
VOtus: A Flexible And Scalable Monitoring
Framework for Virtualized Clusters

M. Suhail Rehman, Mohammad Hammoud, Majd F. Sakr
Carnegie Mellon University in Qatar
Education City, Doha, State of Qatar

Email: {suhailr,mhhammou,msakr}@qatar.cmu.edu

Abstract—Large-scale distributed processing frameworks such
as Hadoop are currently enjoying wide popularity for big data
computation. Performance Analysis and monitoring under these
frameworks are inherently difficult especially in a virtualized
environment. Existing distributed monitoring tools can only re-
port virtual resource usage. Such reported information might be
insufficient for developers and users to acquire deep insights into
the performance of distributed applications. This paper describes
VOtus, an initial step towards extending the Otus monitoring
tool for virtualized clusters on private clouds. By collecting
supplementary metrics from the hypervisor (when available),
VOtus allows users to effectively and efficiently monitor a
virtualized cluster. It also provides enhanced comprehension of
distributed applications, which helps in answering performance
related queries that relate to capacity planning, placement, and
migration of virtual machines on the cluster.

I. INTRODUCTION
Organizations around the world are dealing with unprece-
dented amounts of data in today’s age. To deal with the
complexities of processing big data, distributed frameworks
such as Hadoop [1] have become massively popular. Com-
panies such as Yahoo! and Facebook use these frameworks
extensively in production environments and process petabytes
of data on a daily basis. For smaller, short term data processing
requirements, such distributed frameworks can be deployed on
virtualized infrastructure, thereby allowing better utilization of
hardware resources. For instance, Amazon’s Elastic MapRe-
duce service [2] manages a user’s EC2 virtual machines and
automatically deploys Hadoop MapReduce jobs.

Analysis and performance characterization of applications
that run on these frameworks is difficult due to the distributed
nature and scale of the computing platform. Cluster services
such as job handling, data distribution and file system services
run as processes and are co-located with user jobs. For
example, in Hadoop MapReduce, services such as TaskTrack-
ers and DataNodes are co-located with map and/or reduce
tasks, and run simultaneously as java processes. Resources are
not exclusively allocated to a single job, making application
performance analysis even harder.

Many tools have been developed to assist developers and
cluster administrators to monitor, debug and analyze these
frameworks [4], [5]. One example is Otus [3], a simple yet
powerful tool that can collect metrics from thousands of nodes
and perform resource attribution, as well as provide a flexible
visualization interface to users. Otus can collect metrics at
various levels in the cluster software stack, including the

Fig. 1. Example of Otus monitoring the memory consumption of a node
running a Hadoop Job (Figure from [3]).

OS and some high-level services such as HDFS or Hadoop
MapReduce. Figure 1 shows a sample view from the Otus tool,
attributing different MapReduce processes with the amount of
memory consumed on a single cluster node.

Otus was designed to monitor and attribute resources on
clusters that run on traditional bare metal hosts. When Otus
is deployed on virtual machine hosts that form a virtualized
cluster, it can only perform resource attribution of applications
on the virtual resources within the VM. Ideally, Otus would
be most useful if it could attribute applications running on
virtual machines to the physical resources of the bare metal.
As a first step towards this goal, we’ve developed VOtus by
extending Otus to collect and present metrics from both the
hypervisor layer along with metrics from within the VMs. To
our knowledge, this is the first monitoring tool that collects and
presents metrics for performance analysis from both layers.
As a result we offer a consolidated visualization of physical
and virtual resources, and provide developers and users with
deeper insights into the performance of their applications.

II. BACKGROUND

Contemporary monitoring systems such as [4], [5], [6] share
many similarities with Otus. Figure 2 illustrates the typical
architecture of a scalable monitoring system designed for
large-scale clusters.

A monitoring system typically consists of client-side col-
lection agents, aggregator agents, a storage back-end, and
a front-end application (typically a GUI or a web-based

Node

OS

Applications

collector

N d

collectors

Aggregator Aggregators
Storage

Back-Ends

Front-End

Application

(Query and

Visualizer)

Fig. 2. Architecture of monitoring systems.

application). A collector is a background process that runs on
each cluster host (or VM). It periodically reads performance
metrics collected from the OS and/or the applications (e.g.,
CPU utilization or disk I/O operations per second) and passes
them to a certain aggregator. An aggregator receives data
from multiple collectors and makes decisions on where and
how to store the data. In systems such as Ganglia [4], an
aggregator also performs data-thinning, where historical data is
compressed by aggregating the values of the collected metrics.
Data is typically thinned at granularities of hour, day, week,
etc. The storage back-end provides a central repository for
storing and querying the metrics received from aggregators.
Finally, the front-end application is used by users to query
metrics and visualize them over a particular time range (e.g.
the past hour or day etc.).

Although many of the available distributed monitoring
systems enable cluster management, they fail in providing
necessary information to answer fundamental questions (e.g.,
what is the bottleneck resource being exhausted by a user’s
application). Otus addresses such deficiencies and effectively
facilitates performance analysis of distributed data-intensive
applications. However, when deployed in a virtualized envi-
ronment, Otus does not help much in understanding resource
requirements of these applications.

A. Architecture of Otus
The Otus monitoring tool is a flexible and scalable resource
monitoring system for data-intensive cluster systems. The
novelty of Otus lies in the following:

• It can store metrics persistently without thinning the
resolution of data over time. This allows users to analyze
and debug distributed applications more effectively even
after completion.

• It can attribute resources to specific applications, jobs and
services. This allows users to identify resource bottle-
necks and scrutinize their application requirements.

Component Implementation
Collector tcollector with Otus plugins

Aggregator time-series daemon (TSD)
Storage Back-End HBase

Front-end Application Django-based webapp

TABLE I
VARIOUS COMPONENTS OF OTUS.

Table I lists all Otus’s components. Otus uses
OpenTSDB [6] to handle collecting, aggregating and
storing data. OpenTSDB is a scalable time-series database
implementation over HBase [7] developed at StumbleUpon.
We now describe each of Otus’s components in detail.

a) Collection: Otus relies on the tcollector [8] appli-
cation existing in OpenTSDB for data collection. tcollector
utilizes user-written scripts to produce output in a specific
format to standard output. It automatically launches collectors
on behalf of the user, reads recorded metrics and sends them
to designated aggregators (known as time-series daemons or
TSDs in OpenTSDB’s parlance). Default tcollector plugins
that come with OpenTSDB collect overall CPU, memory and
disk utilization metrics. Plugins for Otus collect information
resource usage at the process level, obtained by parsing files in
the \proc directory. Otus also tags the metrics by process, and
can identify each as being a generic java process, a map/reduce
task or a Hadoop daemon.

b) Aggregation: Otus uses OpenTSDB’s Time-Series
Daemon (TSD) aggregator. TSD is a server daemon that
actively listens on a user-specified TCP port for metrics that
are dispatched by tcollector daemons running on client nodes.
TSD receives and validates incoming metrics and forwards
them to HBase for storage.

c) Storage Back-end: Incoming data points need to be
stored in a persistent and scalable manner. When running
Otus on hundreds or possibly thousands of nodes, a robust
and distributed storage back-end will be required. Otus and
OpenTSDB use the HBase distributed database system from
Apache in order to persistently store metrics for large clusters.

d) Front-end Application: The Otus front-end consists
of a web application that allows users to view particular
clusters/nodes and running MapReduce jobs. It also allows
users to create custom queries over the range of metrics that
are recorded by OpenTSDB.

B. Limitations of Otus on Virtualized Clusters
When Otus is deployed on a virtualized cluster, the collectors
are run on virtual hosts instead of physical ones. The infor-
mation polled by these collectors will be from the guest OSs
on the VMs and will reflect the usage of virtual rather than
physical resources. This does not help users in finding out the
exact resource requirements of their distributed applications.
If Otus is to be effective for virtualized clusters, it should
access physical as well as virtual resource metrics. This will
be especially useful in answering performance related queries
such as capacity planning, placement, and migration of VMs
on the cluster.

Virtualization-related metrics are typically obtained through
hypervisors such as VMWare’s ESX [9] and Xen [10].
Command-line tools such as esxtop or xentop can be used for
real-time monitoring and analysis of VMs but are cumbersome
for analysis after-the-fact. Additionally, if users need to cut
across abstraction levels and analyze applications that are
running on VMs and would like to see their effect on physical
hardware, they would need to use two tools - one that monitors
processes within VMs and another that monitors VMs and
resources from the hypervisor.

III. DESIGN OF VOTUS
VOtus has been designed with an aim to keep most of the
original architecture of Otus intact. Otus is robust and flexible

enough to incorporate additional metrics.

A. Collecting performance metrics from the Hypervisor
A number of Application Programming Interfaces (APIs)
provide ’hooks’ which allow users to not only query per-
formance metrics and get status updates, but also to manage
VMs (e.g., by dynamically creating, destroying or migrating
VMs across physical hosts). While a number of APIs are
available that target specific hypervisors, the Red-Hat backed
libvirt [11] project aims to provide a common API for most
popular hypervisors such as Xen, KVM, VMWare, OpenVZ,
among others. Currently, libvirt has sparse support for some
hypervisors (e.g., VMWare ESX).

For the purpose of developing VOtus given our infrastruc-
ture (see Section IV), we used VIJava [12], an open-source
API which targets solely the VMWare hypervisor. VIJava is
a rich API and exposes hundreds of metrics on a VMWare-
based cluster. Nonetheless, the techniques we describe in this
section are general enough to be applied to APIs such as libvirt
in order to monitor other virtualized systems as well.

Physical Host

VM

Hypervisor

VM

VM VM

collector

vCenter

Server

TSD

VOTUS collector S co

HBASE

Fig. 3. Design of VOtus.

B. VOtus Design
Figure 3 shows the design of VOtus. VMware organizes
physical hosts into clusters. In order to manage a cluster
effectively, VMWare offers a product called vCenter that
allows managing all available physical hosts and the VMs
resident on them. The vCenter server also hosts a VMWare
web service which allows remote hosts to connect over HTTPS
and perform monitoring or management functions. We used
the VIJava SDK to write plugins that connect to the vCenter
server and query any required hypervisor performance metric.
All OpenTSDB metrics must be of the form <metric

name><timestamp><value>[tags]. Our plugins comply
to such a format and output metrics that can be collected
and shipped to the OpenTSDB back-end of Otus. Table II
provides a list of some interesting metrics that we poll from
the hypervisor.

IV. TWO CASE STUDIES
We deployed VOtus on a 14-node private cloud running
VMware vSphere 4.1. One of the VMs was configured with the
VOtus aggregator and storage back-end, while collectors were
deployed on the physical hosts and VMs. The following case
studies illustrate the usage of VOtus when running distributed
applications on a 4-VM Hadoop cluster. Figure 4 illustrates
the setup. The 4 VMs were provisioned on 2 physical hosts,

Metric Name Description
vmm.physical.cpu.usage.percent Utilization of Host CPU

vmm.physical.cpu.hwthreads.num Total number of Hardware
Threads on Host Machine)

vmm.physical.memory.total.mb Total Memory on Physical Host
vmm.physical.memory.consumed.bytes Memory consumed in MB

by VMs on physical Host
vmm.physical.memory.active.bytes Physical Memory actively used

by VMs on a physical host

TABLE II
LIST OF SOME OF THE METRICS IN VOTUS.

Physical Host 1 Physical Host 2

VM VM VM VM

VM VM

VM VM

VM VM

VM VM

VM Hadoop Cluster VM

VM Other VMs

VM VM

VM VM

VM VM

VM VM

Fig. 4. VM setup for the two case studies.

with 2 VMs on each. There are other VMs that have been
also provisioned on the 2 physical hosts. Our objective is to
measure the effect of co-located VMs on the performance of
jobs running on the 4-VM cluster. So synthesize co-located
VM load, we used a stress application [13], which we setup to
execute artificial workloads on all of the other VMs residing
on physical host 2. Finally, for each case study, we run a
Hadoop job in two states:

1) (State 1) Job executed when other VMs are idle.
2) (State 2) Job executed when all other VMs on one of

the physical hosts are stressed for a resource.

A. Monitoring CPU Load
For our first case, we run the Wordcount Hadoop job on 8 GB
of random text using 4 VMs. The runtime of the Hadoop job
in state 2 is roughly 50% slower than state 1, since wordcount
is a CPU-bound Hadoop job and half the VMs in state 2 are
CPU-starved owing to the other VMs that are stressing the
CPU.

In Figures 5a and 5b, we plot the output of VOtus moni-
toring the second physical host, as well as one of the VMs on
that host. From the VM, we plot the vCPU utilization - this
is the information provided by Otus. From the physical host,
we plot the number of physical hardware threads available
and the number of VMs that have high CPU load (which
we arbitrarily define as 80% or higher), obtained from the
hypervisor using our VOtus plugins. In both figures, we see
that the VMs reach near 100% vCPU utilization. In Figure
5a, only 2 VMs (the ones running the Hadoop job) have a
CPU load of 80%, which is below the number of hardware
threads available on the physical host. This indicates that there
is available CPU capacity on this physical host and additional
VMs could be provisioned or migrated to this host for this
particular job.

(a) Wordcount, Idle (State 1) (b) Wordcount, Stressed (State 2)

(c) Hadoop Sort, Idle (State 1) (d) Hadoop Sort, Stressed (State 2)
Fig. 5. Case Studies

However, in Figure 5b, we have a maximum of 10 VMs that
are experiencing high CPU load, as reported by the hypervisor.
Such additional information provided by VOtus grants us a
clearer picture of the actual utilization of the physical CPU on
that host. The plot clearly indicates that this physical host is
currently over-utilized with respect to CPU. A straightforward
solution to manage the observed performance deterioration is
to migrate some of the VMs away from this over-utilized
physical host.

B. Monitoring Memory Usage
For our second case, we run the Sort job on 4 GB of random
binary data using 4 VMs. The execution time of the Hadoop
job in state 2 is roughly 50% slower than state 1, since sort
is a memory-bound Hadoop job and half the VMs in state
2 are memory-starved. In this case, Figures 5c and 5d show
the usefulness of the hypervisor metrics collected by VOtus
(i.e., total memory, consumed memory and active memory
on host). In particular, we are able to indicate a memory
stress situation as opposed to purely viewing the VM memory
metrics. Clearly, by incorporating performance metrics from
the hypervisor, VOtus is able to provide deeper insights into
the actual resource usage on the physical hosts.

V. CONCLUSION
We have presented VOtus, a flexible and scalable framework
for monitoring virtualized clouds. VOtus provides access to
performance metrics that are collected from within VMs and
the hypervisor, thereby allowing users to analyze application
performance from multiple viewpoints. VOtus is an initial step
towards adapting Otus for virtualized clusters. We foresee
VOtus being a useful monitoring tool for researchers in
virtualized data-intensive centers. In the future, we plan to

work on additional metrics, such as those pertaining to disk
and network usage in virtualized environments. We also plan
to work on resource attribution under virtualized clusters.

ACKNOWLEDGMENTS
The authors would like to thank the entire Otus team, Kai Ren,
Julio López, and Garth Gibson for their invaluable support in
setting up Otus on our system and their essential feedback on
this piece of work. We are also very grateful to Jim Gargani
for his assistance with this project.

REFERENCES

[1] Apache hadoop. http://hadoop.apache.org/
[2] Amazon elastic mapreduce. http://aws.amazon.com/elasticmapreduce/
[3] K. Ren, J. López, and G. Gibson, “Otus: resource attribution in

data-intensive clusters,” in Proceedings of the second international
workshop on MapReduce and its applications, ser. MapReduce ’11.
New York, NY, USA: ACM, 2011.

[4] M. L. Massie et al., “The ganglia distributed monitoring system:
design, implementation, and experience,” Parallel Computing, vol. 30,
2004.

[5] A. Rabkin and R. Katz, “Chukwa: A system for reliable large-scale log
collection,” in Proceedings of the 24th international conference on Large
installation system administration. USENIX Association, 2010.

[6] OpenTSDB. http://opentsdb.net/
[7] (2011) Apache HBase. http://hbase.apache.org/
[8] StumbleUpon. tcollector for opentsdb. http://opentsdb.net/tcollector.html
[9] VMware ESX hypervisor. http://www.vmware.com/products/vsphere/esxi-

and-esx/index.html
[10] P. Barham et al., “Xen and the art of virtualization,” SIGOPS Oper.

Syst. Rev., vol. 37, 2003.
[11] (2011) libvirt - virtualization api. http://libvirt.org/
[12] S. Jin. Vmware vi (vsphere) java api. http://vijava.sourceforge.net/
[13] Amos Waterland. stress - a workload generator for POSIX systems.

http://weather.ou.edu/ apw/projects/stress/

