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Abstract. Digital evidences hold great significance for governing cyber-
crime. Unfortunately, previous acquisition tools were troubled by either
the shortage of suspending the target system’s running or the securi-
ty of the acquisition tools themselves, thus the correctness and accura-
cy of their obtained evidences cannot be guaranteed. In this paper, we
propose VAIL, a novel virtualization based monitoring system for mini-
intrusive live forensics, which employs hardware assisted virtualization
technique to gather integrated information from the native computer
system. Meanwhile, the execution of the target system will not be inter-
rupted and VAIL keeps immune to attacks from the target system. We
have implemented a proof-of-concept prototype that has been validated
with a Windows guest system. The experimental results show that VAIL
can obtain comprehensive digital evidences from the target system as de-
signed, including the CPU state, the physical memory content, and the
I/O activities. And on average, VAIL only introduces 4.21% performance
overhead to the target system, which proves that VAIL is practical in
real commercial environments.

1 Introduction

With the rapid development of the Internet, the attendant cybercrime also brings
a shocking scale of time and financial losses. According to the report from Nor-
ton [1], in 2011, the total cost of cybercrime in the USA was about 139.6 billion
US dollars, among which 32 billion was the direct cash cost and 107.6 billion
was victims’ value of time lost.

Consequently, computer forensics technique becomes an emerging research
area, which has attracted many researchers to explore. The complete forensics
process consists of three distinct phases: acquisition, analysis, and presenta-
tion [2]. The acquisition phase is the foundation of computer forensics, which
focuses on obtaining the necessary information about the target system state
as digital evidences. The gathered evidences should be truthful and accurate,
otherwise wrong conclusions will be made in the following analysis phase and
presentation phase.



Depending on whether investigators keep the target system running or not,
computer forensics can be divided into two main groups: static forensics and live
forensics. Considering criminal evidences being stored on the permanent I/O
device only [3], most static forensics tools, like Encase [4] and FTK [5], clone
the disk offline to accurately obtain digital evidences. Static forensics can get
a lot of information about the target system, like web pages viewed, installed
programs, log files and so on. But the volatile data that only existed in memory is
totally beyond the scope of static forensics. Moreover, servers of online retailers
usually require 24/7 availability and the shutdown of these machines may bring
unacceptable money losses. Luckily, live forensics remedies the disadvantages of
static forensics. It extends the information gathering range of forensic examiners
without blocking the running of the target system. These data involve processes
information [6], the process list [7], kernel objects [8], and the raw memory
content [9,10], which may be leveraged to record and reproduce the crime scene.

The trivial software solution for live acquisition is to query from the Operat-
ing System (OS) directly. Iain et al. [11] list several practical tools for different
scenarios, including Win32dd [12], KnTTools [13], and Fport [14]. Memoryze [15]
is another popular user process forensic tool of this type. However, if the OS is
compromised by skillful criminals, it may return fake and incorrect system status
to cheat the acquisition tools.

Virtualization technology wraps the OS and user applications in a Virtual
Machine (VM), which is monitored and managed by the Virtual Machine Mon-
itor (VMM) like Xen [16]. The researchers add the acquisition module in the
VMM to exploit the higher level of privileges, so that the malware in kernel-
level cannot tamper the forensic progress easily. This kind of acquisition tools
has been developed rapidly in recent years, especially after the hardware exten-
sions for the x86 architecture [17, 18] simplified the development of the VMM.
The representatives of this type are VIX tools [7], Ruo’s work [9], Srinivas’s
work [19], and BodySnatcher [20].

In fact, current forensic tools still face significant challenges and risks. Ayers
discussed limitations of existing forensic tools and proposed a set of requirements
for the next generation tools [21]. Garfinkel also summarized current forensic
research directions and argued that where future forensics works should focus
on [22]. We think the first main challenge is that many previous approaches [7,
9, 19] need to set up the VMM level prior to the launching of the OS, which
alters the target system running environment significantly, especially for the
non-virtualized host. In the extreme case, rebooting or reinstalling the whole
system is required, thus sharing the same problem with static forensics. The
second challenge arises from the fact that the VMM has a broad attack surface
and is not immune to serious security vulnerabilities [23]. The larger code size the
VMM has, the more vulnerabilities it may suffer from. So designers have tried
to remove unnecessary parts of the VMM, achieving a minimal code size and
external interface, like SecVisor [24] and BitVisor [25]. But they suffer from the
first challenge, which alters the execution environment drastically. Furthermore,
few of researches address the acquisition of I/O devices. Memory dump files can



only provide snapshots of the system memory at a certain time, which leads
to lack of understanding of the target system’s activities during a continuous
period of time.

In this paper, we propose VAIL, a novel virtualization based monitoring
system for mini-intrusive live forensics, which considers the previous challenges
simultaneously. Benefiting from Silent-Virtualization approach, VAIL is simply
loaded as an OS driver to build the VMM layer, then requires no binary modi-
fications to legacy applications and the guest OS. It also does not interrupt the
execution of the target system. VAIL can obtain comprehensive digital evidences
from the target system as designed, including the CPU state, the physical memo-
ry content, and the I/O activities. It has such a small code size that it is suitable
for formal verification to make sure serious vulnerabilities have been excluded.
In addition, VAIL hides and protects itself sufficiently by Memory-Hiding mech-
anism, avoiding being detected and compromised by malicious software or the
compromised guest OS. To validate our approach, we have implemented a proto-
type and conducted a series of evaluations. The experimental results show that
VAIL can protect itself appropriately and incurs a slight performance overhead
to existing applications, proving that VAIL is applicative for realistic environ-
ments and improves live forensics technique significantly.

The rest of the paper is organized as follows. Section 2 presents VAIL’s design
assumptions and model. Section 3 provides implementation details and related
discussions, while Section 4 evaluates VAIL through a series of experiments. We
survey related work in Section 5, then illustrate the conclusion and the future
work in Section 6.

2 Design

2.1 Goals and Assumptions

In order to address the existing issues that computer forensics suffer, we have
following main design goals. First, the proposed techniques should influence the
execution of the target system as little as possible, which means tending to
achieve live forensics perfectly. Second, the trueness and correctness of the ac-
quisition results should be guaranteed, even under the situation that the OS has
been compromised by some malware. Third, comprehensive digital evidences
should be gathered, including the CPU state, the physical memory content, and
the I/O activities.

Since we leverage hardware assisted virtualization, the Hardware Enabled
Virtualization (HEV) should be available on the processors of the target system.
We assume that the target system is booted from bare metal, then the lower hy-
pervisor layer can be built successfully. Theoretically, VAIL works normally in
nested virtualization environments, but we do not consider the recursive virtu-
alization situation due to each CPU core can run at most one VMM at any time
in the current circumstance. VAIL is supposed to be loaded as an OS driver. If
a malicious kernel has been forbidden to insert drivers, there are already some



ways to break this limitation, like the page-file attack [26]. Finally, hardware
based attacks are out of the scope of this paper, such as TLB cache [27], SMM
exploitation [28], and malicious DMA [29].

2.2 Silent-Virtualization Approach

Inspired by the NewBluePill Project [30], we propose Silent-Virtualization tech-
nique to build the hypervisor layer silently and dynamically with the help of
hardware assisted virtualization. Even an OS is running, we can load VAIL at
any supposed time, and do not disturb the execution of the target system. In
other words, for normal users, nothing special has happened and they will not
notice this huge change of the system architecture. Both Intel and AMD have
proposed their own hardware assisted virtualization technology [17,18]. Though
each technique has its own characteristics, their main design goals and prin-
ciples are the same. We implement our VAIL prototype based on Intel VT-x
technology [31].

Intel VT-x technique separates the CPU execution into two modes: VMX
root mode and VMX non-root mode. It fixes the so-called virtualization hole
problem in x86 architecture, which indicates that every sensitive instruction is
only permitted to be executed in VMX root mode. Then the hypervisor owns a
full control of the VMs’ running. As the codes of the guest OS are executed in
VMX non-root mode, if any sensitive instruction is included, the CPU will switch
to VMX root mode and active the hypervisor handler. After the hypervisor
handler has finished dealing with the exception, the CPU resumes to execute
the guest OS. The hypervisor maintains a Virtual-Machine Control Structure
(VMCS) for each VM to record the guest system’s execution environment status.
We can also register some interested events in VMCS, like page fault exception
or I/O instructions, to trap into the hypervisor when it is necessary.
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Fig. 1. The architecture overview of Silent-Virtualization Approach.

A typical VMM launching with Intel VT-x technique consists of three steps.
First, the HEV is enabled via BIOS. Second, the CPU is configured to execute
the VMM in VMX root mode. Third, the guest OS is booted in VMX non-root



mode. The launching of hypervisor can occur at any time, even there has an OS
running. We just need to continue running the virtualized system in the third
step appropriately.

Figure 1 shows how the system architecture is changed when loading/unload-
ing VAIL. VAIL is loaded as an OS driver, which creates a process and acquires
memory through standard kernel APIs. The essential virtualization environment
is initialized in the loading procedure and the OS is wrapped into a VM silently.
It shares the same usage model with many existing forensic tools listed in [11].
We think little modification during VAIL installation is tolerable. After all, no
zero invasive solution for a posteriori forensic analysis exists [32]. In addition,
VAIL employs Memory-Hiding mechanism, which will be introduced in the next
section, to clear the memory footprints and hide itself. The unloading procedure
is much similar to the loading procedure, which is also mini-incursive to the
guest OS. Memory and other resources occupied by VAIL are released and the
guest OS regains the power of controlling.

2.3 Memory-Hiding Mechanism

Besides the loading/unloading procedure, it is also very important for VAIL to
hide itself when working under the target system. The main threat is that the
malicious software may compromise the OS kernel, thus the existence of VAIL
may be exposed and the safety of VAIL cannot be ensured. When having detected
the existence of VAIL, the compromised kernel can either disturb the forensic
processing or attack VAIL directly. In order to protect VAIL from being wrecked,
two aspects of integrity need to be taken into consideration: static integrity and
runtime integrity [33].

Static integrity can be guaranteed by read-only media without installing
into the hard disk, i.e., Live DVD/USB [2], and VAIL’s code can be attested
before loading by employing the Trusted Platform Module (TPM) [34]. But the
runtime integrity is more difficult to be achieved. Unlike general VMM-based
forensic systems that start earlier than the guest OS, VAIL is loaded as an OS
driver and will leave memory footprints before it owns the full control of the
whole system. Although the OS isolates and protects the memory of different
processes by virtual address translation mechanism, so that malicious processes
cannot access or modify other processes’ memory easily. The compromised kernel
can still corrupt the memory of VAIL and stops VAIL from working normally.

VAIL resists attacks from the guest OS by Memory-Hiding Mechanism. Since
the guest OS is not worthy to be trusted any longer, VAIL needs to have its own
memory management system that is independent of the guest OS. As Figure 2
illustrates, VAIL travels the original page table of the guest OS to find the kernel
used physical memory pages, and maps them into a private page table at the
same virtual memory address. In particular, the virtual memory address that
stores the guest OS page table should point to the private page table now. And
after VAIL has been loaded, it will change the entries of its memory in the guest
OS page table to spare physical memory pages with fake contents.
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Fig. 2. The design model of Memory-Hiding Mechanism.

Here have two main purposes. First, VAIL becomes autonomous of memory
management because the private page table has replaced the position of the guest
OS page table. The guest OS will be unable to access or modify the real physical
memory of VAIL, which enhances the reliability of VAIL. Second, kernel objects
and OS APIs are available for VAIL, so that VAIL can take advantage of them to
manage its own memory more conveniently. We should track the modifications
to the guest OS page table, that means once they happen, the corresponding
entries of the private page table should also be updated. The synchronization
between the OS page table and the private page table is maintained by EPT,
which we will introduce in detail in Section 3.

Much similar to the scheduling of processes in the traditional OS, the private
page table is activated when the CPU loads its physical memory address in the
CR3 register. When the VM starts and the guest OS resumes to be executed,
the CR3 register will switch back the physical memory address of the original
OS page table. The frequency depends on how often the sensitive events happen.
According to our experimental results presented in Section 4, the performance
overhead is very slight.

3 Implementation

Currently, we have implemented a prototype of VAIL leveraging Intel VT-x
technique and succeed to apply it for live forensics of a Windows system. The
activities of the whole target system can be divided into three parts: CPU,
memory, and I/O. In this section, we introduce how VAIL can monitor them in
turn.

3.1 CPU

Because VAIL only supports a single guest OS, we can ignore the scheduling and
context switches among different guests and focus on context switches between
the guest OS and the hypervisor. Based on Intel VT-x, each guest OS associates



with a region in memory called VMCS region, which saves the necessary context
information and controls Virtual-Machine Extensions (VMX) non-root operation
and VMX transitions [31]. During the execution of the guest OS, if certain events
occur, it will result in a VMEXIT event and transfer control to the hypervisor.
Depending on the fields in VMCS, these special events include execution of
sensitive instructions, hardware or software interrupts, and other exceptions.
After taking appropriate actions, the hypervisor can then return to the guest
OS by generating a VMENTRY event.

Exploiting the feature of acquiring the CPU state, one useful appliance is
detecting hidden processes. The attackers usually hide their malicious processes
by tampering some aspect of the OS, in order to avoid touching off a defender.
For example, modifying program binaries like ps, hooking into the call path
between a user application and the kernel, or manipulating kernel data structures
directly by DKOM are three mainstream means for hiding processes [35]. But
each running user process corresponds to a different CR3 value. When loading
or storing control registers by the MOV instruction, it is a privileged operation,
thus VAIL can intercept all loaded CR3 values. If we compare them with the
processes list that the guest OS provides, any intercepted CR3 that does not
exist in the list is suspicious.

3.2 Memory

In order to dominate the memory management, VMMs add an extra memo-
ry translation layer after the translation of the OS virtual address to physical
address. Traditional VMMs employ Shadow Page Table (SPT) to maintain the
address updating of this additional layer in a software way. But the updating of
memory page table entries may be very frequent, so the performance overhead
caused by context switch is tremendous. With the HEV technique, this addi-
tional memory address translation is handled by the hardware, which simplifies
the implementation of the VMM. In Intel VT-x technique, it is called Extended
Page Table (EPT), while AMD-V names it as Nested Page Table (NPT) with
the much similar mechanism.

With EPT mechanism employed, after translating the Guest Virtual Address
(GVA) into the Guest Physical Address (GPA), the guest OS is no longer able to
use the GPA to access the physical memory directly, though it will not notice this
fact. Instead, the real physical memory address, referred as the Machine Physical
Address (MPA), is produced by traversing a set of EPT paging structures. By
EPT, VAIL saves much code to do the memory addresses translation. EPT
paging structures are similar to those used in the guest OS, consisting of the
address field and permissions field. If try to apply unsupported operations on an
arbitrary page, the guest OS will be interrupted and trapped into the hypervisor.
VAIL monitors the updating of the OS’s page table by marking the corresponding
entries in EPT as read-only. Then every modification leads to a page fault and
VAIL will update the private page table appropriately. Popularizing this method
to the whole memory space, Miao et al., [36] have implemented a prototype



to dump physical memory contents by marking EPT entries as read-only, and
improved it with some optimizations [37].

3.3 I/O

I/O activities take place very frequently in normal computer systems and it is
important to monitor I/O accesses for digital forensics. By default, VAIL allows
the OS drivers to access devices directly, which frees VAIL from complicated
device drivers and reduces risks of involving security vulnerabilities. When it is
necessary, investigators can custom VAIL to intercept the I/O activities of the
critical devices. There are three ways for hardware drivers to access I/O devices:
Programmed I/O (PIO), Memory Mapped I/O (MMIO), and Direct Memory
Access (DMA) [25]. We use two applications that VAIL supports contemporarily,
keyboard logger and Network Interface Card (NIC) interception, as examples to
describe the details of I/O acquisition.

Keyboard Logger As the keyboard is one of the most common input devices,
logging and analyzing the keys typed will have great significance on comprehend-
ing the purposes and usage patterns of criminals. The keyboard driver is mainly
implemented by PIO, which means using I/O instructions to read or write spec-
ified I/O port address. The hypervisor running on Intel VT-x processors can
specify I/O addresses to be intercepted by configuring the I/O bitmaps in VM-
CS. And the I/O port addresses assigned to each device can be determined in
advance and will not be overlapped, so that we can only intercept all PIOs of the
target device and ignore others. To capture changes made by PCI configuration
mechanism, the hypervisor should also intercept the PIO of it and update the
I/O bitmaps.

The keyboard on the PC platform usually uses two I/O ports: a control
port (0x64) and a data port (0x60). As the name indicates, the control port is
used for sending commands or reading the status of the keyboard, and the data
port is in charge of transmitting data between the device and the OS. Once a
key has been pressed or released, the keyboard will generate a scan code and
send it to the keyboard driver by the OS interrupt mechanism. In details, the
keyboard driver receives scan codes by PIO. To implement the keyboard logger,
VAIL needs to monitor the data port of the keyboard, so that we can intercept
every scan code, then find out which key the user has pressed. Especially for the
English continuous typing, it is easy to reorganize the content that the user is
inputting.

NIC Interception The NIC is a classic PCI device, which involves MMIO and
DMA simultaneously to work. Researchers usually monitor the network activities
to provide better protections to the target system [38, 39]. MMIO means that
in order to read or write the registers of the NIC as simple as memory access,
the OS maps the register region into the kernel space by the page table. And
DMA supports a handy way to transfer data between the NIC and the memory



directly without CPU intervention. Before introducing how to intercept them
for digital forensics, we would like to present the basic workflow of the NIC.

Transmitting and receiving network packages are the main functions of the
NIC. The NIC that our test machine owns, Intel 82578DM, uses two DMA
descriptor rings, which are allocated by the NIC driver, to realize these func-
tionalities respectively. As shown in Figure 3, the base address of the descriptor
ring is stored in register Transmit Descriptor Base Address (TDBA)/Receive
Descriptor Base Address (RDBA), while the total length is saved in register
Transmit Descriptor Length (TDLEN)/Receive Descriptor Length (RDLEN).
The descriptor ring also has a header pointer, Transmit Descriptor Head (T-
DH)/Receive Descriptor Head (RDH), and a tail pointer, Transmit Descriptor
Tail (TDT)/Receive Descriptor Tail (RDT), to distinguish the used descriptors
from the free ones. Each descriptor contains information about the package to
be handled and the descriptor itself, and the detail format can be found in [40].

When the OS wants to send a package, it calls the NIC driver to fill the
required descriptors with the necessary information, e.g., the buffer address and
the size, then update the register TDT. The hardware will be notified and employ
DMA to read the package from the memory to transmit. After the package has
been processed, the relevant descriptor will be cleared and the register TDH will
also be updated. The region between the header and the tail, which is marked
as white in Figure 3, is descriptors that are waiting to be dealt with by the
hardware. And other descriptors that are gray present those have been handled
by the hardware and are free for the software. The receive procedure is much
similar to the sending, excepting that the hardware writes received packages into
memory, instead of reading packages from memory to the device.
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D
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N
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TDH/RDH
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Fig. 3. The Descriptor Ring Structure.



We do not intercept the DMA descriptors directly, because each descriptor
has many different fields and the patterns of writing or reading them are not
confirmed. Frequent accessing may also bring numerous context switches between
the guest OS and the hypervisor, which cause assignable performance overhead.
Only monitoring the particular registers is a more clever way. Moreover, all the
NIC registers have been mapped into the kernel space by MMIO, which can
be intercepted by the EPT. VAIL monitors the updating of the register TDH
and copies the content of the package secretly for digital forensics. But the
receive process is not as simple as transmitting, since when the driver updates
the register RDH, the package has not been really received. When the content
arrives, the hardware writes the buffer by DMA, which is not catchable by the
page table. To deal with this, instead of intercepting the NIC interrupts, we
alternatively save the RDH and compare it with the previous value. Because the
buffers that the DMA descriptors point to belong to the NIC driver expressly.
Then the descriptors between them are the last received package.

Because the EPT is coarse-grained, which can only monitor a whole page,
not a signal byte or word. Operations to other irrelevant registers on the same
page may also cause an EPT page fault, which increases potential unnecessary
performance overhead. However, this is the nature of handing MMIO by hyper-
visors and according to our experimental results that will be shown in Section 4,
the performance overhead on the target system, either the overall impact or the
network influence, is slight and acceptable.

4 Evaluation

This section will first analyze the security of VAIL and then show the experi-
mental results. All experiments are carried out on a Dell Optiplex 980 MT host
with a 3.2 GHz Intel i5-650 processor, 2 GB RAM and an Intel 82578DM Gigabit
Ethernet NIC. The guest OS version is 32-bit Windows XP SP3.

4.1 Security Analysis

Compared with other VMMs, VAIL removes unnecessary components and on-
ly intercepts the critical devices. As shown in Table 1, the total code size of
VAIL is only 6626 Source Lines of Code (SLOC), including 4773 SLOC for
Silent-Virtualization, 664 SLOC for Memory-Hiding, and 1189 SLOC for I/O
interception. However, even if we exclude the Dom0, the Xen hypervisor still
has over 100,000 SLOC [41], which is far more than VAIL. The smaller code size
contributes more stability of the hypervisor and enhances live forensics process-
ing.

Based on the assumptions we made in Section 2, even there is an OS running
on the target machine, leveraging hardware assisted virtualization technique,
VAIL can be loaded as an OS driver and inserts the VMM layer dynamically. The
attackers cannot damage the static integrity of VAIL because of the protection of



Table 1. The code size of VAIL.

Module Name Source Lines of Code

Silent-Virtualization 4773

Memory-Hiding 664

I/O Interception 1189

Total 6626

read-only boot media. After the installation completes, VAIL takes full control
of the whole machine and owns higher privileged level than the guest OS.

By using Memory-Hiding mechanism, VAIL is not visible in the guest OS.
Processes list of Windows Task Manager cannot reflect the existence of VAIL.
Because VAIL is loaded as an OS driver, not a user program. If the guest OS
tries to scan physical memory, since the part that VAIL located is not accessible
from the OS’s page table, VAIL keeps safe enough. Even in the worst case, if
the compromised OS kernel discovers VAIL, due to the protection of the private
page table, it is unable to corrupt the memory of VAIL, neither forcing to unload
VAIL nor to map VAIL’s GVA to other GPA.

4.2 Performance Overhead

We used the SPEC CPU2000 suite [42] as CPU-intensive benchmarks to evaluate
the overall performance overhead that VAIL leads into, and Iometer [43] for
I/O-intensive testing. Specifically, as VAIL intercepts the NIC activities, the
network latency and throughput were inspected. The general TCP and UDP
influences were measured by JPerf [44]. And according to setting up an Apache
web server [45], the circumstances with real applications were also considered.

Overall Impact As shown in Figure 5, VAIL only incurred 4.21% performance
overhead to the target system on average, which varied from 0.04% to 4.73%,
excepting the MCF benchmark had a 23.71% increasing. After our investigation,
the main result was that the poor space localization led to frequent Translation
Look-aside Buffer (TLB) misses. And every TLB miss led to several times mem-
ory access overhead, including the walk-ups of the two-level traditional OS page
table and the four-level EPT.

For I/O operations, each PIO results in at least a hypervisor trap and MMIO
increases the count of the EPT page faults, which introduces many times of
memory accesses as well as the MCF benchmark. VAIL has no direct influences
on DMA events. The experimental results of Iometer are shown in Figure 4.
We recorded the average response time and throughput of five situations with
different sizes of blocks, from 4KB to 64KB, to be randomly read or written.
With VAIL installed, the average read response time suffered an increment of
19.3%∼27.6%, while 18.8%∼27.6% for the average write response time. The
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Fig. 4. VAIL performance impact - Iometer benchmarks

 0

 1000

 2000

 3000

 4000

 5000

 6000

gz
ip vp

r
gc

c
m

cf

cr
af

ty

pa
rs

er

pe
rlb

m
k

ga
p

vo
rte

x
bz

ip2 tw
olf

B
as

e 
R

at
io

Without VAIL
With VAIL

Fig. 5. VAIL performance impact - SPEC CPU 2000



Table 2. VAIL performance impact - Apache web server.

Without VAIL With VAIL

Total Time Taken (s) 126.89 127.17

Request Per Second 7.88 7.86

Time Per Request (ms) 126.89 127.17

Transfer Rate (KB/s) 2815.03 2809.01

read and write throughput both had a cut down of 16.1%∼20.7%, because we
configured a half of reading and a half of writing in Iometer. An interesting
phenomenon was that when the size of the block increased, the performance
overhead reduced. The reason might be that, although the assessed memory
addresses were different, they shared with the same high level page table, which
brought the effect of TLB into playing more efficiently.
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Fig. 6. VAIL performance impact - TCP and UDP

Network Influence In order to distinguish the different effects that VAIL
brings on transmitting and receiving, we did not only set the target system
as a client, but also as a server. Figure 6 presents the experimental results.
Because the network itself has latency, it weakens the impact of VAIL. The
throughput overhead of the TCP client case was 0.29%, while the TCP server
was 0.52%. The UDP client was 0.46% and the UDP server was 1.52%. The UDP
cases were both less than the TCP cases, because the UDP was not a reliable
connection protocol, while the TCP had measures to deal with package loss.
And the client cases were both better than the server ones slightly. Because the
receiving interception needed additional comparison with the previously saved
header register.

Finally, we set up an Apache web server to test the overhead on the real
applications. From another machine, we tried to acquire the same file for 1000



times with the concurrent level to be 40. HTML transferred during the test was
365.499MB and the total transferred was 365.782MB. The performance overhead
was close to the simple TCP/UDP, which was only 0.22%, while the exhaustive
data are listed in Table 2. In summary, the additional network interception does
not affect the target system very much. VAIL is suitable for the realistic web
environments.

5 Related Work

After decades of digital forensics technique development, researchers have pro-
posed many different ways to acquire the system running state. According to
the running privileged level that forensics acquisition tools are located, we can
divide them into three groups: App-based , Kernel-based , and VMM-based .

Primitive App-based acquisition tools existed in user mode only, which be-
haved as simple applications and relied on the OS completely to get the volatile
digital evidences, such as Memoryze [15] and GNU dd [46]. Although being com-
pact and easy to be installed, these App-based tools had obvious drawbacks: nei-
ther the reliability nor accuracy of obtained evidences can be guaranteed. Once
compromised by malicious software, the OS can refuse to return any information
or fool the acquisition tools with some incorrect results.

So as to grasp the initiative, Kernel-based acquisition tools went deep into
the OS kernel, which were loaded as a kernel module. Win32dd [12] was a com-
monly used memory dump tool that belonged to this type. Investigators can send
specific commands from the user level client console to process digital forensic-
s. And modern commercial OSs themselves also provided some convenience for
digital forensics. For example, when hardware or software failures occur, the OS
will freeze the system state and generate a crash dump with extra debugging
information. Kdump [47] achieved this functionality by loading a crash dump
specific kernel on the Linux system. Kernel-based forensic tools seemed to be
more independent and trustworthy, because they shared the same privileged
level with the OS. However, the fundamental problem is still not resolved. The
OS has a border attack surface that may include a lot of potential vulnerabilities.
The cunning criminals can benefit from this and then ruffle the normal digital
forensics process.

Finally, by leveraging virtualization technology, VMM-based acquisition tools
gained higher privileged level than the OS so that they retained full control of
the whole computer system. Garfinkel et al., first presented a VMM to inspect
the state of the target OS [48]. Subsequently VMScope [49] elaborated this idea
to construct the honeypot monitoring system. Based on Xen, the VIX tools
suite [7] and Srinivas’s work [19] resided the digital forensics examination out of
the target system. By running in the special VM, Dom0, both of them had no
modification to the guest system during acquisition theoretically. Xen developers
even proposed an on-going project with Copy-on-Write technique to obtain the
state of VMs [50]. Ruo et al., [9] proposed an asynchronous memory snapshot
and forensics using split kernel module, which involved additional environmental



impact on the target system because it needs to modify the guest OS. VMWare
Workstation [51] employed process based virtual machine to take a snapshot
of the VM’s state. But previous VMM-based acquisition tools have to either
reinstall the target OS or reboot the physical machine, which is inapplicable
when performing strict live acquisition in commercial environments.

Both BodySnatcher [20] and HyperSleuth [32] had tried to load an OS
driver to insert the hypervisor dynamically, which was quite similar to our
VAIL. BodySnatcher used a built-in acquisition OS to obtain the target sys-
tem’s volatile memory. Unfortunately, it needed to suspend the target system
during acquisition, thus being intolerable if the target OS had a requirement of
24/7 availability. In addition to this, BodySnatcher’s current implementation had
highly constrained nature, which was only able to work with Windows 2000 on
the single CPU VMWare host, not on real hardware. HyperSleuth utilized hard-
ware assisted virtualization technique to perform sophisticated runtime analysis.
The only drawbacks were that some small changes in the memory of the tar-
get were induced by the installation procedure and that a powerful attacker in
the same network of the target could interfere with the packets containing the
memory dump [52].

Hardware acquisition methods are an alternative method in live acquisition.
As introduced in Section 3, DMA provides a convenient way for devices to ac-
cess the memory of the target system. Carrier’s work [53] disabled the CPU
and performed DMA operations by an acquisition specific PCI card to obtain
the volatile memory content. Also, Boileau’s work [54] and Martin’s work [55]
employed firewire protocol to perform DMA operations. While these approach-
es look likely to finish the acquisition smoothly, Rutkowska’s work [56] proved
that it is possible to present a different memory view to DMA based acquisition
devices through configuring MMIO features on emerging chip sets. Hence, ob-
tained volatile memory content may be quite different from the real content that
presented to the CPU. VAIL has not to worry about this because the hardware
assisted virtualization technology ensures that the VMM has a broader view
than the guest OS. Thus, VAIL can access all the target system content within
its own context.

6 Conclusion and Future Work

We have presented VAIL, a virtualization based monitoring system for mini-
intrusive live forensics that is able to gather different information of the whole
target system, including the CPU state, the memory content, and the continuous
activities of I/O devices. By Silent-Virtualization approach, VAIL is loaded as an
OS driver. It inserts the hypervisor layer dynamically and resides itself at a higher
privileged level than the guest OS, avoiding disturbing the execution of the target
system. The safety of VAIL is guaranteed by Memory-Hiding mechanism. The
memory that VAIL uses during installation has been hidden and protected by
the private page table. We have implemented a proof-of-concept prototype that
has been validated on a Windows guest system. The experimental results prove



that VAIL can stably provide the acquisition results with slight performance
overhead.

But there are still some limitations existed in VAIL, which need to be im-
proved in the future. The first one is that VAIL only focuses on monitoring the
target system, which ignores how to export the acquired evidences appropriate-
ly. For example, we can integrate VAIL with an encryption and transmission
module, so that the obtained results can be outputted to the removable me-
dia or remote computer systems. The second one is that VAIL is loaded as a
Windows driver, which is not portable for Linux systems. If we abstract the
core idea and make VAIL become completely OS independent, VAIL will have
a more promising prospect. The third one is that the current version of VAIL is
validated on native systems, though VAIL can work well theoretically in nested
virtualization environments. Future work can adapt VAIL to be applicable in
cloud environments.
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