
Locality-Aware Reduce Task Scheduling for
MapReduce

Mohammad Hammoud and Majd F. Sakr
Carnegie Mellon University in Qatar
Education City, Doha, State of Qatar

Email: {mhhammou,msakr}@qatar.cmu.edu

Abstract—MapReduce offers a promising programming model
for big data processing. Inspired by functional languages, MapRe-
duce allows programmers to write functional-style code which
gets automatically divided into multiple map and/or reduce tasks
and scheduled over distributed data across multiple machines.
Hadoop, an open source implementation of MapReduce, sched-
ules map tasks in the vicinity of their inputs in order to diminish
network traffic and improve performance. However, Hadoop
schedules reduce tasks at requesting nodes without considering
data locality leading to performance degradation. This paper de-
scribes Locality-Aware Reduce Task Scheduler (LARTS), a prac-
tical strategy for improving MapReduce performance. LARTS
attempts to collocate reduce tasks with the maximum required
data computed after recognizing input data network locations
and sizes. LARTS adopts a cooperative paradigm seeking a good
data locality while circumventing scheduling delay, scheduling
skew, poor system utilization, and low degree of parallelism.
We implemented LARTS in Hadoop-0.20.2. Evaluation results
show that LARTS outperforms the native Hadoop reduce task
scheduler by an average of 7%, and up to 11.6%.

I. INTRODUCTION

Intel predicts the Era of Tera is coming quickly [3]. How to
effectively process sheer volumes of data and facilitate data-
intensive tasks for applications such as web indexing, machine
learning, and astronomical data parsing is becoming a major
challenge. In many such situations, the required processing
power exceeds the capabilities of individual computers impos-
ing the use of distributed computing. MapReduce [4] created
by Google presents a potential solution.

MapReduce is a programming model for large-scale data-
intensive distributed data processing. It provides minimal
abstractions, hides architectural details, automatically paral-
lelizes computation, and supports transparent fault tolerance
via replication. Google utilizes MapReduce to process 20
petabytes of data per day [4]. Amazon added a new service,
called Amazon Elastic MapReduce to enable businesses, re-
searchers, data analysts, and developers to easily and cost-
effectively process vast amounts of data [1].

Since its debut on the computing stage, MapReduce has
frequently been associated with Hadoop [6]. Hadoop [9] is an
open source implementation of MapReduce and is currently
enjoying wide popularity. As an engine to power the cloud,
industry’s premier web vendors- Facebook, Google, Microsoft,
and Yahoo!- have advocated Hadoop [15]. Likewise, academia
has started using Hadoop for seismic simulation, natural
language processing, and web data mining, among others [26].

Hadoop presents MapReduce as an analytics engine and
under the hood uses a distributed storage layer referred to
as Hadoop Distributed File System (HDFS). HDFS mimics
Google File System (GFS) [13]. A main characteristic of
MapReduce is simplicity which allows programmers to write
functional-style code. A user submits a job comprising of a
map function and a reduce function which are subsequently
transformed into map and reduce tasks scheduled on slots
hosted by participating nodes in the cluster. HDFS loads,
partitions data into fixed equal-size splits, and distributes splits
across cluster nodes. Each split is assigned a map task. Map
tasks process splits and produce intermediate outputs that are
usually partitioned/hashed to one or many reduce tasks. Each
reduce task collects/shuffles its corresponding partitions (i.e.,
the intermediate outputs from feeding nodes1) from one or
many nodes, merges them, applies the user-provided reduce
function, and produces final results.

MapReduce assumes a master-slave architecture and a tree-
style network topology. Nodes are spread over different racks
encompassed in one or many data centers. A salient point
is that the bandwidth between two nodes is dependent on
their relative locations in the network topology. For example,
nodes that are on the same rack have higher bandwidth
between them as opposed to nodes that are off-rack. As
such, it pays to minimize data shuffling across racks. The
master in MapReduce is responsible for scheduling map and
reduce tasks at slave nodes after receiving requests from slaves
for that regard. Hadoop attempts to schedule map tasks in
proximity to input splits in order to avoid transferring them
over the network. In contrast, Hadoop schedules reduce tasks
at requesting slaves without any data locality consideration. As
a result, unnecessary data might get shuffled on the network
causing performance degradation.

Moving data repeatedly to distant nodes is becoming the
bottleneck [23]. In this paper we rethink reduce task schedul-
ing in Hadoop and suggest making Hadoop’s reduce task
scheduler aware of partitions’ network locations and sizes
in order to mitigate network traffic. We propose Locality-
Aware Reduce Task Scheduler (LARTS), a practical strategy
that leverages network locations and sizes of partitions to
exploit data locality. In particular, LARTS attempts to schedule
reducers as close as possible to their maximum amount of

1A feeding node of a reducer, R, is a node that hosts at least one of R’s
feeding map tasks.

input data and conservatively switches to a relaxation strategy
seeking a balance between scheduling delay, scheduling skew,
system utilization, and parallelism. Evaluations demonstrate
LARTS’s outperformance over native Hadoop.

In this work we make the following contributions:
• We propose a novel strategy, LARTS, which applies data

locality to reduce task scheduling in MapReduce.
• We empirically analyze Hadoop’s performance and net-

work traffic. We observe that the process of interleaving
the execution of map tasks with the shuffling of partitions
employed by native Hadoop improves performance but
increases network traffic. We show how LARTS manages
to maintain the advantage of the interleaving process
besides diminishing network traffic.

• We implemented LARTS in Hadoop 0.20.2 and con-
ducted extensive experimentations to evaluate its poten-
tial. We found that LARTS improves node-local, rack-
local, and off-rack traffic by 34.45%, 0.32%, and 7.5%,
on average, versus native Hadoop. In summary, LARTS
outperforms native Hadoop by an average of 7%, and up
to 11.6%.

The rest of the paper is organized as follows. A background
on Hadoop’s scheduling is given in Section II. We analyze
Hadoop’s incurred network traffic and performance in Sec-
tion III. Section IV describes LARTS. We evaluate LARTS
in Section V. Finally, we provide a summary of prior related
work in Section VI and conclude in Section VII.

II. BACKGROUND: SCHEDULING IN HADOOP

The master node in MapReduce is referred to as Job Tracker
(JT). Each slave node is denoted as Task Tracker (TT). JT and
TTs communicate over the cluster network via a heartbeat
mechanism. Hadoop’s framework adopts a pull scheduling
strategy rather than a push one. That is, JT does not push map
and reduce tasks to TTs but rather TTs pull them by making
pertaining requests. Every TT sends a heartbeat message
periodically to JT encompassing a request for a map or a
reduce task to run. JT satisfies requests for map tasks via
attempting to schedule mappers in the vicinity of their input
splits. However, JT simply assigns the next yet-to-run reduce
task to a requesting TT regardless of TT’s network location
and its implied effect on the reducer’s shuffle time.

III. EARLY SHUFFLE IN HADOOP

As a mechanism to improve performance, Hadoop schedules
a reducer before every corresponding partition is available.
In particular, the reduce task scheduler is activated after only
a certain percentage (default 5%) of mappers commit. The
rationale behind such a process is to interleave the execution
of mappers with the shuffling of partitions and enhance,
consequently, the turnaround time of MapReduce jobs. We
refer to this technique as early shuffle. The early shuffle
process affects the decisions made by LARTS, hence, analyzed
in this section.

We evaluated several benchmarks on native Hadoop by
turning early shuffle on (H ESON) and off (H ESOFF)2. We

2The utilized experimentation environment and benchmarks are described
in Section V.

JT

P
R0:TT0

= 40MB

P
R1:TT1

= 30MB

TT0

TT1

P
R1:TT2

= 50MB

P
R1:TT3

= 30MB

P
R0:TT3

= 35MB

TT2

TT3

1.
Re
qu
es
t a
 Re
du
ce
 Ta
sk

Re
ply
 w
ith
 R1

2.Request a Reduce Task

Reply with R0

Rack0

Rack1

Rack2

Fig. 1. An example of two Task Trackers making requests for reduce tasks
in native Hadoop (JT = Job Tracker, TTj = Task Tracker j, Ri = reducer i,
and PRi:TTj = partition P produced at TTj and hashed to reducer, Ri).

modified Hadoop 0.20.2 to filter out reduce traffic into node-
local, rack-local, and off-rack. Specifically, node-local traffic
is incurred after a reducer, R, is scheduled at a node hosting a
partition to be consumed by R. Rack-local traffic is incurred
after a partition is shuffled to R from a feeding node that is
on the same rack as R’s node. Off-rack traffic is incurred after
a partition is shuffled to R from an off-rack feeding node. We
observed that H ESOF maximizes node-local traffic by an av-
erage of 26.8% compared to H ESON. Furthermore, H ESOF
minimizes rack-local and off-rack traffic by 2.5% and 1.2%,
on average, respectively versus H ESON. Nonetheless, we
realized that H ESON outperforms H ESOFF by an average
of 9.2%.

Hadoop adopts a resource estimator that estimates the input
size of each reducer, R, before R is scheduled. If Hadoop
finds that a requesting Task Tracker, TT, does not have enough
space to run R, R is not scheduled at TT (i.e., TT is rejected).
With early shuffle on, reducers are scheduled while mappers
are running. When mappers are running they consume system
resources. Busy mappers will essentially consume resources
more, and will produce larger amounts of intermediate outputs.
As such, the likelihood that the Job Tracker rejects requests
for reducers from TTs hosting busy mappers increases. Sub-
sequently, when the busy mappers complete, their generated
outputs will require shuffling to corresponding reducers which
have been potentially scheduled at different nodes. Clearly, this
incurs more traffic on the network.

In contrast, with early shuffle being off, mappers and
reducers run asynchronously. Therefore, the likelihood that
the Job Tracker schedules reducers at the Task Trackers
that were accommodating busy mappers increases, avoiding
thereby shuffling large partitions. This explains why H ESOFF
experiences less network traffic than H ESON as indicated
earlier. On the other hand, via running mappers and reducers
synchronously, H ESON minimizes jobs’ turnaround times.
Because the gain from decreased jobs’ turnaround times offsets
the loss from increased network traffic, H ESON outperforms
H ESOFF. We describe in Section IV-B how LARTS intelli-
gently combines the advantages of H ESON and H ESOFF
and abandons their disadvantages, thus boosting MapReduce
performance.

IV. THE LARTS TASK SCHEDULER

This section begins by first motivating the problem and then
describing LARTS’s paradigm.

A. Motivation

Fig. 1 demonstrates a simple example of two Task Trackers
requesting reduce tasks, R0 and R1, from the Job Tracker
(JT) in native Hadoop. TTj stands for a Task Tracker node j.
PRi:TTj stands for a partition P produced at TTj and hashed
to reducer, Ri. JT might receive requests from TT0 and TT3
and reply with R1 and R0, respectively. This incurs shuffling
PR0:TT0 from TT0 to TT3, PR1:TT2 from TT2 to TT0, and
PR1:TT3 from TT3 to TT0 (i.e., 120MB off-rack traffic, in
aggregate). In addition, PR1:TT1 will be shuffled from TT1 to
TT0 (i.e., 30MB rack-local traffic) and PR0:TT3 will remain
local to TT3 (i.e., 35MB node-local traffic). On the other hand,
if JT schedules R0 at TT0 and R1 at TT3, PR0:TT3 will be
shuffled from TT3 to TT0, PR1:TT1 from TT1 to TT3 (i.e.,
65MB off-rack traffic, in aggregate), PR1:TT2 from TT2 to
TT3 (i.e., 50MB rack-local traffic), and PR0:TT0 and PR1:TT3

will remain local to TT0 and TT3, respectively (i.e., 70MB
node-local traffic, in aggregate).

Clearly, scheduling R0 at TT0 and R1 at TT3 improves
node-local, rack-local, and off-rack traffic by 50%, 40%, and
45.8% versus scheduling them at TT3 and TT0, respectively.
More notably, if JT does not schedule R1 at TT3 but rather
wait (a little time) to receive a request from TT2 and schedule
R1 there, node-local and rack-local traffics will be further im-
proved by 22.2% and 40%, respectively. Hadoop, in its present
design, is incapable of making such scheduling decisions.

B. LARTS and Early Shuffle

A key question is how to schedule reduce tasks at Task Track-
ers so as to diminish shuffled data and improve MapReduce
performance. One of Hadoop’s basic principles is: ”moving
computation towards data is cheaper than moving data towards
computation”. Such a principle is employed by Hadoop when
scheduling map tasks but bypassed when scheduling reduce
tasks. MapReduce is aware of the network locations of splits
(inputs to mappers) and leverages such information to schedule
mappers nearby splits. In contrast, MapReduce is oblivious to
the network locations of partitions (inputs to reducers) and
does not schedule reducers nearby partitions. Thus, similar to
map task scheduling, we suggest making MapReduce aware
of partitions’ network locations in order to apply locality to
reduce task scheduling.

Any reducer can receive a partition from any mapper.
As such, to certainly designate all the network locations of
a reducer’s partitions, we need to wait until all mappers
complete. When the map phase is fully done, all the network
locations of the feeding nodes of every reducer will be known.
Evidently, to meet such an objective, we need to disable
early shuffle. Disabling early shuffle, however, prevents us
from exploiting its advantage (i.e., decreased jobs’ turnaround
times). Hence, we propose waiting for all mappers to complete
only if required (more on this shortly), and activating early
shuffle at an earlier stage if possible. The criterion in deciding

upon when to start early shuffle depends on the observed
performance.

We advocate starting early shuffle after a defined number,
ES, of mappers are done. We define a sweet spot of a program
as the spot at which early shuffle is triggered and provides
the best performance for the program. We can alter ES for
any application to locate its sweet spot. At a sweet spot,
a reducer would have already recognized all its partitions
or approximately all. Locating a sweet spot introduces a
tradeoff between reaping early shuffle’s benefit and delivering
fully accurate information (i.e., network locations of parti-
tions) to LARTS. The attained accuracy depends essentially
on workloads’ characteristics and their underlying data sets.
Section V-C provides an extensive sensitivity study on locating
sweet spots for multiple benchmarks. Through the usage of
sweet spots, LARTS can sensibly combine the advantages of
H ESON and H ESOFF and abandon their disadvantages (see
Section III for details on H ESON and H ESOFF).

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

P
a

rt
it

io
n

 S
iz

e
s

(M
B

)

Reducer ID

Min

Max

Average

Fig. 2. Skew in partitions of sort2. Min, Max, and Average denote the
minimum, the maximum, and the average sizes of partitions sent by each
feeding mapper to each reducer.

Lastly, in addition to network locations, MapReduce has to
recognize partitions’ sizes in order to apply locality to reduce
task scheduling. Contrary to splits, partitions are of variable
sizes. For instance, Fig. 2 shows the maximum, the minimum,
and the average sizes of partitions delivered by each feeding
mapper to each reducer in the sort2 program (see Section V-A
for details on this benchmark). Clearly, this workload ex-
hibits a significant discrepancy between the sizes of partitions
consumed by reducers. Keeping large partitions and shuffling
smaller ones (if possible) saves network bandwidth. As such,
LARTS incorporates partitions’ sizes in reduce task scheduling
in an endeavor to avoid transferring large partitions.

C. Maximum-Racks and Maximum-Nodes: Locality and
Tradeoffs
As described in Section I, the amount of data shuffled depends
on where reducers are scheduled. In case a reducer, R, has only
one feeding mapper, M, the best data locality can be achieved
via scheduling R at the Task Tracker that hosts M. However,
R typically has multiple feeding mappers which are usually
located at multiple nodes. We suggest that good data locality
can be achieved via scheduling R at the maximum-node in
the maximum-rack of R. We define the maximum-rack of R
as the rack that holds one or many of R’s partitions with an

aggregate size larger than any other aggregate sizes of other
R’s partitions held at other racks. In addition, we define the
maximum-node of R as the node that holds the largest partition
for R at R’s maximum-rack. We identify the maximum-node
and the maximum-rack of R using the network locations and
sizes of R’s partitions.

Existing Hadoop adopts a pull scheduling strategy rather
than a push one (see Section II for details). Consequently,
scheduling every reducer, R, at its maximum-node in its
maximum-rack might cause scheduling delay, scheduling
skew, low degree of parallelism, and poor system utilization.
Scheduling delay occurs when many Task Trackers request
R and get rejected because none of them is found preferred
by R (i.e., none is R’s maximum-node in R’s maximum-
rack). Principally, this means that the Job Tracker will not
schedule R at any Task Tracker but the one that is preferred
by R. Furthermore, the Job Tracker will keep watching for R’s
preferred Task Tracker to make a request so that it schedules
R there. Obviously, this might introduce some scheduling
delay. Scheduling skew refers to the variance in Task Trackers
being preferred by reducers. Low degree of parallelism and
poor system utilization occur after a skew in scheduling.
That is, available slots at Task Trackers not preferred by any
reducer will remain unutilized and will entail less exploited
parallelism.

D. Relaxation and Best Effort Maximum-Racks and
Maximum-Nodes

Algorithm 1 LARTS Algorithm
Input: RT : set of unscheduled reduce tasks

TT : the task tracker requesting a reduce task
RCTT : the rejection counter associated with TT

Output: A reduce task R ∈ RT that
can be scheduled at TT

1: initialize two sets of potential reducers to schedule at TT , setOnRack =
Φ and setOffRack = Φ

2: for every reduce task R ∈ RT do
3: calculate maximum-rack MRR =

max{rack holding partitions for R}
4: calculate maximum-node MNR = max{feeding node in MRR}
5: if TT ∈ MRR && TT = MNR then
6: return R
7: else
8: if TT ∈ MRR && RCTT = α then
9: add R to setOnRack

10: else
11: if RCTT > α then
12: add R to setOffRack

13: end if
14: end if
15: end if
16: end for
17: if setOnRack is not empty then
18: return a random reducer R ∈ setOnRack

19: else
20: if setOffRack is not empty then
21: return a random reducer R ∈ setOffRack

22: end if
23: end if

LARTS balances scheduling delay, scheduling skew, system
utilization, and parallelism by judiciously fragmenting some
reduce tasks among several requesting Task Trackers. We

RCTT0 = 0
 RCTT1 = 1
 RCTT2 = 0
 RCTT3 = 1

PR0:TT0 = 40MB

PR1:TT1 = 30MB

TT0

TT1

1.R
eq
ue
st
a R
ed
uc
e T
as
k

Re
ply
 w
ith
 R0

4.Request a Reduce Task
Reply with R1

Rack0

Rack2

 JT

PR1:TT2 = 50MB

PR1:TT3 = 30MB

PR0:TT3 = 35MB

TT2

TT3

Rack1

2.R
eq
ue
st
a R
ed
uc
e T
as
k

3.Request a Reduce Task

Fig. 3. An example of Task Trackers making requests for reduce tasks
in LARTS. The Job Tracker rejects requests from Task Trackers 1 and 3
because they don’t satisfiy LARTS’s conditions (JT = Job Tracker, TTj =
Task Tracker j, RCTTj = rejection counter associated with TTj, Ri = reducer
i, and PRi:TTj = partition P produced at TTj and hashed to reducer, Ri).

introduce a rejection counter, RC, per each Task Tracker, TT
(i.e., RCTT) and increment it each time TT gets rejected by
the Job Tracker. We further define a threshold, α, through
which we bound RC. We gradually then start relaxing the
condition of maximum-node in maximum-rack for R. Specif-
ically, LARTS first attempts to strictly meet the condition
of maximum-node in maximum-rack for R. However, after
RCTT of a requesting TT reaches α, LARTS relaxes the
condition on TT to only satisfying being on the maximum-rack
of R. In addition, if RCTT becomes greater than α, LARTS
relaxes every condition on TT and simply assigns it a random
R. In summary, LARTS exerts best effort in meeting the
maximum-node in maximum-rack condition for every reducer,
but gradually starts applying a relaxation strategy in order
to avoid scheduling delay, scheduling skew, potential poor
utilization, and probable low degree of parallelism. To that
end, Algorithm 1 formally describes LARTS.

E. A Working Example

Fig. 3 demonstrates a simple working example of two Task
Trackers requesting reduce tasks, R0 and R1, from the Job
Tracker (JT) in LARTS. We assume an α of 1. As in Fig. 1,
TTj stands for a Task Tracker node j. PRi:TTj stands for a
partition P produced at TTj and hashed to reducer, Ri. RCTTj

refers to the rejection counter associated with Task Tracker
TTj. As shown, JT receives first a request for a reduce task
from TT0. JT realizes that R1 does not prefer TT0 but R0 does
(i.e., TT0 is the maximum-node in the maximum-rack of R0).
As such, JT assigns R0 to TT0. This incurs only shuffling
PR0:TT3 from TT3 to TT0 while PR0:TT0 is kept local to
TT0. JT receives a second request for a reduce task from TT1
and rejects the request because the remaining reducer, R1,
does not prefer TT1. Consequently, JT increments RCTT1 by
1. A third request for a reduce task is received by JT from
TT3. Though TT3 belongs to the maximum-rack of R1, it
is neither the maximum-node of R1 nor has yet a rejection
counter evaluating to α. Consequently, JT rejects TT3 and
increments RCTT3 by 1. Lastly, JT receives a fourth request
for a reduce task from TT2 and replies with R1 because
TT2 is R1’s maximum-node in R1’s maximum-rack. As a

result, 90MB, 30MB, and 65MB of node-local, rack-local,
and off-rack traffics are incurred, respectively. Clearly, LARTS
is capable of making scheduling decisions similar to those
aspired in Fig. 1 and failed to be made by native Hadoop.

V. QUANTITATIVE EVALUATION
A. Methodology

TABLE I
CLUSTER CONFIGURATION PARAMETERS

Category Configuration
Hardware

Chassis IBM BladeCenter H
Number of Blades 14
Processors/Blade 2 x 2.5GHz Intel Xeon

Quad Core (E5420)
RAM/Blade 8 GB RAM
Storage/Blade 2 x 300 GB SAS

Defined as 600 GB RAID 0
Virtualization Platform vSphere 4.1/ESXi 4.1

Software
VM Parameters 4 vCPU, 4 GB RAM

1 GB NIC
60 GB Disk (mounted at /)

450 GB Disk (mounted at /hadoop)
OS 64-Bit Fedora 13
JVM Sun/Oracle JDK 1.6, Update 20
Hadoop Apache Hadoop 0.20.2

We evaluate LARTS against native Hadoop on our cloud
computing infrastructure comprised of a dedicated 14 physical
host IBM BladeCenter H with identical hardware, software
and network capabilities. The BladeCenter is configured with
the VMware vSphere 4.1 virtualization environment. VMware
vSphere 4.1 [24] manages the overall system and VMware
ESXi 4.1 runs as the blades’ hypervisor. The vSphere system
was configured with a single virtual machine (VM) running
on each BladeCenter blade. Each VM is configured with 4
v-CPUs and 4GBs of RAM. The disk storage for each VM
is provided via two locally connected 300GB SAS disks. The
major system software on each VM is 64-bit Fedora 13 [7],
Apache Hadoop 0.20.2 [9] and Sun/Oracle’s JDK 1.6 [5],
Update 20. To employ Hadoop’s rack awareness correctly,
blades 1-7 are connected to a 1 gigabit switch, blades 8-14 to
another 1 gigabit switch, and the two switches are connected
to a third 1 gigabit switch providing interconnectivity for all
blades. All the switches are physical. Lastly, LARTS research
is monitored with the Ganglia cluster monitoring system [8],
the VMware vSphere client application, and standard Linux
command line tools. Table I summarizes our cloud hardware
configuration and software parameters.

To evaluate LARTS against native Hadoop, we use the sort
and the wordcount benchmarks in the Hadoop distribution.
Sort is the main benchmark used for assessing Hadoop at
Yahoo! [26]. Sort was also used in the MapReduce Google’s
paper [4]. Besides, [22] reported that wordcount is as well
one of the major benchmarks utilized for evaluating Hadoop
at Yahoo!.

To test LARTS with various types of data sets, we ran sort
over two data sets, one with uniform (the default) and another
with non-uniform keys frequencies and data distribution across
nodes. To generate a uniform data set we simply generate
records with random keys and equal number of records at

each node. We refer to sort running on a uniform data set as
sort1.

To produce non-uniform keys frequencies and data distri-
bution among nodes we follow a similar approach as in [16].
We modified the RandomWriter3 in Hadoop. We ran Ran-
domWriter with 14 mappers each scheduled by native Hadoop
on a distinct node. To obtain a skew in keys we allowed each
mapper to generate random keys in addition to a fixed key
after every random modulo. The fixed key might be different
at each node. Clearly, this allows some fixed keys to appear
more frequently than others at different nodes. Note that a
small modulo at a node versus a large modulo at a different
node indicates more skew in a fixed key generated at both
nodes. By using a random modulo between 1 and 14, we were
able to get a skew with a large variance of 267%.

TABLE II
BENCHMARK PROGRAMS

Benchmark Key Data Dataset Map Reduce
Frequency Distribution Size Tasks Tasks

sort1 Uniform Uniform 14 GB 238 25
sort2 Non-Uniform Non-Uniform 13.8 GB 228 25

wordcount Real Log Files Real Log Files 11 GB 11 3

To produce a skew in data distribution we allowed each
mapper running at a different node to generate records between
two limits, high and low. As the difference between the two
limits increases, the skew in data distribution also increases.
With a low limit of 0.5GB and a high one of 1.5GB we were
able to produce a skew in data distribution with a variance
of 34%. Consequently, we obtain a data set with non-uniform
keys frequencies and data distribution across nodes. We refer
to sort running on this non-uniform data set as sort2.

Lastly, we applied wordcount to a set of real system log
files. Though wordcount is a map-bound program, it is very
useful to use in order to verify how LARTS affects map-bound
applications while it targets reduce task scheduling. Table II
illustrates our utilized benchmarks. To account for variances
across runs we ran each benchmark 5 times.

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

-
./
01
2
#

-
./
01
33
#

45
67
0#

-
./
01
2
#

-
./
01
33
#

45
67
0#

-
./
01
2
#

-
./
01
33
#

45
67
0#

6
8
9
:
;8
#7
<=
>
;#
?
<8
=
@
9
A
B
C
#

2A98D4A;=E# 6=;@D4A;=E# 1FD6=;@#

0A<G$# 0A<G%# HA<9;A:CG#

Fig. 4. Reduce traffic experienced by Hadoop with early shuffle on
(H ESON), Hadoop with early shuffle off (H ESOFF), and LARTS for sort1,
sort2, and wordcount benchmarks.

B. Comparison with Native Hadoop
We evaluate LARTS against native Hadoop with early shuf-
fle being on (H ESON) and off (H ESOFF). We use the

3RandomWriter is used in Hadoop to generate random numbers usually
utilized by the sort benchmark program.

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

'()*$" '()*%" +(),-(./*"

0
12
-.
3
(
/
"4
56

2
"7
'
2
-(
/
,
89
"

:2/-;6<)=8"

>?0'@A" >?0'@BB" CDE4'"

Fig. 5. Execution times experienced by Hadoop with early shuffle on
(H ESON), Hadoop with early shuffle off (H ESOFF), and LARTS for sort1,
sort2, and wordcount benchmarks.

sweet spots (shown in Section V-C) for all the benchmarks
under LARTS. Since we ran each benchmark 5 times, we
display the average results for each program. We start by
showing in Fig. 4 node-local, rack-local, and off-rack traffic
generated by H ESON, H ESOFF, and LARTS for all the
benchmarks. As demonstrated and discussed in Section III,
H ESOFF does better than H ESON concerning incurred
network traffic. LARTS, on the other hand, is superior to both,
H ESON and H ESOFF. Through applying the maximum-
node in maximum-rack and the maximum-rack after a Task
Tracker’s rejection counter reaches α conditions, LARTS
maximizes node-local, maximizes/minimizes rack-local, and
minimizes off-rack traffic. LARTS minimizes rack-local traffic
only after maximizing node-local traffic. For instance, assume
a reducer, R, with a single feeding mapper, M. Scheduling
R on M’s node versus on M’s rack but not on M’s node
maximizes node-local and minimizes rack-local traffic. For
the tested benchmarks, LARTS maximizes node-local and
rack-local traffic by 34.45% and 0.32%, and minimizes off-
rack traffic by 7.5%, on average, against H ESON. Besides,
LARTS maximizes node-local and rack-local traffic by 16.7%
and 2.8%, and minimizes off-rack traffic by 6.3%, on average,
against H ESOFF.

Fig. 5 shows the corresponding execution time results
for the three benchmarks under H ESON, H ESOFF, and
LARTS. As discussed in Section III, H ESON outperforms
H ESOFF. On the other hand, LARTS surpasses both,
H ESON and H ESOFF via sensibly combining the ad-
vantages of H ESON and H ESOFF and abandoning their
disadvantages (see Section IV-B for details). LARTS still
employs early shuffle- yet conservatively, and, moreover,
reduces network traffic. LARTS outperforms H ESON and
H ESOFF by 7% and 15.4%, on average, and up to 11.6%
and 25.2%, respectively. Finally, though wordcount exposes
more reduction in network traffic under LARTS than sort1
and sort2, it exhibits less performance improvement. This is
because wordcount is a map-bound program. As such, an
improvement (or degradation) in its reduce phase does not
mirror visibly on its overall execution time.

C. Sensitivity Study

By associating rejection counters with Task Trackers (bound
by α) and applying relaxation to scheduling conditions,
LARTS avoids scheduling delay, scheduling skew, poor system

Sweet Spot

Sweet Spot

Sweet Spot

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

'(
)!
*"+
,)
$-
!.
"

'(
)$
*"+
,)
$-
!.
"

'(
)%
*"+
,)
$-
!.
"

'(
)!
*"+
,)
!-
/.
"

'(
)$
*"+
,)
!-
/.
"

'(
)%
*"+
,)
!-
/.
"

'(
)!
*"+
,)
!-
0.
"

'(
)$
*"+
,)
!-
0.
"

'(
)%
*"+
,)
!-
0.
"

'(
)!
*"+
,)
!-
1.
"

'(
)$
*"+
,)
!-
1.
"

'(
)%
*"+
,)
!-
1.
"

'(
)!
*"+
,)
!-
2.
"

'(
)$
*"+
,)
!-
2.
"

'(
)%
*"+
,)
!-
2.
"

'(
)!
*"+
,)
!-
%.
"

'(
)$
*"+
,)
!-
%.
"

'(
)%
*"+
,)
!-
%.
"

'(
)!
*"+
,)
!-
!#

."

'(
)$
*"+
,)
!-
!#

."

'(
)%
*"+
,)
!-
!#

."+3
45
6
7
8
9
":
;<

4"
=,
45
8
9
>
?@
"

ABC:,"D89EF6GH789"

,8GI$"

!"#$

!%#$

!&#$

!'#$

!(#$

!)#$

*##$

*+#$

*!#$

**#$

,-
.#
/$0
1.
+2
#3
$

,-
.+
/$0
1.
+2
#3
$

,-
.!
/$0
1.
+2
#3
$

,-
.#
/$0
1.
#2
)3
$

,-
.+
/$0
1.
#2
)3
$

,-
.!
/$0
1.
#2
)3
$

,-
.#
/$0
1.
#2
(3
$

,-
.+
/$0
1.
#2
(3
$

,-
.!
/$0
1.
#2
(3
$

,-
.#
/$0
1.
#2
&3
$

,-
.+
/$0
1.
#2
&3
$

,-
.!
/$0
1.
#2
&3
$

,-
.#
/$0
1.
#2
"3
$

,-
.+
/$0
1.
#2
"3
$

,-
.!
/$0
1.
#2
"3
$

,-
.#
/$0
1.
#2
!3
$

,-
.+
/$0
1.
#2
!3
$

,-
.!
/$0
1.
#2
!3
$

,-
.#
/$0
1.
#2
#%

3$

,-
.+
/$0
1.
#2
#%

3$

,-
.!
/$0
1.
#2
#%

3$

04
56
7
8
9
:
$;
<=

5$
>1
56
9
:
?
@A
$

BCD;1$E9:FG7HI89:$

19HJ!$

!"#$

%&&$

%&#$

%'&$

%'#$

%!&$

%!#$

()
*&
+$,
-*
'.
&/
$

()
*'
+$,
-*
'.
&/
$

()
*!
+$,
-*
'.
&/
$

()
*&
+$,
-*
&.
"/
$

()
*'
+$,
-*
&.
"/
$

()
*!
+$,
-*
&.
"/
$

()
*&
+$,
-*
&.
0/
$

()
*'
+$,
-*
&.
0/
$

()
*!
+$,
-*
&.
0/
$

()
*&
+$,
-*
&.
1/
$

()
*'
+$,
-*
&.
1/
$

()
*!
+$,
-*
&.
1/
$

()
*&
+$,
-*
&.
2/
$

()
*'
+$,
-*
&.
2/
$

()
*!
+$,
-*
&.
2/
$

()
*&
+$,
-*
&.
!/
$

()
*'
+$,
-*
&.
!/
$

()
*!
+$,
-*
&.
!/
$

()
*&
+$,
-*
&.
&#

/$

()
*'
+$,
-*
&.
&#

/$

()
*!
+$,
-*
&.
&#

/$

,3
45
6
7
8
9
$:
;<

4$
=-
45
8
9
>
?@
$

ABC:-$D89EF6GH789$

I8G>5869J$

Fig. 6. LARTS sensitivity to different α and ES values for sort1, sort2, and
wordcount benchmarks.

utilization, and low degree of parallelism. Besides, by adopting
an early shuffle threshold, ES, LARTS attempts to locate a
sweet spot for a program where network traffic is diminished
and performance is improved. In this section, we vary α from 0
to 2 and ES over seven values {1.0, 0.9, 0.8, 0.6, 0.4, 0.2, 0.05}
for each benchmark under LARTS. We run each configuration
(e.g., {α = 0, ES = 0.9}) 5 times and display average results.
Fig. 6 shows the plots for each benchmark over different α
and ES values.

We make four main notes. As α increases scheduling delay
increases, and utilization and parallelism decreases (scheduling
skew depends on programs’ data sets). This degrades perfor-
mance. At the same time, as α increases the amount of data
shuffled on the network decreases. This improves performance.
On the other hand, as ES increases, performance decreases
due to decreasing the overlap between the shuffle and the
map phases and increasing the turnaround times of jobs. In
contrast, as ES increases, network traffic decreases because
of the increasing accuracy of information provided to LARTS
and the progressive leverage of H ESOFF’s pro.

When the gain from varying α and ES offsets the loss,
LARTS performance improves. For instance, LARTS{α =
0, ES = 0.2} gains from fast scheduling decisions (α = 0),
but loses from increased network traffic (α = 0 and ES =
0.2). Let us refer to LARTS{α = 0, ES = 0.2}’s attained
gain subtracted from incurred loss as ∆A. On the other
hand, we found LARTS{α = 1, ES = 0.2} exposing more
scheduling delay and decreased network traffic as compared
to LARTS{α = 0, ES = 0.2}. Let us denote LARTS{α =
1, ES = 0.2}’s outcome as ∆B . LARTS{α = 0, ES = 0.2}
outperforms LARTS{α = 1, ES = 0.2} for sort1 because ∆A

surpasses ∆B . Lastly, LARTS{α = 2, ES = 0.2} outperforms
both LARTS{α = 0, ES = 0.2} and LARTS{α = 1, ES =
0.2}. Referring to LARTS{α = 2, ES = 0.2}’s outcome as
∆C , ∆C exceeds ∆A and ∆B . Similar logic can be applied
to the remaining configurations of all the benchmarks. Note,
however, that configurations of sort2 and wordcount reveal
larger performance discrepancies as compared to sort1 ones.
This is due to the skew in sort2’s data set and the real world
log files utilized for wordcount.

To that end, the sweet spots for sort1, sort2, and wordcount
(as shown in Fig. 6), are located at {α = 2, ES = 0.2},
{α = 0, ES = 0.4}, and {α = 2, ES = 0.2}, respectively.
We observe that for sort1 and wordcount the sweet spots are
located at the same configuration. Furthermore, we observe
that for sort2 an α of 0 usually provides good results (except
when ES = 0.6). Consequently, we recommend an α of 2 for
applications that exhibit similar characteristics as sort1 and
wordcount, and an α of 0 for applications with a skewed data
set analogous to sort2. In all cases, the early shuffle process
can be activated at ES = 0.2 or ES = 0.4 for applications
comparable to ours. Therefore, LARTS can keep early shuffle
on, cut down network traffic and improve overall performance.

VI. RELATED WORK

Recently, there has been a rapid increase of work concerned
with MapReduce. In this short article, we only briefly describe
proposals that are most relevant to LARTS.

LEEN [16] suggests altering Hadoop’s existing hash par-
titioning function in order to alleviate the amount of data
shuffled on the network. Ussop [2] leverages MapReduce
model on public-resource grids. To comply with the volatility
nature of the grid environment, Ussop dynamically adjusts the
size of a map task and assigns larger-size maps to the grid
nodes with more powerful computing capabilities. Besides, it
addresses the unevenly available bandwidth of a wide area
network and avoids transferring large local regions owned by
a single grid node to other nodes. Both LEEN and Ussop
completely disable early shuffle for the sake of leveraging data
locality. In contrast to Ussop and LEEN, LARTS targets cloud
computing clusters and does not alter Hadoop’s existing hash
partitioning function.

Longest Approximate Time to End (LATE) [26] suggests
a scheduling algorithm for speculative tasks robust to hetero-
geneity. Hadoop Fair Scheduler (HFS) [25] promotes a job
scheduling algorithm based on waiting so as to achieve fairness
and data locality (for map tasks only). As compared to LATE
and HFS, LARTS applies locality to regular (not speculative)
reduce tasks (not jobs).

High Performance MapReduce Engine (HPMR) [22] sug-
gests inspecting input splits in the map phase, and predicts
which reducers key-value pairs are partitioned to. The expected
data are assigned to map tasks near the future reducers.
In contrary to HPMR, LARTS proposes collocating regular
reducers with the largest required data.

VII. CONCLUDING REMARKS AND FUTURE DIRECTIONS

In this work, we propose a novel reduce task scheduler for
MapReduce, namely Locality-Aware Reduce Task Scheduler

(LARTS). LARTS incorporates network locations and sizes
of reducers’ partitions in its scheduling decisions in order to
mitigate network traffic and improve MapReduce performance.
To avoid scheduling delay, scheduling skew, poor system
utilization, and low degree of parallelism, LARTS employs a
relaxation strategy and fragments some reduce tasks among
several cluster nodes. LARTS improves node-local, rack-
local, and off-rack traffic by 34.4%, 0.32%, and 7.5%, on
average, versus native Hadoop. This translates to an average
performance improvement of 7%, and up to 11.6%.

After demonstrating the prospects of LARTS, we set forth
four main future directions. First, sweet spots can be lo-
cated dynamically rather than statically. Second, LARTS can
be applied to speculative tasks in addition to regular ones.
Third, we essentially foresee LARTS amenable to shared (or
heterogeneous) computation environment with a large-scale
cluster. We intend to explore LARTS’s potential in such an
environment. Finally, scientific applications usually exhibit
skew in their data sets. For instance, Ekanayake et al. [20]
recognized skew in bioinformatics applications and analyzed
its influence on scheduling mechanisms. In this piece of work,
we verified LARTS’s capability with one skewed data set (i.e.,
sort2). Testing and analyzing LARTS with various scientific
applications comparable to those examined in [20] and [17]
is also an imperative future direction.

REFERENCES

[1] ”Amazon Elastic MapReduce, http://aws.amazon.com/elasticmapreduce/.”
[2] P. C. Chen, Y. L. Su, J. B. Chang, and C. K. Shieh, ”Variable-Sized Map and

Locality-Aware Reduce on Public-Resource Grids,” GPC, 2010.
[3] S. Chen and S. W. Schlosser, ”MapReduce Meets Wider Varieties of Applications,”

IRP-TR-08-05, Intel Research, 2008.
[4] J. Dean and S. Ghemawat, ”Mapreduce: simplified data processing onlarge

clusters,” OSDI, 2004.
[5] ”http://download.oracle.com/javase/6/docs/.”
[6] Z. Fadika and M. Govindaraju, ”LEMO-MR: Low Overhead and Elastic MapRe-

duce Implementation Optimized for Memory and CPU-Intensive Applications,”
CloudCom, 2010.

[7] ”http://fedoraproject.org/.”
[8] ”http://ganglia.sourceforge.net/.”
[9] ”Hadoop. http://hadoop.apache.org/.”

[10] ”Hadoop Tutorial. http://developer.yahoo.com/hadoop/tutorial/.”
[11] S. Huang, J. Huang, J. Dai, T. Xie, B. Huang, ”The HiBench Benchmark Suite:

Characterization of the MapReduce-Based Data Analysis,” ICDEW, 2010.
[12] B. He, W. Fang, Q. Luo, N.K. Govindaraju, T. Wang, ”Mars: a MapReduce

Framework on Graphics Processors,” PACT, 2008.
[13] S. Ghemawat, H. Gobioff, and S. T. Leung, ”The Google File System,” SOSP,

2003.
[14] S. Ibrahim, H. Jin, B. Cheng, H. Cao, S. Wu, L. Qi, ”CLOUDLET: Towards

Mapreduce Implementation on Virtual Machines,” HPDC, 2009.
[15] S. Ibrahim, H. Jin, L. Lu, L. Qi, S. Wu, and X. Shi, ”Evaluating MapReduce on

Virtual Machines: The Hadoop Case,” CloudCom, 2009.
[16] S. Ibrahim, H. Jin, L. Lu, S. Wu, B. He, and L. Qi, ”LEEN: Locality/Fairness-

Aware Key Partitioning for MapReduce in the Cloud,” CloudCom, 2010.
[17] Y. C. Kwon, M. Balazinska, B. Howe, and J. Rolia, ”Skew-Resistant Parallel

Processing of Feature-Extracting Scientific User-Defined Functions,” SOCC, 2010.
[18] Y. C. Kwon, M. Balazinska, B. Howe, and J. Rolia, ”A Study of Skew in

MapReduce Applications,” Open Cirrus Summit, 2011.
[19] J. Lin, ”The Curse of Zipf and Limits to Parallelization: A Look at the Stragglers

Problem in MapReduce,” LSDS-IR, 2009.
[20] X. Qiu, J. Ekanayake, S. Beason, T. Gunarathne, G. Fox, R. Barga, and D. Gannon,

”Cloud Technologies for Bioinformatics Applications,” MTAGS, 2009.
[21] M. Rafique, B. Rose, A. Butt, and D. Nikolopoulos, ”Supporting MapReduce

on Large-Scale Asymmetric Multi-Core Clusters,” SIGOPS Operating Systems
Review 43, 2009.

[22] S. Seo, I. Jang, K. Woo, I. Kim, J. Kim, S. Maeng, ”HPMR: Prefetching and Pre-
Shuffling in Shared MapReduce Computation Environment,” CLUSTER, 2009.

[23] A. Szalay, A. Bunn, J. Gray, I. Foster, and I. Raicu, ”The Importance of Data
Locality in Distributed Computing Applications,” NSF Workflow Workshop, 2006.

[24] ”http://www.vmware.com/.”
[25] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and I. Stoica,

”Delay scheduling: a simple technique for achieving locality and fairness in cluster
scheduling,” EuroSys, 2010.

[26] M. Zaharia, A. Konwinski, A. Joseph, R. Katz, I. Stoica, ”Improving Mapreduce
Performance in Heterogeneous Environments,” OSDI, 2008.

