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ABSTRACT
Relational join is a central data management operation that in-
fluences the performance of almost every database query. In this
paper, we show that different input features and hardware settings
necessitate different main-memory hash join models. Subsequently,
we identify four particular models by which hash-based join algo-
rithms can be executed and propose a novel polymorphic paradigm
that dynamically subscribes to the best model given workload and
hardware characteristics. We refer to our polymorphic paradigm
as PolyHJ and suggest a corresponding implementation, which
consists of two mechanisms, namely, in-place, cache-aware parti-
tioning (ICP) and collaborative building and probing (ColBP). ICP
and ColBP serve substantially in reducing multi-core cache misses,
memory bandwidth usage, and cross-socket traffic. Our experimen-
tal results demonstrate that PolyHJ can successfully select the right
models for the tested workloads and significantly outperform the
current state-of-the-art hash-based join schemes.
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1 INTRODUCTION
Recent advancements in hardware technology have revealed re-
markable architectural trends. For instance, semiconductor fab-
rications enable nowadays constructing integrated circuits with
thousands of processors [13]. As a response, the industry proceeded
rapidly with packing tens and hundreds of cores on a single chip [3].
In addition, cache and memory capacities with tens of megabytes
and hundreds of gigabytes, respectively, are increasingly becoming
affordable and prevalent [1, 16].

However, under the hood, memory speed is still growing at a
lower rate compared to CPU, widening the memory-CPU gap and
gradually imposing memory latency as a major bottleneck for per-
formance. Besides, as the number of cores is scaled up, the memory
bandwidth available to each core is rather decreased, leading to
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Figure 1: Last-level cache (LLC) size in MBs per hardware
context/thread for 481 Intel Xeon models from 2006 to 2018,
sorted by year. The trend demonstrates what we refer to as
the cache wall problem.

what is commonly known as the bandwidth wall problem [27]. Like-
wise, although the total size of on-chip cache is increasing, per-core
(or per-thread) cache of just a couple of megabytes is rendering an
average norm across chip generations, resulting in what we denote
as the cache wall problem (see Fig. 1)1.

The above trends and bottlenecks lead to the following natural
question: how can fundamental and highly influential data manage-
ment operations harness the increasing power of modern hardware,
while overcoming obstacles like the bandwidth and cache wall
problems? As an attempt to answer this query, various re-designs
of data management operations have been pursued over the last
few years [17, 28]. Among these operations, main-memory join, a
cornerstone algorithm in database management systems, has con-
stantly attracted attention and gone through various recasts after
almost every major architectural innovation [8, 14, 22].

Main-memory joins are typically classified into two major cat-
egories, hash and sort-merge joins. Recent studies show that hash
joins are superior in performance to sort-merge ones, especially
on large-scale multi-core machines [7, 20, 25]. Consequently, this
paper focuses on hash joins, which are themselves categorized into
No-Partitioning (NOP) and Partitioned Hash Join (PHJ) paradigms.
NOP and PHJ employ different approaches. In particular, NOP ap-
plies a hardware-oblivious strategy, in which it entirely precludes
partitioning input relations so as to maintain design simplicity and
invariability against the characteristics of the hardware. More pre-
cisely, it assumes that modern hardware is already good enough in
hiding cache and Translation Lookaside Buffer (TLB) misses, which
might be caused by its simple design. In contrast, PHJ promotes a
hardware-conscious approach, whereby it partitions input relations
so as to judiciously exploit cache and TLB localities.

1Fig. 1 shows only results for Intel Xeon. However, we observed comparable trends
for other server CPU models (e.g., AMD Opteron and IBM Power).
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Figure 2: The performance of NOP versus PHJ under: (a) no
skew and increasing dataset sizes, with the inner and outer
relations being always equal, and (b) increasing skew and
a fixed dataset size, with the inner and outer relations con-
sisting always of 128 million tuples (or 977 MiB) and 1280
million tuples (or 9766 MiB), respectively. The figure clearly
exhibits the size-skew dichotomy.

As a result, NOP and PHJ demonstrate striking differences in
how they handle varying dataset sizes and distributions. Specif-
ically, NOP provides high throughput with small inner relations
and/or substantially skewed key distributions [8, 12]. In fact, the
performance of NOP improves significantly as skew increases [12].
Conversely, with large inner relations and low-to-moderate skew-
ness, PHJ flourishes and, considerably, outperforms NOP [8, 9, 25].
We studied the behaviors of NOP and PHJ using their state-of-the-
art representative schemes, namely, NOPA and CPRA from [25].
Figures 2 (a) and 2 (b) illustrate their opposing behaviors, which
we refer to as the size-skew dichotomy.

In an attempt to address the size-skew dichotomy and tackle the
bandwidth and cache wall problems, this paper proposes Polymor-
phic Hash Join (PolyHJ). PolyHJ adjusts its behavior according to
the characteristics of input relations and hardware. Generalizing
beyond NOP and PHJ, it decouples the partitioning of relations via
partitioning none, one, or both, yet with equal or unequal numbers
of partitions. As such, NOP can be pursued by partitioning none of
the relations and PHJ by equally partitioning both (i.e., generating
the same number of partitions for both), alongside other alterna-
tives. Of course, the selection of any alternative will depend on the
sizes and distributions of relations as well as the capacities of the
Last-Level Cache (LLC) and TLB.

Besides its unique aspect of polymorphism, PolyHJ incorporates
re-designed join phases so as to efficiently deal with the limited
per-core bandwidth and cache capacity. In particular, PolyHJ adopts
a bandwidth-aware partitioning mechanism, which interestingly
converges towards just one LLC miss per a number of tuples that
can fit in one cache line. This results in a maximum of one access

to main-memory for a cache line of tuples, greatly alleviating the
pressure on the memory bandwidth. PolyHJ accomplishes this via
re-ordering input relations (whenever possible), in-place and within
small and contiguous cached blocks. Alongside, PolyHJ suggests
aggregate LLC-aware building and probing phases, which seek to
effectively utilize logically-shared LLCs. To elucidate, modern high-
end CPUs usually adopt a shared LLC among cores on a chip [28].
Consequently, even with a fixed or slightly decreasing per-core
cache size, the aggregate LLC capacity increases as the number of
cores on a chip is increased. While classical join paradigms overlook
this characteristic, PolyHJ leverages it via efficiently allowing each
built hash table to be as large as the total size of the shared LLC,
thus mitigating the cache wall problem.

The main contributions of this paper can be summarized as
follows:
• We investigate multiple possible models of hash joins, gener-
alizing them beyond NOP and PHJ. This is achieved through
considering various workload and hardware characteristics,
including key distributions of input relations, difference in
their sizes, and available LLC capacity.
• We present PolyHJ, an open-source2 polymorphic hash join
paradigm, which tackles the size-skew dichotomy via dy-
namically executing different hash join models for different
relations and hardware.
• We propose new bandwidth- and cache-aware implementa-
tions of the join phases (i.e., the partitioning, building and
probing phases) for multi-core machines.
• We thoroughly evaluate PolyHJ and show that it success-
fully selects the best hash join model for nearly every tested
workload. As an outcome, when all schemes utilize all CPUs,
PolyHJ outperforms the state-of-the-art NOP and PHJ schemes
in [25] by averages of 2X and 2.4X, and up to 3.7X and 5.3X
(excluding few edge cases, which result in 91X speedup),
respectively.

The rest of the paper is organized as follows. We present a brief
survey of main-memory hash joins in Section 2. Details of PolyHJ
are provided in Section 3. We discuss our experimentation method-
ology and results in Section 4. Finally, Section 5 concludes with
main remarks and future directions.

2 RELATEDWORK
We now discuss the No-Partitioning (NOP) and Partitioned Hash
Join (PHJ) paradigms in more detail and present some of their
schemes (or implementations) that are closely related to PolyHJ’s.

2.1 No-Partitioning Join
The NOP Paradigm: At its core, the NOP paradigm is a paral-
lelization of the canonical hash join model [8], which suggests a
simple, two-phase organization, including a building and a probing
phases. In particular, NOP divides each input relation into sections
and assigns a different thread to each section. In the building phase,
all threads build concurrently a single, shared hash table out of
the inner relation (say, R), using a specific hash function (say, h).
To guarantee that parallel writes on shared buckets are mutually

2http://github.com/cmuq-ccl/PolyHJ
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exclusive, some synchronization mechanism is involved. After the
hash table is constructed, the probing phase is triggered, whereby
the threads at different sections in the outer relation (say, S) hash
tuples using h, locate buckets in the built hash table accordingly,
and match R’s and S’s tuples, before outputting join results.

As implied by its simple design, the phases of NOP are not crafted
based on the features of any specific hardware component like
(multi-core) cache organization or TLB. Hence, schemes imple-
menting NOP are deemed to be hardware-oblivious. Nonetheless,
they are interestingly capable of naturally exploiting cache locality
when S is highly skewed [8]. Under such workload characteristics,
the hash table can be probed efficiently since high skew results in
high temporal locality over a small, frequently-accessed subset of
buckets in the table.
NOP Schemes: As suggested by the NOP paradigm, any NOP
scheme needs to employ a single, shared hash table and usually a
mutual exclusion mechanism that synchronizes conflicting writes
(or collisions). For instance, Lang et al. [21] proposed incorporat-
ing a linear-probing technique to handle collisions and a lock-free
mechanism to synchronize parallel writes during building. More
precisely, they suggested writing tuples that hash to fully occupied
buckets into succeeding vacant buckets using an atomic Compare-
And-Swap (CAS) operation. More recently, Schuh et al. [25] intro-
duced a No-Partition Array (NOPA) scheme, which averts synchro-
nization altogether. In particular, NOPA taps into the fact that the
inner input relation is typically joined on a primary key. Conse-
quently, it leverages the uniqueness of the values of this key to
store each value at a distinct, unshared bucket in what is referred
to as an array-based hash table. We compare PolyHJ against NOPA
in Section 4.

2.2 Partitioned Hash Join
The PHJ Paradigm: As opposed to NOP, the PHJ paradigm relies
on a partitioning strategy to controllably exploit cache locality,
irrespective of the key distributions in input relations. As in NOP,
each input relation is split into sections and each section is assigned
a unique thread. Contrary to NOP, a partitioning phase is incorpo-
rated before proceeding with a building and a probing phases. In
the partitioning phase, each thread partitions its section into an
equal number of partitions, referred to as partitioning fanout. This
is done for both input relations, R and S . Afterwards, a hash table
is built for each R’s partition by a single thread during the building
phase, and probed immediately by (typically) the same thread from
the corresponding S’s partition during the probing phase.

By partitioning R and S , the PHJ paradigm aims at enhancing
locality and diminishing synchronization overhead during building
and probing. Typically, the partitioning fanout is selected differ-
ently for different workloads so as each hash table can fit into either
a private L2 [8, 20, 25] or a portion of a shared Last-Level-Cache
(LLC), divided equally among threads [25]. In doing so, PHJ enforces
the random accesses caused by hashing to occur on small, cache-
resident rather than large, memory-resident hash tables. This has
been shown to noticeably reduce cache misses and improve query
performance [6]. Besides increasing locality, partitioning entails
isolated building and probing tasks, whereby each thread builds

and probes a pair of partitions from R and S independently. Conse-
quently, all such isolated tasks can be executed in an embarrassingly
parallel fashion, with no need for any inter-task synchronization
mechanism whatsoever.
PHJ Schemes: The partitioning strategy of PHJ has evolved much
since firstly introduced by Shatdal et al. [26]. For instance,Manegold
et al. [22] observed that simply scattering tuples to their respec-
tive partitions renders infeasible with large input relations. This
is because these relations necessitate large partitioning fanouts in
order to guarantee that each hash table can still fit in cache. Unfor-
tunately, while large fanouts can maintain high cache effectiveness,
they inversely increase TLB misses during partitioning itself. Con-
sequently, Manegold et al. proposed a TLB-aware multi-pass parti-
tioning mechanism, wherein an input relation is partitioned over
multiple passes, with each pass producing a number of partitions
that does not exceed the number of TLB entries.

The work by Kim et al. [20], Blanas et al. [12], and Balkesen et
al. [8] contributed towards efficient parallel versions of the multi-
pass partitioning mechanism for multi-core machines. Later, Balke-
sen et al. [9] considered using a buffering-based technique (which
was proposed earlier for radix sorting by Satish et al. [24]) to em-
ploy larger partitioning fanouts, yet without involving more than a
single pass.

More recently, Schuh et al. [25] tuned various PHJ implemen-
tations for NUMA architectures and evaluated them using differ-
ent hash table implementations. They observed that existing PHJ
schemes ineffectively scatter tuples to NUMA-remote locations
over multi-socket machines. Relying on the fact that NUMA-remote
writes are usually expensive, they proposed the Chunked Parallel
Radix (CPR) join algorithm, in which each thread separately creates
its partitions on its local socket. They also suggested CPRA, an
extended variant of CPR, which adopts array-based hash tables. In
their comprehensive evaluation of thirteen different main-memory
join schemes, CPRA demonstrated the highest throughput among
the PHJ-based ones. We compare PolyHJ versus CPRA in Section 4.

Themain-memory join schemes considered so far are all based on
the assumption that both input relations completely fit in memory.
Barber et al. [10] relaxed this assumption via exploring joins in
which only the (smaller) inner relation must fully reside in memory.
Subsequently, they proposed a memory-efficient scheme, referred
to as Concise Hash Table Join (CHTJ), which partitions only the
inner relation, but not the outer one. While in fact CHTJ illustrates
high performance when the size of the outer relation surpasses
memory capacity, later experiments by Schuh et al. [25] show that
it can be greatly outperformed by NOPA and CPRA (described
earlier) otherwise.

Lastly, while this paper focuses on the hash join for mainstream
multi-core architectures, we note there is a recent interest in tuning
the join for specialized processing units like Intel Xeon Phi [14, 18,
23] and GPUs [15, 19].

3 POLYHJ
3.1 Join Models
PolyHJ is a polymorphic join paradigm, which gracefully adapts
to varying workload characteristics and hardware configurations.
More precisely, it employs a hash-based strategy, with two or three
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Figure 3: The runtimes of the NOP, PHJ, Asymmetric and Asymmetric+ Models, implemented using the ICP and ColBP tech-
niques, under various dataset sizes and skewness (M = Millions, R = Inner Relation, and S = Outer Relation).

phases, namely (i) a potential partitioning phase, (ii) a building
phase, and (iii) a probing phase. As discussed in Section 1, PHJ
and NOP schemes demonstrate a size-skew dichotomy, whereby
PHJ thrives with increasing dataset sizes, but falters in exploiting
moderate-to-high skewness. On the flip side, NOP excels natu-
rally with highly-skewed datasets, but greatly degrades under large
dataset sizes (see Fig. 2). It is this critical gap between PHJ and NOP
that PolyHJ attempts to close, no matter what workload characteris-
tics (i.e., sizes and content distributions of relations) and hardware
configurations (i.e., sizes of LLCs and TLBs)3 are given.

With this goal in mind, we observe that every hash join scheme
can be described via two parameters fR ≥ 1 and fS ≥ 1, which
denote the fanouts (or the numbers of partitions) produced by the
scheme for the inner and outer relations, R and S , respectively. As
such, by applying equal partitioning onto both relations, the PHJ
paradigm effectively sets fR = fS > 1. In contrast, by skipping par-
titioning altogether, the NOP paradigm essentially sets fR = fS = 1,
treating thereby each relation as a single partition. Henceforth, we
refer to the model applied by PHJ as the PHJ Model and to the one
applied by NOP as the NOP Model.

At first glance, the size-skew dichotomy may seem to suggest
adopting the PHJ Model if R is large and S has low-to-moderate
skew, and the NOP Model otherwise4. However, we find that some
input characteristics may encourage decoupling fR from fS (i.e.,
having fR , fS ) as we describe next.

To begin with, recall that the building phase may incur many
LLC misses if R is larger than LLC. Thus, it is generally reasonable

3On modern systems, TLB entries usually span more pages than what an LLC can
equivalently fit, particularly with 2MiB page sizes and above (as proposed in [9, 25]).
Hence, in the rest of this paper we assume TLB-awareness when suggesting LLC-
awareness.
4We assume (as related work [8, 12, 25]) the inner and outer relations R and S are
joined on primary and foreign keys, respectively. Thus, skewness only applies to S .

to partition a large R. In contrast, the probing phase may exhibit
high locality if S is sufficiently skewed, resulting in the majority
of its tuples getting matched against only a few keys in the hash
table. In this case, generating a great deal of partitions for S may
be unnecessary, especially that locality will be exploited naturally.
This turns even more true when S is significantly larger than R,
rendering the partitioning of S quite expensive. Clearly, under these
conditions, it becomes more practical to partition R, yet keep the
fanout (and, thus, the partitioning cost) of S to a minimum (i.e.,
setting fR > fS ≥ 1).

Based on the above discussion, we can set the fanout of S to the
minimum (i.e., fR > fS = 1), hence, effectively partitioning only
R but not S , then probing all hash tables at once from undivided
S . We denote this partitioning model as the Asymmetric Model.
Evidently, the Asymmetric Model trades away some locality during
the probing phase to gain a faster partitioning phase. For many
partitioning techniques (e.g., multi-pass partitioning in [8, 22]), the
total cost of partitioning can also be reduced by generating fewer
partitions. Consequently, we can also set the fanout of S to a value
larger than the minimum, yet smaller than the fanout used for R
(i.e., setting fR > fS > 1). In general, this would result in higher
locality during the probing phase compared to the Asymmetric
Model, yet in lower locality compared to the PHJ Model. We refer
to this model as the Asymmetric+ Model5. In the Asymmetric+
Model, each S partition will probe some, rather than all or one, hash
tables at once.

We conducted a set of experiments to evaluate the above stated
premises of the NOP, PHJ, Asymmetric and Asymmetric+ Models.
Fig. 3 shows our results using static PolyHJ over varied dataset
5To the contrary of these four models, the cases where fS > fR ≥ 1would be typically
undesirable. Given that R is partitioned so that each hash table can completely reside
in cache, partitioning S onto (just) an equal fanout would be sufficient to probe
cache-contained hash tables.



sizes. In particular, we disabled PolyHJ’s dynamic model selection
for the given input and manually instructed it to run over each
input dataset using all possible models. Moreover, we considered
equal and unequal R and S (see Figures 3 (a) and (b)) as well as
uniform and non-uniform S (see Figures 3 (c) and (d)). Our software
and hardware configurations are discussed in Section 4.1. Based on
these configurations, the datasets with |R | ∈ {1 × 1.28M , 2 × 1.28M ,
4 × 1.28M , 0.25 × 12.8M , 0.5 × 12.8M} tuples fit either entirely or
almost entirely in LLC, hence, do not necessitate partitioning R. As
expected and depicted in Figures 3 (a), (b), (c), and (d), the NOP
Model outperforms all other models under these datasets since it
avoids partitioning R, let alone S .

Reciprocally, when the size of R exceeds the size of LLC, parti-
tioning R becomes crucial. This is demonstrated in Figures 3 (a),
(b), (c), and (d) with all the tested datasets, except the smaller ones
mentioned above. Under this setting, if |R | and |S | are equal, the
PHJ Model appears superlative as illustrated in Figures 3 (a) and
(b). Unlike the NOP Model, it is noticeable that the Asymmetric
Model is competitive in Fig. 3 (b). On the other hand, if S is uni-
form and significantly larger than R, and R is larger than LLC, the
competition ensues between the PHJ Model and the Asymmetric+
Model since partitioning S remains advantageous (see Fig. 3 (c)).
However, if S is highly skewed and greatly larger than R, which in
turn is larger than LLC, partitioning S becomes less effective and
the Asymmetric Model dominates (see Fig. 3 (d)).

To conclude, Fig. 3 clearly shows that there is no one-size-fits-
all model for all types of workloads and that different workloads
usually favor different models. PolyHJ attempts to address this
problem via choosing the best model for any given workload (based
on techniques described in Section 3.4). We next discuss PolyHJ’s
internal engine.

3.2 In-Place, Cache-Aware Partitioning
As discussed in Section 1, the bandwidth- and cache-wall problems
pose major scalability issues for in-memory joins. Hence, besides
its polymorphic behavior, PolyHJ directly addresses these two prob-
lems via incorporating an in-place, cache-aware partitioning (ICP)
and a collaborative building and probing (ColBP) techniques. In do-
ing so, PolyHJ seeks to accomplish high scalability with various
dataset sizes and numbers of cores. We discuss ICP in this section
and ColBP in Section 3.3.

As indicated by its name, ICP is capable of partitioning an input
relation by re-ordering its tuples in-place. In doing so, ICP only
scatters tuples over small, contiguous, and cache-containedmemory
areas. Contrary to typical partitioning implementations, ICP does
not need separate destination partitions, but rather re-orders the
relation(s) on-the-fly so as to avoid wasting memory bandwidth.

Similar to other multi-threaded join schemes, R (similarly, S) is
divided into equal sub-relations, each assigned to a single thread.
Independently, each thread splits its sub-relation into small blocks
of equal size, chosen so that at least two blocks fit in the thread’s
share of LLC (see Section 3.4 for more details on threads’ shares of
LLC). For each block bj (and not for the entire sub-relation), the
thread applies traditional single-pass partitioning (refer to [8, 22]).
Importantly, since two blocks fit in cache, the thread scatters the
partitioning output of block bj+1 onto the space originally occupied
by the preceding block bj . As b0 does not have a preceding block,
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Figure 4: An illustration of how ICP is executed over sub-
relation sr1 by thread t1, which divides sr1 into two blocks, b0
and b1. The block b ′ is a temporary block for holding the tu-
ples of only the first block (i.e., b0) during partitioning. The
partitioning fanout is assumed to be 2, hence the usage of
two colors in each block.

it is temporarily partitioned into an external buffer b ′. It is finally
restored to the bottom of the sub-relation, once all the other blocks
have been scatterd, thus preserving the integrity of the full relation6.

To exemplify, Fig. 4 illustrates how ICP is carried over the sub-
relation sr1 by thread t1. In parallel, all other sub-relations are
partitioned in the same manner. We assume a fanout equal to 2
(hence, the usage of two different colors) and two blocks per sub-
relation (say, b0 and b1). Evidently, after partitioning all the sub-
relations of the input relation, L (which could be R or S), tuples will
be organized in a way that a partition of L will be distributed over
all blocks across the sub-relations, yet will be placed contiguously
within each block in a given sub-relation.

The design of ICP emphasizes a tradeoff between better locality
during scattering versus higher contiguity among the tuples of each
output partition in memory. To explain this, the smaller the block
size is, the more cache-friendly the hash-based scatter accesses are
during partitioning. In contrast, the larger the block size is, the
more contiguous the tuples of each produced partition become.
For instance, a sub-relation with only one block (i.e., similar to
more traditional partitioning) will have all the tuples of the same
partition co-located together. Obviously, this would entail more
sequential and, hence, more efficient scans of each partition during
the building and probing phases, but more random scatters over a
large non-cached region during the partitioning phase.

To achieve high locality and decent contiguity, PolyHJ sets the
block size to be a fraction (< 1/2) of the size of LLC per thread. Thus,
each block bj is expected to remain in cache after initially scanned.
Subsequently, the region originally occupied by bj is re-used, after
reading and partitioning its tuples, for writing (or scattering) bj+1’s
tuples to it. Since the aggregate size of bj and bj+1 has been set to be
less than the size of LLC per thread, all accesses to main-memory in
ICP are sequential scans (when firstly reading a block), and virtually
all random scatterings occur within cache.

Lastly, the other PolyHJ mechanism, namely, ColBP, works in
tandem with ICP to reduce the number of generated partitions.
This increases the number of tuples in each sub-partition produced

6If, for any reason, the input relation cannot be re-ordered, PolyHJ can always fall
back to a classical buffering-based partitioning.



out of a sub-relation. Consequently, contiguity is enhanced while
locality is still exploited, thus maximizing the benefit of ICP. We
next discuss ColBP.

3.3 Collaborative Building and Probing
Besides ICP, PolyHJ suggests a collaborative building and probing
(ColBP) mechanism. Once a thread has executed ICP on its assigned
sub-relation, it can trivially locate the beginning of each (now-
partitioned) block bj , as all but the last block are equal-sized. By
maintaining a pointer to the current position in each block, the
thread can scan over each partition Pk , across all of its blocks, before
proceeding with building/probing partition Pk+1.

While scanning each partition, a thread scatters its R tuples (i.e.,
those in its sub-relation), and performs probing using its S tuples,
to/from their respective hash table(s). Consequently, all threads
collaborate in the construction and probing of each hash table,
rather than being assigned mutually-exclusive subsets of partitions
as is the case with common PHJ schemes. As discussed in Section 4.4,
this aspect is critical to avoid load-imbalance under skew.

As opposed to traditional techniques, the behavior of ColBP
depends on the number of LLCs, denoted as llcnum7. Specifically,
given the availability of sufficiently many R partitions, ColBP guar-
antees that, at any given time, each hash table is shared for writes
(i.e., during the building phase) among only the cores on a single
LLC8. To elaborate, ColBP starts by dividing the available threads
into groups, whereby the threads in each group share an indepen-
dent LLC. During the building phase, while threads within a group
concurrently build a shared hash table (using an NOP-like imple-
menation per partition), threads across groups do not scatter tuples
to the same hash table simultaneously. Instead, groups take turns
in constructing hash tables. Once a group is done building its share
of a hash table, it swaps with another finished group to proceed
with building its part of another hash table.

The above strategy serves in alleviating coherence traffic and
potentially NUMA latency across LLCs and sockets. More precisely,
it allows each hash table to reside at a single LLC for the whole
duration while it is being built by a group at that LLC. Clearly,
this increases LLC hits. If, instead, the table was to be constructed
simultaneously by multiple groups, its constituent shared cache
lines would keep flip-flopping between different LLCs whenever
they are altered by threads from different groups. This is typically
necessitated and enforced by a coherence protocol (e.g., MESI [27])
at the architecture level so as to protect cache lines fromwrite-write
conflicts during execution.

Finally, we note that the design of ColBP is more scalable than
existing approaches. In particular, as larger input relations are to
be joined in main-memory, typical PHJ schemes will likely react by
increasingly applying more expensive pass(es) during partitioning,
so as to fit each hash table in the available cache capacity per
thread. As discussed in Section 1, the cache-wall problem manifests
itself noticeably in modern architecture, wherein the per-core cache
capacity shows little or no growth even as the number of cores

7For instance, a machine with two sockets and a last-level L3 cache per each socket
shared among the socket’s cores entails an l lcnum of 2. In contrast, a machine with
one socket of N cores, but with only a private LLC per core, implies an l lcnum of N .
8Of course, this is not applicable to the NOP Model, which builds a single hash table
using all threads.

per chip is increased (see Fig. 1). However, we observe that many
modern high-end CPU models have a single, logically-shared LLC
per chip (or socket). The capacity of this LLC is growing as more
cores are packed on a chip, despite the cache-wall problem.

To this end, we designed ColBP to mitigate the effects of the
cache-wall problem via allowing each hash table to be as large as
the total size of each available LLC. Thus, ColBP requires a fanout
that is much smaller than those needed by typical PHJ schemes.
Interestingly, this keeps the cost of partitioning manageable for the
ever-growing dataset sizes.

3.4 Model Selection
PolyHJ seeks a favorable tradeoff between the costs of ICP and
ColBP. Given a workload and hardware, it dynamically configures
the fanouts fR and fS as follows, in an attempt to select the most
suitable join model.

To allow for an efficient building phase, PolyHJ partitions relation
R, if necessary, so that each partition can be scattered over a hash
table that can fit in LLC. Let each LLC have capacity to hold C
tuples, and let |R | be the number of tuples in relation R. PolyHJ sets
fR = 2r for r = max(

⌈
log2 (

|R |
C )

⌉
, 0)9.

Likewise, to allow for an efficient probing phase, PolyHJ par-
titions relation S , if necessary, so that the locality of probing ac-
cesses to the hash tables is sufficiently high. In principle, we want
to estimate the skewness in S for comparison against predefined
thresholds when dynamically configuring fS . Observe that if, after
partitioning S , the majority of its tuples would belong to only few
partitions, then partitioning S would not be very effective, as the
largest partition(s) will be close in size to S itself. In this case, par-
titioning will contribute little extra locality to the probing phase
(i.e., little beyond the locality induced by skew itself) and would
be expensive if S is significantly larger than R, hence, favoring
the Asymmetric Model. In contrast, if partitioning S would evenly
distribute its tuples across most or all partitions, substantial scat-
tering must happen during partitioning, resulting thereby in better
locality during probing, thus suggesting the PHJ Model.

Based on this observation, whenever S is significantly larger
than R (i.e., |S | > k × |R | for some pre-determined constant k > 1),
PolyHJ decides between the PHJ Model and the Asymmetric Model
by initially and temporarily setting fS = fR . Afterwards, PolyHJ
performs sampling via starting ICP at different offsets throughout
S , using all the threads concurrently. Since partitioning internally
begins by counting the number of tuples that will belong to each
partition (i.e., building a histogram [8]), threads can start doing so
before finalizing fS . This process is applied over a given sample
size of tuples (say, a block per sub-relation, assuming sufficiently
many sub-relations). If, overall, threads report high skew among
partition sizes (i.e., that them largest partitions will contain more
than an α fraction of the sampled S tuples, for thresholdsm ≥ 1
and 0 < α < 1), ICP is terminated on S , and the Asymmetric Model
is pursued. Otherwise, PolyHJ simply continues ICP normally, ef-
fectively choosing the PHJ Model10. This sampling-based heuristic

9In practice, only a constant fraction (e.g., 1/2) of the total LLC capacity is used as
C . This takes into account cache pollution by other processes that may be running
concurrently on the server.
10Since PolyHJ relies on an efficient partitioning mechanism (i.e., ICP), the gain from
partitioning S on a fanout smaller than (an already-small) fR (i.e., as in theAsymmetric+
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Figure 5: Scalability results for NOPA, CPRA, and PolyHJ under different workload types.

has a minimal overhead on the runtime of PolyHJ, and is included
in the results shown in Section 4.

4 EXPERIMENTS
4.1 Methodolgy
In this section, we evaluate the performance of PolyHJ against the
state-of-the-art NOP and PHJ schemes, namely, NOPA and CPRA
(see Section 2 for details on both schemes). We implemented and
verified PolyHJ in C. The authors of NOPA and CPRA shared with
us their experimental testbed, which included implementations
for thirteen join variants studied in their paper. We carefully ex-
tracted and integrated NOPA and CPRA into our testbed along with
PolyHJ. All code was compiled using GCC, version 5.4.0, with the
optimization flag -O3.

We conducted all our experiments on a dual-socket server, with
two Intel Xeon E5-2650 v3 CPUs. Each CPU is comprised of 10
physical cores, each encompassing 2 hardware threads (i.e., the
machine has 40 hardware contexts in total). The threads of each
socket share a 25MiB L3 LLC cache, and the server includes a total
of 64GB of DRAM, distributed equally among its two sockets. As
for the OS, we utilized 64-bit Ubuntu 16.04 (kernel version 4.4.0-45)
and a page size of 2MiB as suggested in [9, 25].

Similar to related work (e.g., [8, 14, 25]), we adopt 8-byte tuples
as (key, payload ) pairs, consisting of two 4-byte integers11. As is
the case with NOPA and CPRA, we use array-based hash tables
and assume joins are pursued between primary keys at inner input
relation, R, and corresponding foreign keys at outer input relation,
S . For each workload, we run CPRA with an appropriate range of
radix bits and select the ones that provide the best performance.
In PolyHJ, the fanouts fR and fS are rather chosen dynamically as
discussed in Section 3.4. Of course, the cost of estimating skew to

Model) does not usually offset the loss from probing hash tables that are larger than
LLC(s). Hence, PolyHJ does not automatically select the Asymmetric+ Model. This
observation has been corroborated in Fig. 3.
11In database systems, dictionary encoding [5, 11] is often employed to map long or
variable-length values (e.g., strings) to fixed-length integer codes.

select fanouts for any given workload is part of the PolyHJ scheme
and, hence, is included in our reported runtime results.

We investigate various combinations of workloads in terms of
input relation sizes and key distributions. In particular, we consider
four types of workloads, namely: (1)WT1, where input relations,
R and S , are of equal sizes and exhibit uniform key distributions,
(2)WT2, where R and S are of equal sizes, but S demonstrates high
non-uniform key distribution, (3)WT3, where R and S are unequal,
but uniform, and (4)WT4, where R and S are unequal, and S is
highly skewed.

We first study the scalability of NOPA, CPRA, and PolyHJ via
varying the input relation (or dataset) sizes per each workload
type. This allows us also to scrutinize the polymorphic behavior of
PolyHJ under different datasets, and, accordingly, observe its effec-
tiveness in handling the size-skew dichotomy. Second, we examine
the scalability of the three schemes with respect to thread-level par-
allelism, using solo and dual sockets. This provides us with insights
into how NOPA, CPRA, and PolyHJ can perform under various
architectural settings, including concurrency, simultaneous multi-
threading (SMT), and non-uniform memory (NUMA) accesses, let
alone efficacy in addressing the bandwidth-wall problem. Third, we
explore the effects of varied key distributions on the three schemes
and show how PolyHJ can efficiently run under any skewness level.
This also demonstrates PolyHJ’s capability in solving the size-skew
dichotomy. We also present LLC-related statistics so as to illustrate
the cache effectiveness of PolyHJ versus NOPA and CPRA, and
correlate that with our reported runtime/throughput results.

4.2 Scalability with Dataset Sizes
We now compare the performances of NOPA, CPRA, and PolyHJ as
we scale dataset sizes, using our four types of workloads outlined in
Section 4.1. Specifically, we vary dataset sizes between 1×1.28Mand
24 × 128M tuples as shown in Fig 5. Whenever the total number of
tuples (|R |+|S |) of anyworkload is within a small multiple of a single
LLC capacity, we run the workload using all hardware contexts of
a solo socket (i.e., using 20 threads). The workloads that satisfy this
condition are the ones that consist of |R | = |S | = {1 × 1.28M, 2 ×



0 10 20 30 40
Number of Threads

200

400

600

800

1000

1200

1400

Th
ro

ug
hp

ut
 (M

 tu
pl

es
/s

ec
)

(a) WT1: |R|=|S|=8x128M & Zipf = 0.00

0 10 20 30 40
Number of Threads

200

400

600

800

1000

1200

1400

(b) WT2: |R|=|S|=8x128M & Zipf = 1.33

0 10 20 30 40
Number of Threads

200

400

600

800

1000

1200

1400

1600

(c) WT3: |R|=128M, |S|=10x|R| & Zipf = 0.00

0 10 20 30 40
Number of Threads

0

500

1000

1500

2000

2500

(d) WT4: |R|=128M, |S|=10x|R| & Zipf = 1.33

NOPA CPRA PolyHJ

Figure 6: Thread scalability results for NOPA, CPRA, and PolyHJ under different workloads.

1.28M, 4×1.28M, 8×1.28M} tuples. The remaining workloads dwarf
a single LLC, hence, are executed using all hardware contexts of dual
sockets (i.e., using 40 threads). Evidently, by using a single socket
for small datasets, all schemes (especially NOPA) can maximally
leverage a shared LLC and preclude unnecessary NUMA accesses.

Prior to analyzing our results, it is worth noting that the single
hash table of NOPA completely resides in one LLC with dataset
sizes of {1 × 1.28M, 2 × 1.28M, 4 × 1.28M} tuples. Figures 5 (a), (b),
(c), and (d) depict our scalability results for workload types,WT1,
WT2,WT3, andWT4, respectively. With workloads including up
to |R | = 4 × 1.28M tuples, PolyHJ adopted the NOP Model, just
like NOPA. With larger R, PolyHJ embraced the PHJ Model under
WT1,WT2, andWT3, and the Asymmetric Model underWT4, just
as expected. As a first observation, PolyHJ almost always selects a
join model that is at least as good as the best amongst NOPA and
CPRA. More often than not, we can even see that PolyHJ strictly
outperforms both join schemes, and not just one.

Let us delve deeper into the behaviors of NOPA, CPRA, and
PolyHJ. In Figures 5 (a), (b), and (c), we observe a clear trend. That
is, under a small relation R, NOPA and PolyHJ perform very closely,
both outpacing CPRA. This occurs irrespective of skew or the ratio
between |S | and |R |. On larger R, the competition ensues between
CPRA and PolyHJ, whereby both start demonstrating an edge over
NOPA (by not partitioning large R, NOPA incurs very high LLC
misses- see Table 1). In this case, both CPRA and PolyHJ represent
the PHJ Model. However, the re-designed phases of PolyHJ grant it
an overall lead.

In Fig. 5 (a) and (b), the above trend abruptly stops on very large
input (i.e., 20×128M and 24×128M tuples), wherein the performance
of CPRA falters tremendously. This is because CPRA replicates in-
put relations during partitioning, causing its working set size to
exceed the DRAM capacity when such relations are quite large
(which could still fit in DRAM if not replicated). Consequently,
the kernel is forced to swap several GBs of data in and out the
disk, degrading thereby CPRA’s performance. Interestingly, PolyHJ
circumvents this slippery slope when executing large-scale work-
loads via adopting an in-place mechanism (i.e., ICP), which avoids
replicating relations during partitioning.

Finally, we glean two more observations from Figures 5 (c) and
(d). First, the performance of CPRA does not change tremendously
acrossWT3 andWT4. In particular, CPRA shows an average degra-
dation of 24% underWT4 versusWT3 due to high skew (more on

this in Section 4.4). Second, the throughput of NOPA improves by
an average of 167% underWT4 as opposed toWT3. Noticeably, this
confirms the strength of NOPA, which naturally picks up under
unequal and highly skewed datasets (as discussed in Section 2). In
contrast, PolyHJ synergistically adapts to workload characteristics
and considerably outperforms NOPA and CPRA. For instance, with
sufficiently large and highly skewed S (i.e., underWT4), PolyHJ
averted partitioning S via choosing the Asymmetric Model, tap-
ping (at least) into the natural locality that can be exploited under
high skew. Besides locality, this enabled PolyHJ to save the cost of
partitioning S , thus obtaining better results underWT4 thanWT3.

In short, Fig. 5 shows how PolyHJ can effectively handle the
size-skew dichotomy. PolyHJ was able to provide average speedups
versus NOPA by 2.3X, 1.8X, 1.9X and 1.15X, and up to 3.7X, 3X, 3.5X
and 1.35X underWT1,WT2,WT3 andWT4, respectively. Alongside,
it outperformed CPRA by averages of 2.45X, 3X, 1.8X and 3.8X, and
up to 64.5X, 91X, 3.1X and 5.3X underWT1,WT2,WT3 andWT4,
respectively12.

4.3 Scalability with Numbers of Threads
In this subsection, we compare the scalabilities of NOPA, CPRA,
and PolyHJ with respect to thread-level parallelism under our four
workload types. In particular, per each workload type, we select
a representative workload, namely, A, B, C , and D of typesWT1,
WT2,WT3, andWT4, respectively (see Fig. 6). For each workload,
we vary the number of threads, starting with 1 thread and scaling
it up to 40 threads. As long as the number of threads is less than or
equal to 10 (i.e., the number of cores on each socket), we schedule
all the threads on distinct cores on a single socket. This entails local
memory allocations, local NUMA accesses, and one shared LLC
for all schemes. As we move up to 16 and 20 threads, we schedule
the threads equally across two sockets, resulting in remote NUMA
accesses, and two shared LLCs for all schemes. Nonetheless, no
SMT is utilized yet (i.e., no two threads are scheduled on a single
core). With 32 and 40 threads, we apply equal SMT across sockets.

12The effectiveness of PolyHJ’s redesigned implementation can be isolated by studying
the experiments in which PolyHJ subscribes to the PHJ model like CPRA. In such
experiments that utilize all available CPUs (i.e., over Sections 4.2 and 4.4), PolyHJ
outperforms CPRA by 1.4X on average (geometric mean), even after excluding ex-
periments where CPRA is forced to swap to disk. This is a conservative estimate; we
manually tuned the radix bits for CPRA, while PolyHJ automatically selects its fanouts.



Clearly, the above scheduling criteria allows us to test and eval-
uate NOPA, CPRA, and PolyHJ under various architectural con-
ditions. Nevertheless, we note that CPRA is sensitive to all these
conditions due to being hardware-conscious. As such, we had to
run it with various fanouts per each number of threads and report
only the best performing one. Figures 6 (a), (b), (c), and (d) display
our results. To start with, we observe an asymmetry in the scalabil-
ities of NOPA and CPRA. In particular, CPRA scales better under
workloads A, B, and C as opposed to D. On the flip side, NOPA
scales better under D as compared to A, B, and C . Interestingly,
PolyHJ demonstrates steady scalability across all workloads. Un-
der A, B, and C , PolyHJ selected the PHJ Model, while it adopted
the Asymmetric Model under D. We next elaborate on the reasons
behind such behaviors of NOPA, CPRA, and PolyHJ.

The limited scalability of NOPA under workloads A, B, and C
but not D is mainly due to a bandwidth issue. Specifically, in NOPA,
when R and S are equal and large, or S is larger than R but uniform,
almost no locality is exploited during building/probing the (larger
than LLC) hash table. This was the case for A, B, and C , whereby
near 100% LLC miss rates were incurred. Per each LLC miss, DRAM
was accessed and a cache line consisting of 16 buckets was placed at
LLC. Due to poor locality, very often, only one bucket was actually
used from the cache line before it was evicted. As we scaled up the
number of threads, the available memory bandwidth got rapidly
saturated13. To this end, NOPA did not scale well under these three
workloads (especially under A, wherein both R and S are large
and uniform). Conversely, under D, S is much larger than R and
subsumes a highly skewed distribution. This yielded a significantly
better LLC hit rate during the probing phase (see Table 1). As more
threads were added, NOPA maintained good scalability under D,
leveraging higher LLC locality and fewer accesses to DRAM.

PolyHJ and NOPA scale quite similarly under workload D, but
PolyHJ provides higher throughputs. This is because PolyHJ chose
the Asymmetric Model under D, thus partitioned R and subse-
quently exploitedmore locality versus NOPA (which does not either
relation; see Table 1 for LLC statistics). As for CPRA against PolyHJ,
from 1 to 20 threads they demonstrate comparable scalability under
workloadsA, B, andC (see Figures 6 (a), (b), and (c)). With 32 and 40
threads (i.e., when SMT is enabled), PolyHJ significantly outpaces
CPRA. To explain this, we observed that the partitioning phases of
CPRA and PolyHJ exhibit similar scalability under SMT (though re-
sult in different throughputs). The ColBP phase of PolyHJ, however,
scales very well under SMT, contrasting the building and probing
phases of CPRA. This is because PolyHJ demonstrates higher (yet
reasonable) LLC misses during ColBP, which enables SMT to hide
more latency and, accordingly, further expedite PolyHJ’s perfor-
mance. To the contrary of PolyHJ, under workload D, CPRA reveals
limited scalability due to staggering with high skew (see reasons in
Section 4.4).

Overall, the results in Fig. 6 shed light on the importance of
designing highly parallel join algorithms that are both bandwidth-
and skew-aware. For instance, while NOPA performs well under

13In our setup, each NUMA node has peak bandwidth of about 24 GB/sec for NUMA-
local accesses and 11.5 GB/sec for NUMA-remote ones. These values are based on 1:1
reads/writes ratio, obtained using Intel Memory Latency Checker [2]. This suggests a
peak per-core NUMA-local bandwidth of just a couple of GB/sec when all cores are
competing for bandwidth.

Workload Scheme

Building/Partitioning Probing/Joining
Phase Phase

L3 Misses L3 Hit L3 Misses L3 Hit
[M] Rate [%] [M] Rate [%]

A
NOPA 1146 1.7 1147 0.9
CPRA 280 85.9 257 86.1
PolyHJ 53 89.0 455 80.5

B
NOPA 1147 1.6 100 44.1
CPRA 239 80.7 165 82.4
PolyHJ 47 88.8 357 72.1

C
NOPA 138 3.9 1382 4.0
CPRA 193 82.1 94 74.9
PolyHJ 31 87.6 206 86.9

D
NOPA 138 3.9 121 44.2
CPRA 106 71.6 20 72.0
PolyHJ 3 90.1 153 57.2

Table 1: LLC misses and hit rates for NOPA, CPRA, and
PolyHJ under workloads shown in Fig. 6.
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Figure 7: Throughput results of NOPA, CPRA, and PolyHJ
under equal and unequal input relations, and varied skew.

high skew, its scalability is substantially hindered under low or
no skew due to the bandwidth-wall problem. On the other hand,
while CPRA addresses effectively the bandwidth-wall problem via
applying partitioning, its scalability is hampered under high skew.
Remarkably, PolyHJ is bandwidth- and skew-aware, hence, per-
forms and scales well under low-to-high parallelism and with all
sorts of workloads.

4.4 Effect of Skew
We now study the effect of non-uniform key distributions on the
throughputs of NOPA, CPRA, and PolyHJ. In particular, we test
the robustness of PolyHJ under a wide range of values by varying
skewness on a Zipfian scale from 0.0 (completely uniform) to 1.99
(extremely high skew) similar to the work at [8]. As we focus on
skewed distributions, we consider two cases in terms of input rela-
tions, R and S , namely, (1) |S | = |R | (Case I ) and (2) |S | = 10 × |R |
(Case II ). Alongside, we utilize all the hardware contexts of our
dual-socket server (i.e., 40 threads) to evaluate the cases. Fig. 7
demonstrates our results.

Under Case I, we observe that the impact of skew is generally
slim on NOPA, CPRA, and PolyHJ (see Fig. 7 (a)). Specifically, as
we increase skewness, the throughputs of NOPA and PolyHJ are
slightly improved, while that of CPRA is somewhat degraded. In
all such runs, PolyHJ subscribed to the PHJ Model. As described
in Section 2, higher skew enhances locality during probing and,
subsequently, serves in expediting performance. This explains the
improvement in NOPA’s performance, starting from Zipf = 1.00 on-
wards, let alone PolyHJ which leverages even more locality as a fact
of applying partitioning. In contrast, under high skew, CPRA suf-
fers from load imbalance during probing, manifested in particular



partitions, which render (significantly) larger than others [25]. Con-
sequently, the threads assigned to large partitions run much longer
than others. As is typically the case in systems, the performance of
CPRA becomes bound to the slowest thread.

Under Case II, we notice a two-stage trend. The first stage covers
Zipf values from 0.00 to 1.00, whereby the relative performance of
NOPA, CPRA, and PolyHJ is dictated by the dataset size. To begin
with, CPRA outperforms NOPA because NOPA’s single hash table is
sufficiently larger than LLC. Similarly to CPRA, PolyHJ partitioned
R via embracing the PHJ Model and, accordingly, surpassed NOPA.
Moreover, it outstripped CPRA (which also employs the PHJ Model)
due to its superlative ICP and ColBP mechanisms. The second
stage spans Zipf values from 1.33 and beyond, wherein we spot
much higher throughputs for NOPA and PolyHJ, but not CPRA. As
discussed earlier, higher skew provides NOPA with greater locality
during the probing phase, especially if S is substantially larger
than R. This is precisely the situation under Case II, hence, NOPA
shows better corresponding results as opposed to Case I. Besides
NOPA, increased skew allows CPRA to exploit higher locality as
well, but reversely causes load imbalance, degrading thereby its
overall performance.

As compared to NOPA and CPRA, PolyHJ exploits higher locality
and inherently avoids load imbalance as skewness is escalated.
In particular, in the second stage of Case II, PolyHJ selected the
Asymmetric Model, tapping into the natural locality that can be
obtained with higher skew and saving the cost of partitioning S .
Hence, as all threads collaboratively probed R, load imbalance was
effectively precluded. As a result, PolyHJ maintained a strong edge
over CPRA and NOPA.

5 CONCLUSIONS
In this paper, we presented PolyHJ, a novel polymorphic main-
memory, hash-based join paradigm, which dynamically selects the
best join model for any given workload and hardware characteris-
tics. In addition, we proposed a full-fledged scheme that implements
PolyHJ using two highly parallel and scalable techniques, namely,
in-place, cache-aware partitioning (ICP) and collaborative building
and probing (ColBP). ICP and ColBP effectively address the band-
width and cache wall problems via judiciously mitigating random
writes to memory and controllably producing hash tables that are
as large as each aggregate LLC. To encourage reproducibility and
extensibility, we make our PolyHJ code publicly available at [4]. Our
experimentation results show that PolyHJ can effectively meet its
design goals and greatly surpass the two state-of-the-art hash-based
join schemes, NOPA and CPRA [25].

Finally, we set forth two main future directions. Firstly, we uti-
lized ICP and ColBP as implementations for the partitioning and
building/probing phases in PolyHJ, respectively. In principle, other
implementations of the PolyHJ paradigm can be pursued, entail-
ing different model selection strategies. Consequently, we plan to
develop a generic model selection strategy, which can adapt and
work with any implementation of PolyHJ. Secondly, akin to NOPA
and CPRA, ColBP relied on array-based hash tables. However, it
would be useful to consider our presented four join models under
other joining options (e.g., joining inner relation on a non-primary
key), which may introduce auxiliary costs and/or benefits for some
of the models.
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