples:

n2 Î o(4n)

n100 Î o(2n)

15-121 Intro to Data Structures 18

4. loga n Î O(logb n) for any a and b.

log2 n Î O(log10 n)

log10 n Î O(log2 n)

15-121 Intro to Data Structures 19

5. cn Î O(dn) if and only if c £ d, and cn Î o(dn)
if and only if c < d.

Examples:

3n Î O(4n)

3n Î o(4n)

15-121 Intro to Data Structures 20

6. Any constant function f(n) = c is in O(1).

For example:

A 32-bit add instruction O(1).

15-121 Intro to Data Structures 21

Big-O only provides an upper bound.

For example:

17n2 Î O(n2) but
17n2 Î O(n37)
17n2 Î O(2n)

15-121 Intro to Data Structures 22

Big Omega (Big- W):

Big-W notation is exactly the converse of Big-O notation;
f Î W(g) if and only if g Î O(f).

f Î O(g) implies that f grows at most as quickly as g.
f Î W (g) implies that f grows at least as quickly as g.

Examples:
let f(n) = n
f(n) ÎO(n2)
n2 Î W(n)

15-121 Intro to Data Structures 23

Big theta (Big q):

q(f) = O(f) Ç W(f)

Example:

Let f(n) = 4n then
f(n) Î O(n)
f(n) Î W(n)
so
f(n) Î q(n)

The set of functions q(f) is the order of f.

15-121 Intro to Data Structures 24

A Quiz
Suppose we use a phone book to look up a number in the standard
way. Let T(n) be the number of operations (comparisons) required.

In the worst case T(n) Î O(Log N).

True or False:

Also, in the worst case,
T(n) Î O(n) ______
T(n) Î q(n) ______
T(n) Î W(n) ______

15-121 Intro to Data Structures 25

A Quiz
Suppose we use a phone book to look up a number in the
standard way. Let T(n) be the number of operations (comparisons)
required.

In the worst case T(n) Î O(Log N).

True or False:

Also, in the worst case,
T(n) Î O(n) True
T(n) Î q(n) False
T(n) Î W(n) False

15-121 Intro to Data Structures 26

A Quiz
Suppose we use a phone book to look up a number. Let
T(n) be the number of operations (comparisons) required.

In the best case T(n) Î O(1).

True or False:

Also, in the best case,
T(n) Î O(n) _____
T(n) Î q(n) _____
T(n) Î W(n) _____

15-121 Intro to Data Structures 27

A Quiz
Suppose we use a phone book to look up a number. Let
T(n) be the number of operations (comparisons) required.

In the best case T(n) Î O(1).

True or False:

Also, in the best case,
T(n) Î O(n) True
T(n) Î q(n) False
T(n) Î W(n) False

15-121 Intro to Data Structures 28

A Quiz
Suppose we want to delete the last item on a singly linked
list. Let T(n) be the number of operations (comparisons)
required.

There are no cases to consider: T(n) Î O(n).

True or False:

T(n) Î O(Lg n)
T(n) Î q(n)
T(n) Î W(Lg n)

15-121 Intro to Data Structures 29

A Quiz
Suppose we want to delete the last item on a singly linked
list. Let T(n) be the number of operations (comparisons)
required.

There are no cases to consider: T(n) Î O(n).

True or False:

T(n) Î O(Lg n) False
T(n) Î q(n) True
T(n) Î W(Lg n) True

Remember

15-121 Intro to Data Structures 30

When working with Big O, Big q and Big W, be sure
to always consider only large n.

In addition, pin the case down first and then consider
Big O, Big q, and Big W.

Lastly, remember that some times “case” does not apply.

Algorithms and Problems

15-121 Intro to Data Structures 31

In this class, we will mostly be analyzing algorithms (counting
operations) in terms of Big O, Big q and Big W.

Problems may also be analyzed. The lower bound for a
particular problem is the worst case running time of the
fastest algorithm that solves that problem.

Later, we will look at an argument that comparison based
sorting is W(n Log n). What does that mean?

