
Tri-Fly: Distributed Estimation of Global and
Local Triangle Counts in Graph Streams

Kijung Shin1(�), Mohammad Hammoud2, Euiwoong Lee1,
Jinoh Oh3, Christos Faloutsos1

1Carnegie Mellon University, USA, {kijungs,euiwoonl,christos}@cs.cmu.edu
2Carnegie Mellon University in Qatar, Qatar, mhhamoud@cmu.edu

3Adobe Systems, USA, joh@adobe.com

Abstract. Given a graph stream, how can we estimate the number of
triangles in it using multiple machines with limited storage?
Counting triangles (i.e., cycles of length three) is a classical graph prob-
lem whose importance has been recognized in diverse fields, including
data mining, social network analysis, and databases. Recently, for tri-
angle counting in massive graphs, two approaches have been intensively
studied. One approach is streaming algorithms, which estimate the count
of triangles incrementally in time-evolving graphs or in large graphs only
part of which can be stored. The other approach is distributed algorithms
for utilizing computational power and storage of multiple machines.
Can we have the best of both worlds? We propose Tri-Fly, the first dis-
tributed streaming algorithm for approximate triangle counting. Making
one pass over a graph stream, Tri-Fly rapidly and accurately estimates
the counts of global triangles and local triangles incident to each node.
Compared to state-of-the-art single-machine streaming algorithms, Tri-
Fly is (a) Accurate: yields up to 4 .5× smaller estimation error, (b)
Fast: runs up to 8 .8× faster with linear scalability, and (c) Theoreti-
cally sound: gives unbiased estimates with smaller variances.

Keywords: Graph Stream, Triangle Counting, Edge Sampling

1 Introduction

Counting triangles (i.e., cycles of length three) is a classical graph problem whose
importance has been recognized in diverse areas. In data mining, the count of
triangles was used for dense subgraph mining [19], spam detection [5], degeneracy
estimation [16], and web structure analysis [8]. In social network analysis, many
important concepts (e.g., the clustering coefficients and social balance) are based
on the count of triangles [20]. In databases, the count of triangles, which measures
the degree of transitivity of a relation, can be used for query optimization [4].

Due to this importance, many algorithms have been developed for counting
global triangles (i.e., all triangles in a graph) and/or local triangles (i.e., triangles
incident to each node in a graph). Especially, for triangle counting in massive
graphs, recent work has focused largely on streaming algorithms [2,7,10,11,14,15]
and distributed algorithms [3,12,17].

In a graph stream, where edges are streamed from sources, streaming al-
gorithms [2,7,10,11,14,15] estimate the count of triangles by making one pass
over the stream, even when the stream does not fit in the underlying storage.
Moreover, since streaming algorithms incrementally update their estimates as
each edge arrives, they can naturally be used for maintaining and updating ap-
proximate triangle counts in dynamic graphs growing with new edges. However,
existing streaming algorithms are designed to run on a single machine and do
not utilize multiple machines for faster or more accurate estimation.

On the other hand, distributed algorithms have been employed for utilizing
computational and storage resources in distributed-memory [3] and MapRe-
duce [17,12] settings. However, they do not provide the advantages of streaming
algorithms. That is, they assume that all edges can be stored in the underlying
storage and accessed multiple times. Moreover, since they are batch algorithms
rather than incremental algorithms, they do not support efficient updates of
triangle counts in dynamic graphs growing with new edges.

In this work, we propose Tri-Fly, the first distributed streaming algorithm
for approximate counting of global and local triangles. Tri-Fly gives the advan-
tages of both streaming and distributed algorithms, outperforming state-of-the-
art single-machine streaming algorithms. Our theoretical and empirical analyses
show that Tri-Fly has the following advantages:

- Accurate: Tri-Fly produces up to 4 .5× smaller estimation error than
baselines with similar speeds (Figure 3)

- Fast: Tri-Fly runs in linear time (Figure 2(c)) up to 8 .8× faster than
baselines with similar accuracies (Figure 3).

- Theoretically sound: Tri-Fly gives unbiased estimates with variances
inversely proportional to the number of machines (Theorems 1 and 2).

Reproducibility: The code and datasets used in the paper are available at
http://www.cs.cmu.edu/~kijungs/codes/trifly/.

2 Related Work

Triangle Counting in Graph Streams. Streaming algorithms estimate the
count of triangles by making one pass over a graph stream. Streaming algorithms
use sampling because they assume limited storage that may not store all edges.
A simple but effective sampling technique is edge sampling. Doulion [18] uni-
formly samples edges of a large graph, and estimates its global triangle count
from that in the sampled graph. Mascot [11] improves upon Doulion in terms
of accuracy by utilizing unsampled edges. Specifically, whenever an edge arrives,
Mascot counts the global and local triangles formed by the incoming edge and
edges sampled so far, even if the incoming edge is not sampled but discarded.
While Mascot may discard edges even when storage is not full, Triestimpr [7]
always maintains as many samples as storage allows, leading to higher accuracy.
When edges are streamed in the chronological order, WRS [15] improves upon
Triestimpr in terms of accuracy by exploiting temporal dependencies in the

http://www.cs.cmu.edu/~kijungs/codes/trifly/

Table 1: Comparison of triangle counting algorithms. Notice that only our
proposed algorithm Tri-Fly satisfies all the criteria.

(Distributed) (Streaming) (Proposed)
[12,17] [3] [2,9,14] [7,10,11,15] Tri-Fly

Single-Pass Stream Processing 3 3 3
Approximation for Large Graphs 3 3 3 3
Global & Local Triangle Counting 3 3 3
Larger Data w/ More Machines 3 3 3
More Accurate w/ More Machines 3 3

edges. In addition to edge sampling, wedge sampling [9], neighborhood sampling
[14], and sample-and-hold [2] were used for global triangle counting, and node
coloring [10] was used for local triangle counting. Neighborhood sampling was
parallelized in a shared-memory setting where edges arrive in batches, and it
was also extended to cases where edges are streamed from multiple sources [13].

Distributed Triangle Counting. Many MapReduce algorithms for exact
counts of triangles have been proposed based on the assumption that all edges of
the input graph are stored in a distributed file system. The first such algorithm [6]
parallelizes node iterator, a serial algorithm for triangle counting. GP [17] divides
the input graph into overlapping subgraphs and assigns them to machines, which
count the triangles in the assigned subgraphs in parallel. Since the subgraphs
are not disjoint, GP produces a large amount of intermediate data, which were
reduced in [12]. The idea of dividing the input graph into overlapping subgraphs
was used also in a distributed memory setting [3]. These existing distributed
algorithms are batch algorithms for static graphs, while we propose incremental
algorithms for dynamic graph streams.

The aforementioned streaming algorithms and distributed algorithms are
summarized and compared in Table 1.

3 Notations and Problem Definition

3.1 Notations (Table 2)

Consider an undirected graph G = (V, E) with the set of nodes V and the set of
edges E . Each unordered pair (u, v) ∈ E indicates the edge between two distinct
nodes u, v ∈ V. We denote the set of triangles (i.e., three nodes, every pair of
which is connected by an edge) in G by T and those with node u by T [u] ⊂ T .
We call T global triangles and T [u] local triangles of node u. Each unordered
triple (u, v, w) ∈ T denotes the triangle with three distinct nodes u, v, w ∈ V.

Consider a graph stream (e(1), e(2), ...) where e(t) denotes the edge that arrives
at time t ∈ {1, 2, ...}. We use tuv to denote the arrival time of edge (u, v). Let
G(t) = (V(t), E(t)) be the graph at time t consisting of the nodes and edges
arriving at time t or earlier. Then, T (t) denotes the set of global triangles in G(t)
and T (t)[u] ⊂ T (t) denotes the set of local triangles of each node u ∈ V(t) in G(t).

Table 2: Table of frequently-used symbols.

Symbol Definition

Notations
for

Graph
Streams

(Section 3)

G(t) = (V(t), E(t)) graph at time t

e(t) edge that arrives at time t
(u, v) edge between nodes u and v
tuv arrival time of edge (u, v)
(u, v, w) triangle with nodes u, v, and w

T (t) set of global triangles in G(t)

T (t)[u] set of local triangles with node u in G(t)

Notations
for

Algorithm

(Section 4)

M, W, A sets of masters, workers, and aggregators
k maximum number of edges stored in each worker
li number of edges that worker i has received
h : V ∪ {∗} → A hash function that maps nodes to aggregators
c̄ estimate of the count of global triangles
c[u] estimate of the count of local triangles of node u

3.2 Problem Definition

In this work, we consider the problem of estimating the counts of global and
local triangles in a graph stream using multiple machines with limited storage.
Specifically, we assume the following realistic conditions:

C1 No prior knowledge: no information about the input graph stream (e.g.,
the number of edges, degree distribution, etc.) is available in advance.

C2 Shared nothing architecture: each machine cannot access data stored in
the other machines.

C3 Limited storage: at most k (≥ 2) edges can be stored in each of n machines,
while the number of edges in the input graph stream can be greater than k
or even nk.

C4 Single pass: edges are processed one by one in their arrival order. Past
edges cannot be accessed unless they are stored (in the storage in C3).

Based on these conditions, we define the problem of distributed estimation
of global and local triangle counts in a graph stream.

Problem 1 (Distributed Estimation of Triangle Counts in a Graph Stream).

(1) Given: a graph stream (e(1), e(2), ...), and n distributed storages each of
which can store up to k (≥ 2) edges

(2) Minimize: the estimation errors of global triangle count |T (t)| and local
triangle counts {|T (t)[u]|}u∈V(t) for each time t ∈ {1, 2, ...}.

Instead of minimizing a specific measure of estimation error, we use a gen-
eral approach of simultaneously reducing bias and variance to reduce various
measures of estimation error robustly.

Fig. 1: Flow of data in Tri-Fly.

4 Proposed Method: Tri-Fly

We propose Tri-Fly, a distributed streaming algorithm for approximate triangle
counting. We first present the overview of Tri-Fly. Then, we discuss its details.
Lastly, we provide theoretical analyses on its accuracy and complexity.

4.1 Overview (Figure 1)

Figure 1 shows the flow of data in Tri-Fly. Edges are streamed from sources to
masters so that each edge is sent to exactly one master. Each master broadcasts
the received edges to the workers. Each worker estimates the global and local
triangle counts independently using its local storage. To this end, we adapt
Triestimpr, which estimates both global and local triangle counts with no prior
knowledge, although any streaming algorithm can be used instead.1 The counts
are shuffled so that the counts of local triangles of each node (or the counts of
global triangles) are sent to the same aggregator. The aggregators aggregate the
counts and give the final estimates of the counts of global and local triangles.

4.2 Detailed Algorithm (Algorithm 1)

Algorithm 1 describes Tri-Fly. We first define the notations used in it. Then, we
explain masters, workers, and aggregators. Lastly, we discuss lazy aggregation.

Notations. We use M, W and A to indicate the set of masters, workers
and aggregators, respectively. Each worker can store up to k (≥ 2) edges, and Ei
denotes the set of edges currently stored in worker i ∈ W. We let Gi = (Vi, Ei)
be the graph consisting of the edges in Ei. For each node u ∈ Vi, Ni[u] indicates
the neighbors of u in Gi. We use li to denote the number of edges that worker
i ∈ W has received so far. If li > k, then li > |Ei| since not all received edges can
be stored. We use h : Vi ∪ {∗} → A to denote a hash function that maps nodes
(the keys for local triangle counts) and ‘∗’ (the key for global triangle counts) to
aggregators. Lastly, c̄ denotes the estimate of the count of global triangles, and
for each node u, c[u] denotes the estimate of the count of local triangles of u.

Masters (lines 2-3). Whenever each master receives an edge from the sources,
the master broadcasts the edge to the workers.

Workers (lines 5-16). Each worker independently estimates the global and
local triangle counts, and shuffles the counts across the aggregators. Note that

1 e.g., WRS [15] can be used instead if edges are streamed in the chronological order.

Algorithm 1: Tri-Fly

Input : input graph stream: (e(1), e(2), ...), storage budget in each worker: k
Output: estimated global triangle count: c̄

estimated local triangle counts: c[u] for each node u
- Master (each master):

22 for each edge (u, v) from the sources do
3 broadcast (u, v) to the workers

- Worker (each worker i ∈ W):
55 li ← 0, Ei ← ∅
6 for each edge (u, v) from the masters do
7 sum← 0
8 for each node w ∈ Ni[u] ∩Ni[v] do
9 send (w, 1/(pi[uvw])) to aggregator h(w)

10 sum← sum+ 1/(pi[uvw]) B see Eq. (1) for pi[uvw]

11 send (∗, sum) to aggregator h(∗) B ‘∗’: key for the global triangle count
12 send (u, sum) to aggregator h(u) and (v, sum) to aggregator h(v)
13 li ← li + 1
14 if |Ei| < k then Ei ← Ei ∪ {(u, v)}
15 else if a random number in Bernoulli(k/li) is 1 then
16 replace a random edge in Ei with (u, v)

- Aggregator (each aggregator j ∈ A):
17 if h(∗) = j then c̄← 0
18 initialize an empty map c with default value 0
19 for each pair (u, δ) from the workers do
20 if u = ∗ then c̄← c̄+ δ/|W|
21 else c[u]← c[u] + δ/|W|

the workers use different random seeds and thus shuffle different counts. Each
worker i ∈ W starts with an empty storage (i.e., Ei = ∅) (line 5). Whenever it
receives an edge (u, v) from a master (line 6), the worker counts the triangles
composed of (u, v) and two edges in its local storage; and sends the counts to the
corresponding aggregators using hash function h (lines 7-12). Then, the worker
samples (u, v) in its local storage with non-zero probability (lines 13-16). Below,
we explain in detail how each worker samples edges and counts triangles.

For sampling (lines 13-16), each worker i ∈ W first increases li, the number
of edges that it has received, by one (line 13). If its local storage is not full (i.e.,
|Ei| < k), the worker always stores (u, v) by adding (u, v) to Ei (line 14). If the
local storage is full (i.e., |Ei| = k), the worker stores (u, v) with probability k/li
by replacing a random edge in Ei with (u, v) (lines 15-16). This is the standard
reservoir sampling, which guarantees that each pair of the li edges is sampled

(i.e., included in Ei) with the equal probability min
(

1, k(k−1)
li(li−1)

)
.

For counting (lines 7-12), each worker i ∈ W finds the common neighbors
of nodes u and v in graph Gi (i.e., the graph consisting of the edges Ei in its
local storage) (line 8). Each common neighbor w indicates the existence of the

triangle (u, v, w). Thus, for each common neighbor w, the worker increases the
global triangle count and the local triangle counts of nodes u, v, and w by sending
the increases to the corresponding aggregators (lines 9, 11, and 12). The amount
of increase in the counts is 1/(pi[uvw]) for each triangle (u, v, w), where

pi[uvw] := min

(
1,
k(k − 1)

li(li − 1)

)
(1)

is the probability that triangle (u, v, w) is discovered by worker i (i.e., both (v, w)
and (w, u) are in Ei when worker i receives (u, v)), as explained above. Increasing
counts by 1/(pi[uvw]) guarantees that the expected amount of the increase sent
from each worker is exactly 1(= pi[uvw] × 1/(pi[uvw]) + (1 − pi[uvw]) × 0) for
each triangle, enabling Tri-Fly to give unbiased estimates (see Theorem 1).

Aggregators (lines 17-21). Each aggregator maintains and updates the tri-
angle counts assigned by the hash function h. That is, aggregator j ∈ A main-
tains the estimate c[u] of the count of local triangles of node u if h(u) = j.
Likewise, aggregator j ∈ A maintains the estimate c̄ of the count of global tri-
angles if h(∗) = j. Specifically, each aggregator increases the estimates by 1/|W|
of what it receives, averaging the increases sent from the workers (lines 20-21).

Lazy Aggregation (optional). In Algorithm 1, each worker sends the in-
crease of the local triangle count of node w to the corresponding aggregator
whenever it discovers each triangle (u, v, w) (line 9). Likewise, each worker sends
the updates of the global triangle count and the local triangle counts of nodes
u and v to the corresponding aggregators whenever it processes each edge (u, v)
(lines 11-12). In cases where this eager aggregation is not needed, we can reduce
the amount of shuffled data by employing lazy aggregation. That is, counts can
be aggregated locally in each worker until they are queried. If queried, the counts
are sent to and aggregated in the aggregators and removed from the workers.

4.3 Bias and Variance Analyses

We analyze the biases and variances of the estimates given by Tri-Fly. The
biases and variances determine the errors of the estimates. For the analyses,
let G(t) = (V(t), E(t)) be the graph with the edges arriving at time t or earlier.
We define c̄(t) as c̄ in the aggregator h(∗) after edge e(t) is processed. Likewise,
for each node u ∈ V(t), let c(t)[u] be c[u] in the aggregator h(u) after e(t) is
processed. Then, c̄(t) is an estimate of |T (t)|, the global triangle count in G(t),
and each c(t)[u] is an estimate of |T (t)[u]|, the local triangle count of u in G(t).

We first prove the unbiasedness of Tri-Fly, formalized in Theorem 1.

Theorem 1 (Unbiasedness of Tri-Fly). At any time, the expected values of
the estimates given by Tri-Fly are equal to the true global and local triangle
counts. That is, in Algorithm 1,

E[c̄(t)] = |T (t)|, ∀t ≥ 1, and E[c(t)[u]] = |T (t)[u]|, ∀u ∈ V(t), ∀t ≥ 1.

Proof Sketch. Consider a triangle (u, v, w) ∈ T (t). Let di[uvw] be the contribution
of (u, v, w) to c̄(t) by each worker i ∈ W. Then, by the definition of pi[uvw], and

Table 3: Time and space complexities of Tri-Fly for processing the first t edges
in the input graph stream.

Masters (Total) Workers (Each) Workers (Total) Aggregators (Total)

Time O(t · |W|) O(t ·min(t, k)) O(|W| · t ·min(t, k)) O(|W| · t ·min(t, k))*

Space O(|M|) O(min(t, k)) O(|W| ·min(t, k)) O(|V(t)|)
* can be reduced by lazy aggregation

lines 11 and 20 of Algorithm 1, di[uvw] = 1/(|W| · pi[uvw]) with probability
pi[uvw], and di[uvw] = 0 with probability (1−pi[uvw]). Therefore, E[di[uvw]] =
1/|W|. Then, E[di[uvw]] = 1/|W| and linearity of expectation imply

E[c̄(t)] = E
[∑
i∈W

∑
(u,v,w)∈T (t)

di[uvw]

]
=
∑
i∈W

∑
(u,v,w)∈T (t)

E[di[uvw]] = |T (t)|,∀t ≥ 1.

See [1] for a full proof with the unbiasedness of the other estimates. �
Theorem 2 presents the result of our variance analysis given in the supple-

mentary document [1]. The variance of each c(t)[u] can be analyzed in the same
manner considering only the triangles with node u.

Theorem 2 (Variance of Tri-Fly). The variance of the estimate c̄(t) in Tri-
Fly is inversely proportional to the number of workers. Let r(t) be the number of
triangle pairs in T (t) where (a) an edge is shared and (b) the shared edge is not

last to arrive in any of the two triangles. Let z(t) be max
(
0, |T (t)|

((t−1)(t−2)
k(k−1) −1

)
+r(t)

(
t−1−k

k

))
. Then, Eq. (2) holds in Algorithm 1.

V ar[c̄(t)] ≤ z(t)

|W|
, ∀t ≥ 1. (2)

Proof Sketch. For each worker i ∈ W, let c̄
(t)
i be the global triangle count sent

from the worker by time t. Then, c̄(t) =
∑

i∈W c̄
(t)
i /|W| (line 20 of Algorithm 1).

Eq. (2) follows from V ar[c̄
(t)
i] ≤ z(t) for each i ∈ W (Lemma 1 in [1]) and

independence between c̄
(t)
i and c̄

(t)
j for i 6= j. See [1] for a full proof. �

4.4 Time and Space Complexity Analyses

We summarize the time and space complexities of Tri-Fly in Table 3. Detailed
analyses with proofs are given in the supplementary document [1]. Notice that,
with a fixed storage budget k, the time complexity of Tri-Fly is linear in the
number of edges, as confirmed empirically in Section 5.2. The results also suggest
that reducing storage budget k and using more masters and aggregators need to
be considered if the input stream is too fast to be processed.

Table 4: Summary of real-world and synthetic graph streams.

Name # Nodes # Edges Summary

BerkStan 685, 230 6, 649, 470 Web
Patent 3, 774, 768 16, 518, 947 Citation
Flickr 2, 302, 925 22, 838, 276 Friendship
FriendSter 65, 608, 366 1, 806, 067, 135 Friendship

Random (800GB) 1, 000, 000 1, 000, 000, 000− 100, 000, 000, 000 Synthetic

5 Experiments

In this section, we conduct experiments to answer the following questions:

– Q1. Illustration of Theorems: Does Tri-Fly give unbiased estimates?
How rapidly do their variances drop as the number of workers is scaled up?
How does Tri-Fly scale with the size of the input stream?

– Q2. Performance: How fast and accurate is Tri-Fly compared to the best
single-machine streaming algorithms?

5.1 Experimental Settings

Machines: All experiments were conducted on a cluster of 40 machines with
3.47GHz Intel Xeon X5690 CPUs and 32GB RAM.
Datasets: The graph datasets used in the paper are summarized in Table 4.
The self loops, duplicated edges, and the directions of edges were ignored.
Implementations: We implemented Tri-Fly, Triestimpr [7] (single-machine)
and Mascot [11] (single-machine) in C++ and MPICH 3.1. In them, sampled
edges were stored in main memory in the adjacency list format. For Tri-Fly, we
used 1 master and 1 aggregator. We used lazy aggregation (see the last paragraph
of Section 4.2) and aggregated all counts once at the end of each input stream.
We simulated graph streams by streaming edges in a random order from the disk
of machines that host the master of Tri-Fly or single-machine algorithms.
Evaluation Metrics: We evaluated the accuracy of each algorithm at the end of
each input stream. Let x be the true global triangle count, and x̂ be its estimate
obtained by an evaluated algorithm. Likewise, for each node u ∈ V, let x[u] be
the true local triangle count of u and x̂[u] be its estimate. We used global error,

defined as |x−x̂|1+x , and RMSE, defined as
√

1
|V|
∑

u∈V(x[u]− x̂[u])2, to evaluate

the accuracy of global triangle counting and local triangle counting, respectively.

5.2 Q1. Illustration of Our Theorems (Figure 2)

Illustration of Unbiasedness (Theorem 1). Figure 2(a) shows the distri-
butions of 1, 000 estimates of the global triangle count in the BerkStan dataset
obtained by Tri-Fly and Triestimpr. We set storage budget k so that each

0

100

200

300

400

500

62M 64M 66M
Estimated Count

Fr
eq

ue
nc

y

Tri-Fly
(10 workers)

Tri-Fly
(5 workers)

TriestIMPR

True Count

(a) Unbiasedness (b) Variances drop (c) Scalable

Fig. 2: Theoretical properties of Tri-Fly. (a) Tri-Fly gives unbiased es-
timates. (b) The variances of the estimates drop inversely proportional to the
number of workers. (c) Tri-Fly scales linearly with the size of the input stream.

worker stored up to 5% of the edges. The averages of the estimates given by
Tri-Fly were close to the true triangle count, as expected from Theorem 1.
Illustration of Variance Decrease (Theorem 2). Under the same experi-
mental settings, Figure 2(b) shows the variances of the estimates of the global tri-
angle count obtained by different algorithms. We measured the sample variance
of 1, 000 estimates in each setting. The variance in Tri-Fly dropped inversely
proportional to the number of workers, as expected in Theorem 2.
Illustration of Linear Scalability (Section 4.4) We measured the running
time of Tri-Fly while varying the size of the input stream. We used 30 workers
and fixed the storage budget k to 107. To measure the scalability independently
of the speed of input streams, we measured the time taken to process edges,
ignoring the time taken by the master to wait for the arrival of edges in input
streams. Figure 2(c) shows the results with random graph streams with 1 million
nodes and different numbers of edges. The largest one was 800GB with 100
billion edges. Tri-Fly scaled linearly with the size of the input stream, as
expected in Section 4.4. We obtained similar results when graph streams with
realistic structure were used (see the supplementary document[1]).

5.3 Q2. Performance (Figure 3)

Since Tri-Fly is the first distributed streaming algorithm for triangle counting,
there is no direct competitor of Tri-Fly. As baselines, we used Triestimpr

[7] and Mascot [11], which are the state-of-the-art single-machine streaming
algorithms estimating both global and local triangle counts (see Table 1).

We measured the speeds and accuracies of the considered algorithms with
different storage budgets. To compare their speeds independently of the speed
of input streams, we measured the time taken by each algorithm to process
edges, ignoring the time taken to wait for the arrival of edges in input streams.
All evaluation metrics and running times were averaged over 10 trials in the
Friendster dataset and over 100 trials in the other datasets.

As seen in Figure 3, Tri-Fly showed the best performance in every dataset.
Specifically, Tri-Fly was up to 8.8× faster than baselines with similar accu-

(a) Flickr (b) Friendster

(c) BerkStan (d) Patent

Fig. 3: Tri-Fly achieves both speed and accuracy. In each plot, points rep-
resent the speeds and errors of different algorithms (the numbers in parentheses
indicate the percentage of edges that can be stored in each worker). Tri-Fly was
up to 4.5× more accurate than single-machine baselines with similar speeds,
and it was up to 8.8× faster than those with similar accuracies.

racies. In terms of global error and RMSE, Tri-Fly was up to 4.5× and 4.3×
more accurate than baselines with similar speeds, respectively.

6 Conclusion

In this work, we propose Tri-Fly, the first distributed streaming algorithm
estimating the counts of global and local triangles with the following strengths:

– Accurate: Tri-Fly yields up to 4 .5× and 4 .3× smaller estimation errors
for global and local triangle counts than similarly fast baselines (Figure 3).

– Fast: Tri-Fly is up to 8 .8× faster than similarly accurate baselines (Fig-
ure 3). Tri-Fly scales linearly with the size of the stream (Figure 2(c)).

– Theoretically sound: Tri-Fly yields unbiased estimates whose variances
drop as the the number of machines is scaled up (Theorems 1 and 2).

Reproducibility: The code and datasets used in the paper are available at
http://www.cs.cmu.edu/~kijungs/codes/trifly/.

Acknowledgements. This material is based upon work supported by the National

Science Foundation under Grants No. CNS-1314632 and IIS-1408924. Research was

sponsored by the Army Research Laboratory and was accomplished under Coopera-

tive Agreement Number W911NF-09-2-0053. This publication was made possible by

http://www.cs.cmu.edu/~kijungs/codes/trifly/

NPRP grant # 7-1330-2-483 from the Qatar National Research Fund (a member of

Qatar Foundation). Shin was supported by KFAS Scholarship. Any opinions, findings,

and conclusions or recommendations expressed in this material are those of the au-

thor(s) and do not necessarily reflect the views of the National Science Foundation, or

other funding parties. The U.S. Government is authorized to reproduce and distribute

reprints for Government purposes notwithstanding any copyright notation here on.

References

1. Supplementary document. Available online: http://www.cs.cmu.edu/~kijungs/

codes/trifly/supple.pdf (2018)
2. Ahmed, N.K., Duffield, N., Neville, J., Kompella, R.: Graph sample and hold: A

framework for big-graph analytics. In: KDD (2014)
3. Arifuzzaman, S., Khan, M., Marathe, M.: Patric: A parallel algorithm for counting

triangles in massive networks. In: CIKM (2013)
4. Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Reductions in streaming algorithms,

with an application to counting triangles in graphs. In: SODA (2002)
5. Becchetti, L., Boldi, P., Castillo, C., Gionis, A.: Efficient algorithms for large-scale

local triangle counting. TKDD 4(3), 13 (2010)
6. Cohen, J.: Graph twiddling in a mapreduce world. Computing in Science & Engi-

neering 11(4), 29–41 (2009)
7. De Stefani, L., Epasto, A., Riondato, M., Upfal, E.: Triest: Counting local and

global triangles in fully-dynamic streams with fixed memory size. In: KDD (2016)
8. Eckmann, J.P., Moses, E.: Curvature of co-links uncovers hidden thematic layers

in the world wide web. PNAS 99(9), 5825–5829 (2002)
9. Jha, M., Seshadhri, C., Pinar, A.: A space efficient streaming algorithm for triangle

counting using the birthday paradox. In: KDD (2013)
10. Kutzkov, K., Pagh, R.: On the streaming complexity of computing local clustering

coefficients. In: WSDM (2013)
11. Lim, Y., Kang, U.: Mascot: Memory-efficient and accurate sampling for counting

local triangles in graph streams. In: KDD (2015)
12. Park, H.M., Myaeng, S.H., Kang, U.: Pte: Enumerating trillion triangles on dis-

tributed systems. In: KDD (2016)
13. Pavan, A., Tangwongan, K., Tirthapura, S.: Parallel and distributed triangle count-

ing on graph streams. Technical report, IBM, Tech. Rep. (2013)
14. Pavan, A., Tangwongsan, K., Tirthapura, S., Wu, K.L.: Counting and sampling

triangles from a graph stream. PVLDB 6(14), 1870–1881 (2013)
15. Shin, K.: Wrs: Waiting room sampling for accurate triangle counting in real graph

streams. In: ICDM (2017)
16. Shin, K., Eliassi-Rad, T., Faloutsos, C.: Patterns and anomalies in k-cores of real-

world graphs with applications. Knowl. Inf. Syst. 54(3), 677–710 (2018)
17. Suri, S., Vassilvitskii, S.: Counting triangles and the curse of the last reducer. In:

WWW (2011)
18. Tsourakakis, C.E., Kang, U., Miller, G.L., Faloutsos, C.: Doulion: counting trian-

gles in massive graphs with a coin. In: KDD (2009)
19. Wang, J., Cheng, J.: Truss decomposition in massive networks. PVLDB 5(9), 812–

823 (2012)
20. Wasserman, S., Faust, K.: Social network analysis: Methods and applications,

vol. 8. Cambridge university press (1994)

http://www.cs.cmu.edu/~kijungs/codes/trifly/supple.pdf
http://www.cs.cmu.edu/~kijungs/codes/trifly/supple.pdf

	Tri-Fly: Distributed Estimation of Global and Local Triangle Counts in Graph Streams

