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vGASA: Adaptive Scheduling Algorithm of
Virtualized GPU Resource in Cloud Gaming

Chao Zhang, Zhengwei Qi, Jianguo Yao, Miao Yu and Haibing Guan

Abstract—As the virtualization technology for GPUs matures, cloud gaming has become an emerging application among cloud
services. In addition to the poor default mechanisms of GPU resource sharing, the performance of cloud games is inevitably
undermined by various runtime uncertainties such as rendering complex game scenarios. The question of how to handle
the runtime uncertainties for GPU resource sharing remains unanswered. To address this challenge, we propose vGASA,
a virtualized GPU resource adaptive scheduling algorithm in cloud gaming. vGASA interposes scheduling algorithms in the
graphics API of the operating system, and hence the host graphic driver or the guest operating system remains unmodified. In
order to fulfill the Service Level Agreement as well as maximize GPU usage, we propose three adaptive scheduling algorithms
featuring feedback control that mitigates the impact of the runtime uncertainties on the system performance. The experimental
results demonstrate that vGASA is able to maintain frames per second of various workloads at the desired level with the
performance overhead limited to 5-12%.

Index Terms—GPU, resource management, scheduling, control theory, cloud gaming
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1 INTRODUCTION

V IRTUALIZATION technology has significantly in-
fluenced how resources are used and managed

in cloud data centers. Several virtualization solutions
are widely used to construct cloud computing sys-
tems. For instance, VMware has become the industry
standard in the field of commercial virtual machines
(VMs). Xen [1] is the pioneer of paravirtualization
technology in the field of open-source software. How-
ever, research on graphics processing unit (GPU) vir-
tualization is still at an initial stage. It is difficult
to virtualize a GPU in hypervisor mainly due to
its sophisticated infrastructure design as well as the
device driver.

Despite these difficulties, GPU virtualization tech-
nology has developed dramatically in the past few
years. We have conducted experiments on some hy-
pervisors to evaluate the performance of their 3D
rendering and find that 3D acceleration of VMs is
reaching its maturity. In the experiments, Windows 7
was used as both the guest and the host operating
system (OS), and 3DMark06, a GPU performance
benchmark, was used as the workload. The results
for VMware player demonstrate that VMware player
4.0 is able to achieve 95.6% of the native performance
while VMware Player 3.0, which was released three
years ago, achieves only 52.4%. Due to the advantage
of high native performance, there is an increasing
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number of data centers dedicated to GPU computing
tasks such as cloud gaming, video rendering, and
general purpose GPU (GPGPU) computing [2], [3],
[4], [5], [6]. Taking cloud gaming for instance, the
platform renders games remotely and streams the
running result over the network so that clients can
play high-end games without the support of the latest
hardware.

GPU virtualization technology promotes the in-
creasing applications of cloud games. However, GPU
resource scheduling for cloud gaming in the virtu-
alized environment is not well studied. The default
GPU resource sharing in existing virtualization solu-
tions is pretty poor as shown in Fig. 1. The frames
per second (FPS) and frame latency results are given
with respect to three popular games running concur-
rently on separate VMs. In Fig. 1a, Starcraft 2 has
an average 50 FPS, while DiRT 3 has only around
25. Usually, a game with FPS above 30 can provide
a smooth user experience, and, hence, DiRT 3 is a
little unplayable under such circumstances. Also, as
illustrated in Fig. 1b, Starcraft 2 suffers high frame
latency due to the heavy resource contention among
the three games: 12.78% frame latency exceeds 34 ms
and 1.26% exceeds 60 ms.

One likely reason that GPU virtualization is not
extensively applied in data centers, is the poor perfor-
mance of the default resource scheduling mechanism-
s. For instance, the default GPU sharing in VMware
player tends to allocate resources in a first-come, first-
served manner. As a result, some VMs may not satis-
fy their service level agreement (SLA) requirements.
Another reason is that multiple VMs are required
to run on a single server; hence, they often suffer
performance variations, especially in cloud gaming
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Fig. 1: Default scheduling results in poor performance
under heavy contention:(a) FPS of three popular
games; (b) corresponding frame latency of Starcraft
2.

platforms. In addition, the FPS rate of a game running
in the virtualized environment is significantly affected
by the central processing unit (CPU) time of executing
the game logic, the GPU time of asynchronous render-
ing, unpredictable game scenario changes and inter-
ference factors from other VMs. In order to achieve
desirable system performance, the current FPS of the
game should be fed back and the hypervisor should
react and schedule GPU resources in response to these
uncertainties.

Contributions This paper proposes vGASA, an
adaptive scheduling algorithm for virtualized GPU
resources in cloud gaming. We discuss the choice of
designing and implementing vGASA in a virtualized
environment in the online supplemental file. By lever-
aging GPU paravirtualization technology and library
interception, none of the guest applications, the guest
OS, or the host graphic drivers need to be modified.
To address the runtime uncertainties for GPU resource
sharing, vGASA features a feedback control loop us-
ing the proportional-integral (PI) controller [7]. It is
worth noting that vGASA is a lightweight scheduler
in the host supporting three adaptive scheduling algo-
rithms to achieve different goals. The three algorithms
mitigate the impact of the runtime uncertainties on
the system performance to ensure high resource uti-
lization of the system. More specifically, SLA-Aware
(SA) scheduling strives to achieve SLA requirements
for each VM, which can allow plenty of users to play
games on a single server. However, some users may
not satisfy the basic SLA requirements when playing

games. Fair SLA-Aware (FSA) scheduling allows
gaming servers to provide a smoother user experience
by maximizing the usage of GPU resources. It reallo-
cates GPU resources from VMs with higher FPS rates
to those who do not meet SLA requirements in a fair
way. However, this algorithm may reduce the number
of users a single gaming machine is able to serve.
Enhanced SLA-Aware (ESA) scheduling balances
the gaming performance and the number of users on
a single machine. It calculates the desired runtime FPS
rates for all the games while fully utilizing the GPU
resources. In addition, compared with our previous
work [8], vGASA applies the control theory to the
scheduling algorithms, which makes itself adaptive to
various runtime uncertainties.

Our experimental results show that the three
scheduling algorithms have significant effect on vari-
ous workloads. For example, applying SA scheduling
to the same workload in Fig. 1, all of the games satisfy
their SLA requirement of 30 FPS. The percentage of
frames with excessive latency drops to 0.20%. The
experiments also show that the three algorithms are
adaptive in response to uncertainties of running time.
Meanwhile, the GPU performance overhead incurred
by vGASA is limited to 5-12%.

The rest of the paper is organized as follows. Sec-
tion 2 formulates the adaptive scheduling problem
and the overall architecture of vGASA. Section 3
discusses the design and implementation of the three
adaptive scheduling algorithms. Section 4 presents the
experimental results of the algorithms with real games
and benchmark programs. Section 5 reviews related
work, and Section 6 concludes the paper.

2 VGASA ARCHITECTURE
2.1 Closed-loop Scheduling Problem and Ap-
proach Overview
Most games are designed in an infinite loop, which is
described in detail in the supplemental file. Basically,
both the game scene rendering and the CPU compu-
tation determine the FPS rate of a game. One of our
objectives is to control the FPS rates of games, and
hence the GPU resources can be scheduled. However,
real-world games such as Starcraft 2, in fact, seem not
always to run at the same FPS rate during the process
of gaming. The FPS rate may continuously vary with
the change of the game scenes.

In this paper, we exploit library interposition to
insert a Sleep function in the loop of a GPU com-
putation model. Thus, we can control the FPS rates
of games by setting a proper sleep time for each
VM. Given a desired FPS F , the sleep time can be
calculated by:

Tsleep =
1000

F
− Tcpu − Tgpu, (1)

where 1000
F is the time, in milliseconds, of each itera-

tion when FPS F is wanted, and Tcpu and Tgpu is the
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time of game logic and GPU processing, respectively.
After the sleep time, Tsleep is calculated, the Sleep
function is invoked to make the VM sleep for Tsleep.
The actual output FPS is generated and can be detect-
ed accurately.

However, the output FPS may not always be the
same as what is desired because there are several
uncertain factors that affect the time of a frame, or,
in other words, the frame latency. Hence, the FPS
rate is not easily maintained in practice. First, CPU
computation time changes irregularly at run time. For
instance, switching to a game scene that contains more
objects (e.g., enemies, trees, buildings, etc.) than the
last scene will suddenly result in a great increase of
CPU computing. In addition, CPU-intensive process-
es running in the background in the guest OS will
have an unpredictable influence on the game’s CPU
computing. Second, the graphics API calls are invoked
in an asynchronous manner. Thus, the time of game
rendering cannot be simply estimated. Fortunately, we
can predict the time, but the accuracy must be taken
into consideration. Moreover, the time of rendering is
greatly affected by the complexity of the game scene.
If there is a sudden change of a game scene, the time
of GPU computation will vary dramatically. These
uncertainties may cause large deviation and lead to
poor scheduling performance, as discussed in prior
work [8].

Therefore, the detection results must be fed back to
change the sleep time of that VM to a proper value
whenever the output FPS has changed undesirably.
The relationship between the sleep time (Tsleep) and
the output FPS (Fout) can be given by definition.
Specifically, FPS is the number of frames per second,
which is the inverse of the time of a frame. Besides,
the time of each frame is calculated by (1). We can then
derive that the FPS rate has an inverse relation with
the sleep time. For generality, we write the equation
in the form of power function with the exponent set
to a negative value:

Fout = mT−n
sleep, (2)

where m and n are two positive constants. The cor-
relation result of the supplemental evaluation corre-
sponds with this equation, which is described in more
detail in the supplemental evaluation.

2.2 System Architecture
vGASA is designed and implemented within the GPU
virtualization framework [9], as shown in Fig. 2. De-
signing the framework in the virtualized environment
has several advantages over designing it in the non-
virtualized environment. Please refer to the supple-
mental file for more about the GPU virtualization
framework and the advantages. Modules introduced
by vGASA are highlighted in grey. Based on library
interposition (see the supplemental file), vGASA is
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Fig. 2: vGASA architecture based on the technology
of paravirtualization.

a lightweight scheduler between GPU HostOps Dis-
patch and Host GPU API.

vGASA is composed of a scheduling controller, mon-
itor, scheduler, graphics API profiler, and VM list. The
scheduling controller receives performance feedback
from all the running VMs and sends commands to
trigger the control system to work. There is also one
agent consisting of the scheduler and monitor module
for each VM. The monitor sends information about the
real-time performance of the VM on which it resides
to the scheduling controller. The scheduler receives
commands from the controller and schedules GPU
computation tasks according to different scheduling
algorithms. The graphics API profiler predicts the exe-
cution costs of GPU commands issued by the graphics
API. The VM list contains the current running VMs.
Each VM is indexed by vGASA. When a new VM is
launched, vGASA can automatically add it to the VM
list and reschedule GPU resources.

How the scheduler chooses the scheduling algo-
rithms depends on the system’s goals as mentioned
in Section 1. To address the closed-loop scheduling
problem discussed in Section 2.1, the control theory
is involved in the algorithms. The detailed design
and implementation of the these algorithms are in-
troduced in Section 3.2.

3 ADAPTIVE SCHEDULING ALGORITHMS

In this section, we first discuss the control law for the
problem mentioned in Section 2.1 based on feedback
control theory. Then we design and implement three
algorithms incorporated in vGASA. These algorithms
address different requirements for different GPU com-
puting applications.

3.1 Control Law
The feedback control system is shown in Fig. 3. Gc(z),
Gp(z), and H(z) represent the transfer function of the
controller, vGASA, and the feedback of the present
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Fig. 3: The closed-loop system for vGASA, where
Gc(z), Gp(z), andH(z) represent the transfer functions
of the PI controller, the vGASA framework and the
feedback of the FPS rate, respectively.
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Fig. 4: The transformed closed-loop system, where
Gc(z), G

′
p(z), andH(z) represent the transfer function

of the PI controller, the transformed system and the
feedback of the FPS rate, respectively. T1 and T2 stand
for the transformation functions.

FPS rate, respectively. The objective of this paper is
to ensure the output FPS, Fout, of vGASA is equal
to r, as shown in Fig. 3. Therefore, we can define
the problem in Section 2.1 as a typical discrete-time
control problem, where r is the reference, F is the
control input, and Fout is the controlled variable.

At the end of each GPU computation loop, the
system measurement is just the system output Fout.
Hence, the measurement transfer function is H(z) = 1.
We adopt a PI controller which is sufficient to achieve
the stability and convergence of the closed-loop sys-
tem [7]. Hence, we can get the transfer function of the
PI controller for the discrete system as follows:

Gc(z) = kp + ki
z

z − 1
, (3)

where kp is the proportional gain and ki is the integral
gain. They should be chosen properly to ensure the
stability and convergence of the system. The next
step is to get the transfer function (Gp(z)) of vGASA.
According to (1) and (2), Fout is actually an inverse
function of the detection threshold F . By replacing
Tsleep with (1), we can derive:

Fout = m(
1000

F
− Tcpu − Tgpu)

−n. (4)

Because it is difficult to directly take z-transform [7]
to (4) to get Gp(z), we transform 4 by adopting natural
logarithms to both sides of the equation. Then we
derive:

ln

((
Fout

m

)− 1
n

+ Tcpu + Tgpu

)
= ln 1000− lnF. (5)

After letting y = ln ((Fout

m )−
1
n + Tcpu + Tgpu) and u =

− lnF , we get y = ln 1000 + u, of which we can
get the transfer function G′

p(z) as G′
p(z) = 1. Until

Frame Latency Frame Latency TimeFrame N Frame N+1
Computing Objects & Drawing Shapes Sleep PresentCPU

TimeFrame NGPU Frame N+1
GPU Rendering

Fig. 5: Frame Latency controlled by the three algo-
rithms.

now, we get a variant of GP (z) which is G′
p(z) as

the transfer function of vGASA because it is hard to
directly take z-transform to (4) to get Gp(z). After the
transformation, a new closed-loop system is achieved,
where u is the new control input and y is the new
controlled variable. In order to analyze the stability and
convergence of the origin system, we first should dis-
cuss the stability and convergence of the transformed
system. The block diagram shown in Fig. 4 is derived
from Fig. 3 by transforming F and Fout.

Then we analyze the stability of the system. The
closed-loop transfer function of Fig. 4, denoted by
Tc(z), is given by

Tc(z) =
Gc(z)G

′
p(z)

1 +Gc(z)G′
p(z)H(z)

=
(kp + ki)z − kp

(kp + ki + 1)z − (kp + 1)
. (6)

From the formula, we can get the pole of the closed-
loop discrete system at

z =
kp + 1

kp + ki + 1
. (7)

From control theory [7], if the pole is within the unit
circle centered at the origin, i.e.,∣∣∣∣ kp + 1

kp + ki + 1

∣∣∣∣ < 1, (8)

then, the closed-loop discrete system is stable.
Note that when the integral parameter ki is 0, the

closed-loop transfer function (6) can be rewritten as
Tc(z) =

kp

kp+1 . Hence, the closed-loop system with
proportional control is always stable without any
poles.

vGASA supports three scheduling algorithms, the
SA, FSA and ESA. The control theory is applied to
all the three scheduling algorithms to make them
adaptive to runtime uncertainties.

3.2 Scheduling Algorithms
Since the main objective of vGASA is to control the
FPS rate, the FPS must be converged to the reference
of the control system. As illustrated in Fig. 5, vGASA
controls each frame by delaying its last call, Present.
This is achieved via inserting a Sleep call before
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Present. The amount of delay is given by (1) in
which the FPS rate, CPU, and GPU computation time
are given by vGASA. The CPU computation time can
be precisely measured by vGASA. However, as for
the GPU computation time, it is predicted instead
of measured because of the asynchronous manner of
GPU processing. We can predict the GPU time because
the change between the two adjacent frames occurs
across a gradient. The next frame is rendered on the
basis of the last frame except that the whole game
scenario changes. Therefore, we can use the historical
execution time of Present to predict the GPU time
of the upcoming frame. Besides, we also observe that
the prediction can be more accurate with a Flush
call just before Present, which is discussed in the
supplemental material.

Below is the detailed design and implementation
of the three adaptive scheduling algorithms. In sum-
mary, SA calculates proper sleep time to make all the
games just meet their SLA requirements so that one
server can accommodate as many games as possible.
FSA and ESA are designed based on SA and allow
games to provide a much smoother user experience.
Compared with FSA, EA makes a tradeoff between ac-
commodating more games and providing a smoother
gaming experience. In common, the three algorithms
all insert a Sleep call and employ the PI controller
to control the FPS rates of games. What is different is
the reference computation of the control system. SA
sets the reference to the criteria, which is 30 in most
cases, while the other two set the value according to
the runtime status.

Algorithm 1 The SA scheduling algorithm.

1: set r to criteria
2: while TRUE do
3: ComputeObjectsInFrame()
4: DrawShapes(V GA Buffer)
5: get feedback, Fout, from last iteration
6: d = r − Fout

7: F = PICalAndControl(d)
8: Flush()
9: sleep time = CalcSleepTime(F )

10: Sleep(sleep time)
11: Present()
12: end while

SA Scheduling: The SA scheduling is designed
to make all the running games satisfy their SLA
requirements. In most cases, a rate of 30 FPS is enough
for a game to supply a smooth user experience. Al-
gorithm 1 shows the pseudocode of the algorithm.
In the algorithm, r is the reference of the control
system. Fout is the FPS feedback from the last iteration
of the game loop, and d is the deviation of r and
Fout. The algorithm first statically sets the reference
of the control system to the criteria. Then, in each

iteration, it uses the PI controller to control the FPS
to the reference. Finally, the sleep time is calculated
according to both the reference and equation 1, and
the game is made to sleep before it invokes the frame
rendering call.

Algorithm 2 The FSA scheduling algorithm.

1: for each VMi in VM list do
2: if FPS[VMi] below criteria then
3: gpu res to get = CalcGPUResource()
4: vm above 30 list = scanVMList()
5: n = Len(vm above 30 list)
6: gpu reduce = gpu res to get / n
7: for each VMj in vm above 30 list do
8: desired FPS = calcFPS(gpu reduce)
9: set rj to desired FPS

10: end for
11: end if
12: end for
13: Schedule()

FSA Scheduling: The FSA scheduling policy releas-
es GPU resources of those VMs with high FPS rates
and reallocates them to those with rates lower than
the criteria FPS. In the scheduling, the VMs with high
FPS rates share the equal part of the GPU resources
to be reallocated to the VMs with low FPS rates.
As a result, the VM with the most GPU resources
still keeps the most after scheduling. Thus, under the
FSA scheduling policy, the way of reallocating GPU
resources is fair, and the total amount of GPU usage
suffers virtually no loss, which can achieve higher
GPU usage and supply higher gaming performance
than SA can.

Algorithm 2 demonstrates the pseudocode of the
algorithm. In our current implementation, all the in-
formation kept by a VM is stored as a global value so
that VMs can simply share status. As a consequence,
any operations on these global value should be mutex-
exclusive. We just omit the lock operation to make the
pseudocode simple and intuitive. In the scheduling,
the scheduling controller introduced in Section 2.2
collects FPS and GPU usage from all the VMs. Once
it detects a VM denoted as VMa that is running
below the criteria FPS, it will find those VMs with
FPS above the criteria and calculate the average GPU
resource they will release so as to increase the FPS
of VMa to the criteria. The amount of the GPU
resources that each VM will release is calculated
by the proportional relation of GPU usage and FPS
in CalcGPUResource. Additionally, the proportional
coefficient of each game is calculated by the history
FPS and GPU usage. Chances are that more than one
VM is detected with FPS rates below the criteria. If
such case occurs, the amount of the GPU resources to
be released is accumulated. However, FSA scheduling
will never make a VM release too many resources to
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run at a FPS rate below the criteria.
After the amount is achieved, the desired FPS is

then calculated in calcFPS where the procedure is
just the reverse order of the GPU usage calculation in
CalcGPUResource. Finally, the scheduling controller
sets the reference of each VM to the calculated FPS
rate and invokes Schedule to activate the control
system on all the VMs. Then all the games go through
an iteration, which is the same as they do in Algorith-
m 1.

Algorithm 3 The ESA scheduling algorithm.

1: sum = 0
2: for each VMi in VM list do
3: ki = CalcCoef()
4: sum + = ki
5: end for
6: desired FPS = 1 / sum
7: for each VMi in VM list do
8: set r to desired FPS
9: end for

10: Schedule()

ESA Scheduling: The ESA scheduling policy allows
all the VMs to run at the same FPS rate while max-
imizing the GPU usage. Instead of the criteria FPS
being statically set in SA, the FPS rate at which all the
VMs run in ESA is dynamically determined at run-
time. The value is also calculated by the proportional
relation of the GPU usage and FPS rate. As shown
in Algorithm 3, the scheduling controller scans the
VM list and calculates the proportional coefficient for
each VM as well as the sum of the coefficients. Then,
the desired FPS rate at which the VMs should run is
derived simply by 1∑n

i=1 ki
where ki is the coefficient

for VMi. This is because the sum of all the VMs’ GPU
usage is 100% theoretically. More particularly, for each
VM, suppose we have gi = ki∗fi where gi denotes the
GPU usage and fi denotes the FPS. Since ESA makes
all the VMs run at the same FPS, we suppose the value
is F . Hence we get g′i = ki ∗ F , in which g′i is the
GPU usage that is adjusted to achieve the scheduling
goal while the coefficients remain the same. Because∑n

i=1 g
′
i = 100%, we can get F = 1∑n

i=1 ki
. Finally, once

the desired FPS is calculated, the scheduling controller
sets the reference of each VM and invokes Schedule,
just as it does in FSA.

4 EVALUATION

We now provide a detailed quantitative evaluation of
vGASA on the testbed configured with an i7-2600k
3.4GHz CPU and 16GB RAM. AMD HD6750 with
the default frequency and 2GB of video memory are
used as the graphics card on the testbed. Both the
host OS and the guest OS are Windows 7 x64. The
version of VMware player is 4.0. Each hosted VM is
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Fig. 6: Frame latency of Starcraft 2 after SLA-Aware
scheduling.

configured with dual cores and 2GB RAM. The screen
resolution is set to 1280x720, a high graphic quality,
for all workloads and benchmarks. To simplify perfor-
mance comparison, swap space and GPU-accelerated
windowing system are disabled on the host side.

Two different types of workload are used in the
following experiments. The first workload group,
named Ideal Model Games can maintain a stable FPS
because it has a stable game scene with almost fixed
objects and views. PostProcess, ShadowVolume and
LocalDeformablePRT from DirectX 9.0 SDK samples
are chosen as the representatives of this group. The
other group of the workload is the Reality Model Games
in which the FPS keeps constant for a short period
of time but varies during gaming. We pick DiRT 3,
Starcraft 2, and Farcry 2 as the workloads of this group
used in the experiments.

First, we evaluate the performance of the three
scheduling policies in case of under-provision of GPU
resources to show that all the algorithms can achieve
design goals. Next, we evaluate the effectiveness of
the control system, demonstrating the feature as well
as the control process of the system. PostProcess
is used to produce various profiling with different
control parameters. Finally, we conduct micro- and
macro-analysis to evaluate the performance impact of
vGASA onto the guest legacy softwares. Other eval-
uation results are included in the online supplement.

4.1 Effective Scheduling of vGASA

In this experiment, the workloads used are DiRT 3,
Farcry 2 and Starcraft 2. The SLA requirement is set
to 30 FPS, which means all workloads are supposed to
run at an FPS rate larger than 30 after being scheduled
by the three algorithms.

Basic SLA-Aware Fig. 6 shows the frame latency
of Starcraft 2 after using the basic SA scheduling.
Compared with Fig. 1b, the game runs much faster
when scheduled. The percentage of excessive frame
latency drops to 0.20% and the latencies of only two
frames are greater than 60 ms. Fig. 7a shows the
performance of the SA scheduling when three work-
loads are concurrently sharing the GPU. The criterion
for FPS is set at 30. Compared with Fig 1a, all the
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Fig. 7: Results of the three scheduling: (a) Basic SLA-Aware; (b) Fair SLA-Aware; (c) Enhanced SLA-Aware

workloads meet their SLA requirements. The average
FPS rate of DiRT 3, Starcraft 2 and Farcry 2 is 30.1,
30.5, and 30.3, respectively, under the SA scheduling
policy. Besides, GPU usage typically ranges from 70-
80% and seldom exceeds 90%. The average GPU usage
is 77.8%. An extra game can concurrently run with
these three workloads to improve GPU utilization.

Fair SLA-Aware Fig. 7b presents the results from
the same setup as that used in the SA policy experi-
ments. At the very beginning, Farcry 2 has the highest
FPS rate while DiRT 3 has a FPS rate lower than 30
because of GPU contention. Then the FSA scheduling
policy starts to work. At 2 sec, vGASA detects that the
FPS rate of DiRT 3 is about 28 and those of the other
two workloads are both above 30. It releases the GPU
resources from Starcraft 2 and Farcry 2 and reallocates
them to DiRT 3 so that at 3 sec, the FPS rate of DiRT 3
increases to 33 and those of the other two workloads
decrease slightly. During scheduling, Farcry 2 still has
the top FPS rate and the FPS rates of both Farcry 2
and Starcraft do not decrease lower than the criteria.
From the figure, we can also see that the FPS rate
varies during gaming. However, when the FPS rate
of a workload drops below the criteria (e.g., at 13, 18,
and 32 sec), vGASA can allocate more GPU resources
to it in the next loop so that the SLA requirement
is satisfied. As for GPU usage, the maximal is 99.1%
while the minimal is 85.2%. The average is 92.7%.
Although there is still a little waste of GPU resources,
FSA can provide a better gaming performance than
SA when the number of games is same.

Enhanced SLA-Aware Next we evaluate the perfor-
mance of the ESA scheduling policy. Also, 30 is set as
the FPS criterion. Fig. 7c shows the ESA scheduling
results. Compared with Fig. 7a, the policy schedules
all the workloads so that they run at around 38 FPS
instead of 30, creating a 26.7% improvement in per-
formance. During gaming, when there are uncertain
factors influencing the FPS rate such as at 33 and
73 sec, the FPS drops dramatically. But in the next
loop, the FPS rate is able to increase to its desired
level, benefiting from the PI controller. Similar to the
FSA experiment, DiRT 3 gets extra GPU resources to
increase its FPS rate with a decrease in the FPS rates of

the other two workloads. From the figure, we can see
that the FPS rate of Starcraft 2 and Farcry 2 are stably
controlled while the FPS rate of DiRT 3 sometimes
is not maintained at the desired level. For most of
the time, DiRT 3 only has a close FPS, especially
after 90 sec. The average GPU usage is about 90.0%,
representing a 15.7% improvement compared with the
77.8% GPU usage of the basic SA scheduling policy.

4.2 Impact of Control Parameters
In this experiment, the effects of the adaptive algo-
rithms are evaluated with different control parameters
and the reference being set to 60 FPS. Since we only
use the PI controller, we just evaluate the kp and ki
control parameters for proportional gain and integral
gain respectively. Actually, there is many sets of kp
and ki values that can make the control system stable.
In the experiment, we choose some of the values to
show their effect on the scheduling framework and
then determine the proper value of kp and ki used
in the experiments throughout this section. As for the
scheduling policy, SA is involved in the evaluation.
The other two policies give similar performance.

Fig. 8a shows the control effect with different values
of kp while ki = 0. PostProcess is used and the native
FPS rate without scheduling keeps at 320 stably. When
kp equals 0.5, the scheduling has no effect. Kp with
values of 0.25 and 0.1 can make the control variable
converge to the reference. The scheduling can get a
faster convergence when kp = 0.1. Besides, the system
gets steady after the 37th ms when kp is 0.1. After that,
the average FPS of the workload is 61.3. Compared
with the reference, there is a small error by 1.3 FPS,
which is defined as the steady-state error. Such an
error may occur when there is only a proportional
controller in the system.

Fig. 8b shows the system performance when giv-
ing various ki with kp = 0.1. When ki equals 0.5,
the scheduling also has no effect. The system with
ki = 0.05 gives a better stability and convergence than
does ki = 0.1. From the figure, we can see that the
system gets steady after the 9th ms when ki is 0.05.
The average FPS rate after that is 60.2. The steady-
state error is decreased or even eliminated when
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Fig. 8: Impacts of control parameters: (a) Impact with different kp and ki = 0; (b) Impact with different ki and
kp = 0.1; (c) The poles of discrete closed-loop control system with various ki and kp = 0.1.

TABLE 1: Microbenchmark result of SLA-Aware
scheduling.

Ideal Model
Games

Reality Model
Games

GPU Command Flush (ms) 4.842 2.265
Present() Execution (ms) 0.117 0.707
Scheduling Tasks (ms) 0.124 0.178
GPU Usage Measurement (ms) 0.014 0.177

an integral controller is involved in the control
system. The poles of the discrete closed-loop control
system with various ki and kp = 0.1 are 0.6875, 0.9167,
and 0.9565, shown in Fig. 8c, in which the poles within
the unit circle indicate that the closed-loop systems are
stable.

Fig. 8a and 8b also demonstrate the control pro-
cess within dozens of milliseconds, during which the
FPS gradually converges to the reference. Therefore,
though there are frames with sudden changes (e.g.,
the frame of DiRT 3 at 13 sec in Fig. 7b), which cause
the overall FPS rate of DiRT 3 to decrease, vGASA
is able to immediately control the FPS rate in the
next second reacting to such runtime uncertainties
because the control procedure can be accomplished
within only one second.

4.3 Overhead Discussion

In order to quantify the performance overhead im-
posed by vGASA, we only measure the cost time
incurred by the framework itself. This cost time con-
stitutes time of GPU command flush, Present execu-
tion, scheduling tasks, and GPU usage measurement.
Table 1 shows the microbenchmark results of the SA
scheduling. Based on the design of SA, FSA and ESA
have a similar performance, except that they spend
a little more time on scheduling tasks because the
latter two algorithms need to compute the reference or
desired FPS rate, in other words. The GPU command
flush operations contribute the main performance
overhead. This is due to the design of the current
Direct3D library and the implemented flush strategy

in our vGASA prototype, as discussed in the online
supplemental file. It is possible to achieve a better
performance by adopting a different flush strategy in
the future. As for the library interception, it virtually
incurs no overhead. In our analysis, benefiting from
leveraging hook to intercept Direct3D APIs in the
implementation, once the hooked function is invoked,
the Windows kernel directly redirects the invocation
to vGASA, which has the same time as directly invok-
ing the corresponding Direct3D APIs.

Fig. 9 gives the average FPS rate of three workload-
s running concurrently under different scheduling
policies. We remove the Sleep function so as to
just evaluate the overhead caused by our schedul-
ing framework itself. Assigning SA incurs about 5%
performance overhead for the workloads due to the
extra calculation time of Tsleep. FSA and ESA have a
little more overhead. FSA incurs the most overhead
because it needs to manipulate some global variables,
which causes extra time in lock operation. But overall,
the three scheduling provided by vGASA incur slight
performance overhead, with the worst about 12%.
Moreover, the overhead is warranted when multi-
ple games run concurrently because their SLA re-
quirements are all satisfied under vGASA, compared
with those under OnLive, a commercial cloud games
provider that can only run a single game per graphics
card.

5 RELATED WORK

This section mainly discusses the related work from
the perspective of GPU resource sharing, GPU virtual-
ization for cloud gaming and general GPU computing,
and feedback control. Some of them are introduced in
the supplemental file.

The scheduling problem of GPU resources is a hot
topic. Previous GPU resource scheduling approaches
mainly target native systems. For example, Time-
Graph [10] implements a real-time GPU scheduler to
isolate performance for important GPU workloads.
To achieve its design goal, TimeGraph queues GPU
command groups in the driver layer and submits
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them according to the predefined settings as well
as GPU hardware measurements. TimeGraph cannot
guarantee SLA for all the VMs, especially for less
important workloads. Instead, our FSA and ESA algo-
rithms are used to effectively provide both SLA and
maximize the GPU resource usage. Fumihiko et al. [11]
propose a Fine Grained Cycle Sharing (FGCS) system
on GPUs for accelerating sequence homology search
in local area network environments. Compared with
it, our framework balances the GPU resources, instead
of improving performance of the VMs on which a
game is running.

The rapid development of GPU virtualization ac-
celerates many new applications, especially in cloud
gaming and general-purpose GPU computing.

In cloud gaming, previous studies on cloud gaming
platform focus on streaming graphical content and
decreasing the required network bandwidth [12], [13],
[14]. OnLive, one of the most popular cloud gaming
service providers, supplies at least 60 FPS at 1280*720
resolution for high-end games. With the same SLA as
OnLive, our approach is able to run multiple game
VMs that efficiently share GPU resources.

In general-purpose GPU computing, hiCUDA [6]
proposes high level GPGPU programming. vCUD-
A [3] introduces GPU computing into a virtualiza-
tion execution environment. rCUDA [4] and Duato’s
work [15] try to decrease the power-consuming GPUs
from high-performance clusters while preserving their
3D-acceleration capability to remote nodes. Gupta
et al. [16] propose Pegasus using NVIDIA GPGPUs
coupled with x86-based general purpose host cores
to manage combined platform resources. Based on
Pegasus, Merritt et al. [17] propose Shadowfax, a pro-
totype of GPGPU Assemblies that improves GPGPU
application scalability as well as increases applica-
tion throughput. Zhang et al. [5] propose a frame-
work that can automatically generate 3D stencil code
with optimal parameters for heterogeneous GPUs.
Lawrence [18] makes use of the commodity GPU for
common tasks of numerically integrating ODEs. In
comparison, our approach tries to improve the SLA

of GPU computation on a cloud gaming platform
and maximize the overall resource usage. Addition-
ally, vGASA provides three representative scheduling
algorithms to meet multiple optimization goals in the
case of under- and over-provisioned GPU resources.

Feedback control has been widely adopted to im-
prove the adaptability of systems. It is employed to
improve application adaption of VMs [19], to scale
web applications in cloud services [20], and to dynam-
ically allocate resources in virtualized servers [21].
Park et al. [22] use feedback control to predicate
high-performance computing. An adaptive resource
control system [23] is developed to dynamically adjust
resource shares to meet application-level QoS goals in
virtual data centers. Wang et al. [24] propose using
feedback control to adaptively control power for chip
multiprocessors. Different from these works, we de-
velop a control-theoretical scheduling framework for
cloud gaming, which fulfills the SLA requirements of
games as well as maximize GPU resource usage.

6 CONCLUSION
We presented vGASA, an adaptive virtualized GPU
resource scheduling algorithm for cloud gaming. By
introducing an agent per VM and a centralized
scheduling controller to the paravirtualization frame-
work, vGASA achieves in-VM GPU resource mea-
surements and regulates the GPU resource usage.
Moreover, we propose three representative schedul-
ing algorithms: SA scheduling allocates just enough
GPU resources to fulfill the SLA requirement; FSA
scheduling allocates maximum GPU resources to all
running VMs in a fair way while still guaranteeing
their SLA requirements; and under ESA scheduling,
all the VMs run at the same or a close FPS rate
while maximizing the overall GPU resource usage.
Using the cloud gaming scenario as a case study,
our evaluation demonstrates that each scheduling
algorithm enforces its goals under various workloads
with performance overhead limited to 5-10%. We plan
to extend vGASA to multiple physical GPUs and
multiple physical machine systems for data center
resource scheduling in our future work.
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