
HARDWARE-ORIENTED CACHE MANAGEMENT

FOR LARGE-SCALE CHIP MULTIPROCESSORS

by

Mohammad Hammoud

BS, American University of Science and Technology, 2004

MS, University of Pittsburgh, 2010

Submitted to the Graduate Faculty of

the Department of Computer Science in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2010

UNIVERSITY OF PITTSBURGH

COMPUTER SCIENCE DEPARTMENT

This dissertation was presented

by

Mohammad Hammoud

It was defended on

July 1st 2010

and approved by

Rami Melhem, Professor, Department of Computer Science

Sangyeun Cho, Assistant Professor, Department of Computer Science

Jun Yang, Associate Professor, Electrical and Computer Engineering

Bruce Childers, Associate Professor, Department of Computer Science

Dissertation Advisors: Rami Melhem, Professor, Department of Computer Science,

Sangyeun Cho, Assistant Professor, Department of Computer Science

ii

Copyright c© by Mohammad Hammoud

2010

iii

HARDWARE-ORIENTED CACHE MANAGEMENT FOR LARGE-SCALE

CHIP MULTIPROCESSORS

Mohammad Hammoud, PhD

University of Pittsburgh, 2010

Abstract. One of the key requirements to obtaining high performance from chip multipro-

cessors (CMPs) is to effectively manage the limited on-chip cache resources shared among

co-scheduled threads/processes. This thesis proposes new hardware-oriented solutions for

distributed CMP caches.

Computer architects are faced with growing challenges when designing cache systems

for CMPs. These challenges result from non-uniform access latencies, interference misses,

the bandwidth wall problem, and diverse workload characteristics. Our exploration of the

CMP cache management problem suggests a CMP caching framework (CC-FR) that defines

three main approaches to solve the problem: (1) data placement, (2) data retention, and (3)

data relocation. We effectively implement CC-FR’s components by proposing and evaluating

multiple cache management mechanisms.

Pressure and Distance Aware Placement (PDA) decouples the physical locations of cache

blocks from their addresses for the sake of reducing misses caused by destructive interfer-

ences. Flexible Set Balancing (FSB), on the other hand, reduces interference misses via

extending the life time of cache lines through retaining some fraction of the working set at

underutilized local sets to satisfy far-flung reuses. PDA implements CC-FR’s data placement

and relocation components and FSB applies CC-FR’s retention approach.

To alleviate non-uniform access latencies and adapt to phase changes in programs, Adap-

tive Controlled Migration (ACM) dynamically and periodically promotes cache blocks to-

wards L2 banks close to requesting cores. ACM lies under CC-FR’s data relocation category.

iv

Dynamic Cache Clustering (DCC), on the other hand, addresses diverse workload character-

istics and growing non-uniform access latencies challenges via constructing a cache cluster

for each core and expands/contracts all clusters synergistically to match each core’s cache

demand. DCC implements CC-FR’s data placement and relocation approaches.

Lastly, Dynamic Pressure and Distance Aware Placement (DPDA) combines PDA and

ACM to cooperatively mitigate interference misses and non-uniform access latencies. Dy-

namic Cache Clustering and Balancing (DCCB), on the other hand, combines DCC and FSB

to employ all CC-FR’s categories and achieve higher system performance. Simulation re-

sults demonstrate the effectiveness of the proposed mechanisms and show that they compare

favorably with related cache designs.

v

TABLE OF CONTENTS

1.0 INTRODUCTION . 1

1.1 CONVENTIONAL CMP CACHING SCHEMES 1

1.2 CMP Cache MANAGEMENT CHALLENGES 2

1.2.1 Growing Non uniform Access latencies 3

1.2.2 The Bandwidth Wall Problem and The Processor-Memory Speed Gap 3

1.2.3 Interference Misses . 4

1.2.4 Diverse Workload Characteristics . 5

1.3 A GENERAL CMP CACHING FRAMEWORK (CC-FR) 6

1.4 THESIS OVERVIEW . 7

1.5 CONTRIBUTIONS . 10

1.6 ROADMAP . 11

2.0 RELATED WORK AND EVALUATION METHODOLOGY 13

2.1 BASELINE PROCESSOR ARCHITECTURE 13

2.2 RELATED WORK . 14

2.2.1 Single-Core Caching Schemes . 14

2.2.2 CMP Page-Granular Caching Schemes 18

2.2.3 CMP Block-Granular Caching Schemes 19

2.3 EVALUATION METHODOLOGY . 21

3.0 CONSTRAINED ASSOCIATIVE-MAPPING OF TRACKING EN-

TRIES . 23

3.1 PROBLEM DEFINITION AND PROPOSED SOLUTION 23

3.1.1 Problem Definition . 23

vi

3.1.2 Proposed Solution . 25

3.2 THE CONSTRAINED ASSOCIATIVE-MAPPING-OF-TRACKING-ENTRIES

(C-AMTE) MECHANISM . 26

3.3 QUANTITATIVE EVALUATION . 31

3.3.1 Results . 33

3.4 SUMMARY . 36

4.0 PRESSURE AND DISTANCE AWARE PLACEMENT 37

4.1 MOTIVATION AND PROPOSED SOLUTION 37

4.1.1 Motivation . 37

4.1.2 Proposed Solution . 38

4.2 THE PRESSURE AND DISTANCE AWARE PLACEMENT MECHANISM 40

4.2.1 A Pressure Limit and Manhattan Distance 40

4.2.2 Pressure and Distance Aware Placement 40

4.2.3 Group-Based Pressure Collection . 42

4.3 QUANTITATIVE EVALUATION . 44

4.3.1 Comparing Against the Shared NUCA Design 45

4.3.2 Sensitivity of PDA to Different Group Granularities 49

4.3.3 Sensitivity of PDA to HPL . 52

4.3.4 Accounting for the Overhead of the Location Strategy 52

4.3.5 Scalability . 53

4.3.6 Comparing with Related Designs . 55

4.4 SUMMARY . 56

5.0 FLEXIBLE SET BALANCING . 58

5.1 MOTIVATION AND PROPOSED SOLUTION 58

5.1.1 Motivation . 58

5.1.2 Dynamic Set Balancing Cache and Inherent Shortcomings 59

5.1.3 Proposed Solution . 63

5.2 FLEXIBLE SET BALANCING (FSB) MECHANISM 65

5.2.1 Retention Limits . 65

5.2.2 Retention Policy . 66

vii

5.2.3 Lookup Policy . 68

5.2.4 FSB Cost . 69

5.2.5 Scalability . 70

5.3 QUANTITATIVE EVALUATION . 70

5.3.1 Comparing FSB against Shared Baseline 72

5.3.2 Sensitivity to Different Pressure Functions 75

5.3.3 Sensitivity to LPL and HPL . 76

5.3.4 Impact of Increasing Cache Size and Associativity 77

5.3.5 FSB versus Victim Caching . 78

5.3.6 FSB versus DSBC and V-WAY . 78

5.4 SUMMARY . 81

6.0 ADAPTIVE CONTROLLED MIGRATION 83

6.1 MOTIVATION AND PROPOSED SOLUTION 83

6.1.1 Motivation . 83

6.1.2 Proposed Solution . 85

6.2 THE ADAPTIVE CONTROLLED MIGRATION (ACM) MECHANISM . . 86

6.2.1 Predicting Optimal Host Location . 86

6.2.2 Replacement Policy Upon Migration: Swapping the LRU Block with

the Migratory One . 87

6.3 QUANTITATIVE EVALUATION . 90

6.3.1 Experimental Methodology . 90

6.3.2 Comparing Schemes, Single-threaded and Multiprogramming Workloads 91

6.3.3 Comparing Schemes, Multithreaded Workloads 94

6.3.4 On-Chip Network Traffic . 96

6.3.5 Scalability . 97

6.3.6 Sensitivity and Stability Studies . 98

6.4 SUMMARY . 99

7.0 DYNAMIC CACHE CLUSTERING . 100

7.1 MOTIVATION AND PROPOSED SOLUTION 100

7.1.1 Motivation . 100

viii

7.1.2 Proposed Solution . 101

7.2 BACKGROUND . 102

7.2.1 Fixed Cache Schemes . 102

7.2.2 Fixed Mapping and Location Strategies 103

7.2.3 Coherence Maintenance . 103

7.3 THE DYNAMIC CACHE CLUSTERING(DCC) MECHANISM 104

7.3.1 Average Memory Access Time (AMAT) 104

7.3.2 The Proposed Scheme . 105

7.3.3 DCC Mapping Strategy . 107

7.3.4 DCC Algorithm . 108

7.3.5 DCC Location Strategy . 110

7.3.6 Scalability . 114

7.4 QUANTITATIVE EVALUATION . 114

7.4.1 Comparing With Fixed Schemes . 116

7.4.2 Sensitivity Study . 121

7.4.3 Comparing With Cooperative Caching 123

7.5 SUMMARY . 124

8.0 COMBINED SCHEMES . 125

8.1 MOTIVATION AND PROPOSED SOLUTION 125

8.1.1 Motivation . 125

8.1.1.1 PDA and ACM . 125

8.1.1.2 DCC and FSB . 126

8.1.2 Proposed Solution . 126

8.1.2.1 Dynamic Pressure and Distance Aware (DPDA) 126

8.1.2.2 Dynamic Cache Clustering and Balancing (DCCB) 127

8.2 THE COMBINED SCHEMES . 127

8.2.1 THE DYNAMIC PRESSURE AND DISTANCE AWARE (DPDA) PLACE-

MENT MECHANISM . 127

8.2.2 THE DYNAMIC CACHE CLUSTERING AND BALANCING (DCCB)

MECHANISM . 129

ix

8.3 QUANTITATIVE EVALUATION . 129

8.3.1 Comparing DPDA Against the Shared NUCA and the PDA Designs . 130

8.3.2 Sensitivity of DPDA to Different Migration Frequency Levels 133

8.3.3 Comparing DCCB Against the Shared NUCA and the DCC Designs . 134

8.4 SUMMARY . 137

9.0 CONCLUSIONS . 138

9.1 SUMMARY AND CONCLUSIONS . 138

BIBLIOGRAPHY . 144

x

LIST OF TABLES

1 CC-FR’s categories and challenges that each proposed scheme lies

under and addresses. 9

2 Taxonomy of some CMP related work (IM = Interference Misses,

PMSG = Processor-Memory Speed Gap, DWG = Diverse Workload

Characteristics). 15

3 System parameters. 20

4 Benchmark programs. 21

5 Mapping strategies of private and shared CMP caches and the hy-

brid mapping approach of C-AMTE. 27

6 Benchmark programs. 32

7 Message-Hops per 1K insructions . 34

8 FSB storage overhead. 69

9 Baseline and FSB required energy and area in a 512KB/16-way/64B/LRU

L2 bank. 70

10 Benchmark programs. 92

11 Masking Bits (MB) for a 16-tile CMP Model. 108

12 System parameters . 115

13 Benchmark programs . 115

xi

LIST OF FIGURES

1 Two traditional cache organizations. (a) The shared L2 design backs

up all the L1 caches. (b) The private L2 design backs up only the

private L1 cache on each tile. (Dir stands for directory and R for

router). 2

2 Distribution of L2 cache misses (compulsory, intra-processor, and

inter-processor). 4

3 Cache demands are irregular among different applications and within

the same application. 5

4 General CMP Caching Framework (CC-FR). 6

5 Tiled CMP architecture (Figure not to scale). 13

6 A first example on locating a migratory block B using the C-AMTE

mechanism. 28

7 A second example on locating a block B using the C-AMTE mech-

anism. 29

8 Average L2 access latency of the baseline shared scheme (S), DNUCA(B),

DNUCA(3W), DNUCA(C-AMTE), and DNUCA(Ideal) normalized

to S (B= Broadcast, 3W = 3 Way). 34

9 Execution times of the baseline shared scheme (S), DNUCA(B),

DNUCA(3W), DNUCA(C-AMTE), and DNUCA(Ideal) normalized

to S (B= Broadcast, 3W = 3 Way). 35

xii

10 Number of misses per 1 million instructions (MPMI) experienced

by two local cache sets (the ones that experience the max and the

min misses) at different sets across L2 banks for two benchmarks,

Swaptions and MIX3. 38

11 Address-based versus pressure and distance aware placements. (a)

The nominal shared scheme placement strategy. (b) The PDA strat-

egy. (T15 is the requesting core, f(.) denotes the placement function,

HS is the home select bits of block B, and P is the pressure array) 40

12 Placing block K (with index = 1) using PDA with various granu-

larities. (a) 1-group. (b) 2-group. (c) 4-group. (GN is the group

number) . 43

13 L2 miss rates of PDA and shared (S) schemes (normalized to S). 45

14 Percentage of placements to local L2 banks under PDA. 46

15 L2 hits breakdown. Moving from left to right, the 2 bars for each

benchmark are for S and PDA schemes, respectively. 46

16 Average L2 Access Latencies (AALs) of PDA and shared (S) schemes

(normalized to S). 47

17 On-chip network traffic. 48

18 Execution times of PDA and shared (S) schemes (normalized to S). 48

19 The PDA behavior with different granularities (varying from 1-

group to 512-group). 50

20 S-Curve for CPI improvement of PDA over S. 51

21 S-Curve for CPI improvement of PDA over S. 51

22 L2 miss rates of S, S with two more ways added (S(2W)), S with

double sized cache (S(D)), and PDA (all normalized to S). 53

23 Storage requirements of PDA with a full-map bit vector (PDA(Full)),

a compact vector with 1 bit for every 4 cores (PDA(Comp4)), and

a compact vector with 1 bit for every 8 cores (PDA(Comp8)). . . 54

xiii

24 Execution times of shared (S), private (P), victim caching (VC),

cooperative caching 100% (CC(100%)), cooperative caching 70%

((CC(70%)), and PDA schemes (normalized to S). 56

25 Number of misses experienced by two cache sets at different L2

banks for two benchmarks, SPECJBB and MIX3 (MAX Set = the

set that experiences the maximum misses and MIN Set = the set

that experiences the minimum misses). 59

26 DSBC in operation. (a) A maps originally to set 3. The program

executes A’s references in the order of A, A. DSBC is able to save

much A’s interference misses. (b) A and B map originally to sets 3

and 0, respectively. The program executes A’s and B’s references in

the order of A, B, A,B. DSBC is incapable of adapting to the phase

change in the program. 61

27 DSBC in operation. (a) The program executes A’s, B’s, and C’s

references in the order of A, B, C,A, B, C. DSBC doesn’t allow one-

from-many sharing. (b) The program executes A’s references twice.

DSBC doesn’t allow many-from-one sharing. 61

28 My solution. (a) The program executes A’s, and B’s references in

the order of A, B, A,B. I adapt to the phase change in the program.

(b) The program executes A’s, B’s, and C’s references in the order

of A, B, C,A, B, C. I allow one-from-many sharing. (c) The program

executes A’s references twice. I allow many-from-one sharing. . . . 64

29 L2 miss rates and execution times of the baseline shared scheme

(S), FSB-1, FSB-2, FSB-4, and FSB-8 (all normalized to S). 71

30 The average number of L2 cache sets searched under FSB-1, FSB-2,

FSB-4, and FSB-8. 73

31 The percentage of hits on retained cache lines under FSB-1, FSB-2,

FSB-4, and FSB-8. 73

xiv

32 The number of L2 misses experienced by cache sets at different L2

banks for SpecJBB and MIX3 programs under the baseline shared

scheme (S) and FSB-4. Only the sets that exhibit the maximum

(MAX Set) and the minimum (Min Set) misses are shown. 74

33 Average L2 miss rates and execution times of all the benchmark

programs under the baseline shared scheme (S), FSB-1, FSB-2, FSB-

4, and FSB-8 (all normalized to S) (F1, F2, and F3 are pressure

functions that involve misses, hits, and spatial hits, respectively). 75

34 Average L2 miss rates and execution times of all the benchmark

programs under the baseline shared scheme (S), FSB-1, FSB-2, FSB-

4, and FSB-8 (all normalized to S) (RL1, RL2, and RL3 are the

Retention Limits- HPL and LPL- with α = 0.1, α = 0.2, and α = 0.3,

respectively). 77

35 L2 miss rates of the baseline shared scheme (S), S with two more

ways added (S(2W)), S with double sized cache (S(D)), and FSB-4

(all normalized to S). 78

36 Execution times of the baseline shared scheme (S), victim cache

(VC), and FSB-4 (all normalized to S). 79

37 Distribution of L2 cache lines’ reuses before evicted from L2 (Reuse

Count = the number of L2 accesses to a cache line after its initial

fill). 79

38 L2 miss rates and execution times of the baseline shared scheme (S),

variable-way set associative cache (V-WAY), dynamic set balancing

cache (DSBC), and FSB-4 (all normalized to S). 80

39 (a) The Original Shared CMP Scheme. (b) A Simple Migration

Example. 84

40 An Example of How ACM Works (S = Sharer, H = Host). 87

41 An Automatic Data Attraction Case offered by ACM. 88

42 Single-threaded and Multiprogramming Results (S = Shared, VR

= Victim Replication). 92

xv

43 Average Memory Access Cycles Per 1K Instructions Results (S =

Shared, VR = Victim Replication). 94

44 Multithreaded Results (S = Shared, VR = Victim Replication). 94

45 On-Chip Network Traffic Comparison. (a) Single-threaded Work-

loads (b) Multithreaded Workloads . 96

46 Results for CMP Systems with 16 and 32 Processors. (a) Average

L2 Access Latencies (b) L2 Miss Rate 97

47 Fixed Schemes (FS) with different sharing degrees (SD). (a) FS1

(b) FS2 (c) FS4 (d) FS8 (e) FS16 . 102

48 A possible cache clustering configuration that the DCC scheme can

select dynamically at runtime. 105

49 An example of how the DCC mapping strategy works. Each case

depicts a possible DHT of the requested cache block B with HS =

1111 upon varying the cache cluster dimension (CD) of the requester

core 5 (ID = 0101). 107

50 The dynamic cache clustering algorithm. 109

51 An example of the DCC location strategy using equation (3). (a)

Core 0 with current CD = 8 requesting and mapping a block B to

DHT 7. (b) Core 0 missed B after contracting its CD from 8 to 4

banks. 110

52 The average behavior of the DCC location strategy. 111

53 A demonstration of an L2 request satisfied by a neighboring cache

cluster. (a) Core 0 issued an L2 request to block B. (b) Core 3

satisfied the L2 request of Core 0 after re-transmitted to it by B’s

SHT (tile 15). 113

54 Results for the simulated benchmarks. (a) Average L1 Miss Time

(AMT) in cycles. (b) L2 Miss Rate. 116

55 Memory access breakdown. Moving from left to right, the 6 bars

for each benchmark are for FS16, FS8, FS4, FS2, FS1, and DCC

schemes, respectively. 118

xvi

56 On-Chip network traffic comparison. 119

57 Execution time (Normalized to FS16). 120

58 DCC sensitivity to different T, Tl, and Tg values. 121

59 Time varying graph showing the activity of the DCC algorithm. 122

60 Execution times of FS1, cooperative caching (CC), and DCC (nor-

malized to FS1). 123

61 The DPDA relocation algorithm to locate a better host for a cache

block. 128

62 Average L2 Access Latencies (AALs) of PDA, DPDA, and shared

(S) schemes (normalized to S). 130

63 L2 miss rates of PDA, DPDA, and shared (S) schemes (normalized

to S). 131

64 The percentage of migrations performed by DPDA. 132

65 Execution times of PDA, DPDA, and shared (S) schemes (normal-

ized to S). 132

66 The DPDA behavior with different migration frequency levels (MFLs).

DPDA(4), DPDA(6), and DPDA(8) stand for DPDA with MFL val-

ues of 4, 6, and 8, respectively. 133

67 L2 miss rates of shared (S), DCC, and DCCB schemes (normalized

to S). 134

68 Average L2 access latencies (AALs) of shared (S), DCC, and DCCB

schemes (normalized to S). 135

69 Execution times of shared (S), DCC, and DCCB schemes (normal-

ized to S). 136

xvii

1.0 INTRODUCTION

As the industry continues to shrink the size of transistors, chip multiprocessors (CMPs) are

increasingly becoming the trend of computing platforms. CMPs can easily spread multiple

threads of execution across various cores. Besides, CMPs scale across generations of silicon

process simply by stamping down copies of the hard-to-design cores on successive chip gen-

erations [47]. A key requirement to obtaining high performance from CMPs is to effectively

manage the limited on-chip cache resources. This dissertation addresses this requirement and

presents a general framework for approaching CMP cache management. Per each category

of the presented framework, a caching solution that satisfies performance needs required by

large-scale CMPs is proposed.

1.1 CONVENTIONAL CMP CACHING SCHEMES

Exponential increase in cache sizes, bandwidth requirements, growing wire resistivity, power

consumption, thermal cooling, and reliability considerations have necessitated a departure

from traditional cache architectures. As such, large monolithic cache designs, referred to as

uniform cache architectures (UCA) have been replaced by decomposed cache architectures,

referred to as non-uniform cache architectures (NUCA). A cache (typically the L2 cache) is

partitioned into multiple banks and distributed on a single die.

A traditional practice referred to as the shared scheme, logically shares the physically

distributed L2 banks. Consequently, the available cache capacity is resourcefully utilized due

to caching only a single copy of a shared cache block at a unique L2 bank. Nonetheless, On-

chip access latencies differ depending on the distances between requester cores and target

1

R

Core

T
a
g

L2$

L1I$ L1D$

To Memory

R

Core

L2$

R

Core

D
ir

T
a
g

L2$

L1I$ L1D$

D
ir

T
a
g

L2$

L1I$ L1D$

To Memory

R

Core

T
a
g

L2$

L1I$ L1D$

D
ir

D
ir

(a) Shared L2 Design (b) Private L2 Design

Figure 1: Two traditional cache organizations. (a) The shared L2 design backs

up all the L1 caches. (b) The private L2 design backs up only the private L1

cache on each tile. (Dir stands for directory and R for router).

banks creating a Non Uniform Cache Architecture (NUCA) [40]. Another conventional

practice referred to as the private scheme, associates each L2 bank to a single core and

provides no capacity sharing among cores. However, the private scheme is characterized by

the proximity of data to requester cores because each core maps and locates the requested

cache blocks to and from its corresponding L2 cache bank. Fig. 1 demonstrates the two

designs. For simplicity a tiled CMP architecture is shown with only two cores.

1.2 CMP CACHE MANAGEMENT CHALLENGES

Unlike conventional single-processor and multichip multiprocessor systems, CMP systems

introduce new challenges and aggravate some prior inherent caching problems. The classical

CMP organizations, the shared and the private paradigms, can’t sufficiently and satisfactorily

address all the emergent challenges. Some of the problems that are expected to be faced by

computer architects in managing CMP caches are next described.

2

1.2.1 Growing Non uniform Access latencies

Access latencies to the cache banks are functions of proximity between distributed requesting

cores and target banks. These non-uniform access latencies are expected to increase over

time as chips involving a large number of cores are forthcoming. For instance, Intel’s Tera-

scale project is exploring ways to utilize hundreds of processors/caches tiles on a single

die [31]. Thus, without careful data placement (or management), cache blocks of a small

working set might map far away from a requesting core causing, consequently, remarkable

deterioration of the average L2 access latency. Ongoing proposals, such as migration and

replication mechanisms, have been suggested to reduce non-uniform access latencies [6, 7,

13, 16, 25, 39, 73, 74].

1.2.2 The Bandwidth Wall Problem and The Processor-Memory Speed Gap

Technology trends indicate that off-chip pin bandwidth will grow at a much lower rate than

the number of processor cores on a CMP chip [11]. Emerging software inclinations also

stress the memory bandwidth requirement [11]. In the traditional multichip multiprocessor

systems (e.g., DSM or NUMA), each node encompasses a processor (or a group of processors),

a cache hierarchy, and a local memory. Consequently, adding more nodes typically results in

an increase of the aggregate bandwidth to the main memory. With CMPs, the situation is

the opposite. Each node involves only a core and a cache hierarchy without a local memory.

Hence, the amount of off-chip bandwidth that each core can utilize declines as the number

of cores on a single die is scaled. This problem is referred to as the bandwidth wall problem

where CMP system performance becomes increasingly limited by the amount of available

off-chip bandwidth [60].

Lastly, processor and memory speeds are increasing at about 60% and 10% per year,

respectively [30]. These factors combined altogether substantially increase the capacity pres-

sure on the on-chip memory hierarchy. Efficient and intelligent CMP cache management can

effectively tackle the bandwidth wall problem and bridge the increasing processor-memory

speed gap.

3

1.2.3 Interference Misses

Off-chip memory accesses are very expensive. To mitigate the high off-chip data access la-

tency, the microprocessor industry has classically incorporated techniques such as deep cache

hierarchies, large associative last level caches (LLC), and sophisticated data prefetchers. But

even with these techniques, a significant number of cache lines still miss in LLC [5]. Eval-

uations of 10 benchmarks from Spec2006 [63], PARSEC [8], and Splash-2 [70]1 showed that

more than two thirds of the cache lines are never reused before being evicted. A similar

study appeared in [51]. These cache lines are referred to as zero reuse lines and the problem

is referred to as the zero reuse lines problem.

Figure 2: Distribution of L2 cache misses (compulsory, intra-processor, and

inter-processor).

Many reasons cause the occurrence of zero reuse lines at LLC. First, memory references

exhibit locality and are not evenly distributed across cache sets. This skew reduces the

effectiveness of a cache and results in storing a considerable number of lines that are less

likely to be re-referenced before replacement [48]. Second, the access stream visible to LLC

is filtered through the higher level(s) caches on the memory hierarchy. Third, some cache

lines reveal no temporal locality. Fourth, many cache lines exhibit far-flung reuses. That

is, an evicted block might be used many times in the future, although not in the near-

1Description of the adopted CMP platform, the experimental parameters, and the benchmark programs
used in this chapter can be found in chapter 2.

4

future [14]. Fifth, with the advent of CMPs the problem is exacerbated due to interferences

among concurrently running threads/processes on an underlying shared LLC. A misbehaving

application can evict useful L2 cache content belonging to other running programs. To

establish such a key hypothesis, Fig. 2 demonstrates the distribution of the L2 cache misses

for some simulated benchmarks. Misses in a CMP with a shared cache space can be classified

into compulsory (caused by the first reference to a datum), intra-processor (a block being

replaced at an earlier time by the same processor), and inter-processor (a block being replaced

at an earlier time by different processor) misses [61]. For the simulated applications, on

average, 6.8% of misses are compulsory, 23% are intra-processor, and 70% are inter-processor.

Figure 3: Cache demands are irregular among different applications and within

the same application.

1.2.4 Diverse Workload Characteristics

Computer applications exhibit different cache demands. Furthermore, a single application

may demonstrate different phases corresponding to distinct code regions invoked during

its execution [49]. A program phase can be characterized by different L2 cache misses

and durations. Fig. 3 illustrates the L2 misses per 1 million instructions experienced by

SPECJBB and BZIP2 from the SPEC2006 benchmark suite [63]. The behaviors of the two

programs are clearly different and demonstrate characteristically different working set sizes

and irregular execution phases.

5

Static partitioning of the available cache capacity might not tolerate the variability among

different working sets and phases of a working set. For instance, a cache demanding program

phase requires large cache capacity to mitigate the effect of increased cache misses. Con-

versely, a phase with less cache demand requires lower capacity to diminish average access

latency. Static designs typically provide either fast accesses or capacity, but not both. A

crucial step towards designing an efficient memory hierarchy is to provide both fast accesses

and capacity.

1.3 A GENERAL CMP CACHING FRAMEWORK (CC-FR)

Figure 4: General CMP Caching Framework (CC-FR).

I suggest that the CMP cache management problem can be approached in three different

ways. Fig. 4 depicts my thesis CMP caching framework (CC-FR). Data placement denotes

the strategy to adopt on mapping cache blocks into the CMP cache space. Data retention

indicates the strategy to follow on dealing with replaced cache blocks. Data relocation

designates the strategy to utilize on moving (i.e., promoting and demoting) cache blocks

after placed into the cache space. A CMP scheme can manage caches by targeting one or

many of the suggested CC-FR’s categories with an objective to reduce non-uniform access

latencies, tackle the bandwidth wall problem, bridge processor-memory speed gap, alleviate

6

destructive interferences, and/or adapt to diverse workload characteristics.

1.4 THESIS OVERVIEW

The goal of this thesis is to effectively employ all CC-FR’s approaches and address the pre-

sented CMP cache management challenges. At the very beginning, Constrained Associative-

Mapping-of-Tracking-Entries (C-AMTE) is presented as a technique to enable flexible data

placement and relocation CMP caching schemes. C-AMTE enables fast lookup of cache

blocks in cache schemes that employ one-to-one or one-to-many associative mappings. C-

AMTE stores in each core tracking data structures to avoid on-chip interconnect traffic

outburst or long distance directory lookups. Simulation results show that C-AMTE achieves

an improvement in the cache access latency by up to 34.4%, close to that of a perfect loca-

tion strategy. Three of the proposed schemes in this thesis make use of C-AMTE to rapidly

locate L2 cache blocks and effectively mitigate the average L2 access latency.

Motivated by the large non-uniform distribution of memory accesses across cache sets

in different L2 banks, Pressure and Distance Aware (PDA) placement strategy is firstly

described. PDA decouples the physical locations of cache blocks from their addresses for

the sake of reducing misses caused by destructive interferences. Spatial pressure at the on-

chip last-level cache, is continuously collected at a group (comprised of local cache sets)

granularity, and periodically recorded at the memory controller(s) to guide the placement

process. An incoming block is consequently placed at an underutilized cache group that is

closest to the requesting core. To achieve fast lookup of cache blocks on subsequent accesses,

PDA makes use of the C-AMTE location strategy. Clearly, PDA lies under CC-FR’s data

placement category and addresses interference misses, the bandwidth wall problem, and the

processor-memory speed gap challenges. Simulation results show that PDA outperforms

the baseline shared NUCA scheme by an average of 8.9% and by as much as 21.1% for the

examined benchmarks. Furthermore, evaluations manifested the outperformance of PDA

versus related cache designs.

Motivated by the large asymmetry in cache sets’ usages within the same cache bank,

7

Flexible Set Balancing (FSB) is secondly proposed. FSB is a practical strategy for providing

high-performance caching. The lifetime of cache lines is extended via retaining some frac-

tion of the working set at underutilized sets to satisfy far-flung reuses. FSB promotes a very

flexible sharing among cache sets, referred to as many-from-many sharing, providing signif-

icant reduction in interference misses. FSB targets CC-FR’s data retention category and

addresses interference misses, the bandwidth wall problem, and the processor-memory speed

gap challenges. Simulation results demonstrate that FSB achieves an average miss rate re-

duction of 36.6% on multithreading and multiprogramming benchmarks from Spec2006 [63],

PARSEC [8], and Splash-2 [70] suites. This translates into an average execution time im-

provement of 13%. Furthermore, evaluations manifested the outperformance of FSB over

some recent proposals including DSBC [55] and V-WAY [53].

The third proposed scheme is the Adaptive Controlled Migration (ACM) scheme. ACM

relies on prediction to collect accessibility information regarding cores that accessed a cache

block B in the past, and then assuming that each of these cores will access B again in the

future, dynamically migrates B to a bank that minimizes the average L2 access latency.

ACM targets CC-FR’s data relocation category and addresses growing non-uniform access

latencies. C-AMTE is used by ACM to enable fast locating of migratory blocks on subsequent

accesses. Simulation results demonstrate that ACM yields an average L2 access latency that

is, on average, 20.4% better than a shared NUCA design.

Huh et al. [34] defined the concept of sharing degree (SD) as the number of processors

that share a pool of L2 cache banks. In this terminology, an SD of 1 means that each core is

assigned a single L2 bank not shared by any other core (private scheme). On the other hand,

an SD of 16 means that each of the 16 cores (assuming a 16-way CMP platform) shares with

all other cores the 16 L2 banks (shared scheme). Similarly, an SD of 2 means that 2 of the

cores share their L2 banks. These sharing schemes with different SDs are referred to as the

fixed schemes. It has been shown that no single fixed scheme provides the best performance

for all kinds of workloads. As such, and to tolerate the variability among different working

sets and phases of a working set, the Dynamic Cache Clustering (DCC) scheme is presented.

DCC constructs a cache cluster (comprised of a number of L2 cache banks) for each core and

expands/contracts all clusters dynamically to match each core’s cache demand. The basic

8

Proposed Scheme CC-FR’s Category Challenges Addressed

Interference Misses/
Pressure and Distance Aware Data Placement Processor-Memory Speed Gap/

Placement (PDA) Bandwidth Wall

Flexible Set Balancing (FSB)
Data Retention Interference Misses/

Processor-Memory Speed Gap/
Bandwidth Wall

Adaptive Controlled Migration (ACM) Data Relocation Non-Uniform Access Latencies

Dynamic Cache Clustering (DCC)
Data Placement/ Diverse Workload Characteristics/
Data Relocation Non-Uniform Access Latencies

Interference Misses/
Dynamic Pressure and Distance Data Placement/ Non-Uniform Access Latencies/

Aware Placement (DPDA) Data Relocation Processor-Memory Speed Gap/
Bandwidth Wall

Interference Misses/
Dynamic Cache Clustering Data Placement/ Diverse Workload Characteristics/

and Balancing (DCCB) Data Retention/ Non-Uniform Access Latencies/
Data Relocation Processor-Memory Speed Gap/

Bandwidth Wall

Table 1: CC-FR’s categories and challenges that each proposed scheme lies

under and addresses.

trade-offs of varying the on-chip cache clusters are average L2 access latency and L2 miss

rate. DCC uniquely and efficiently optimizes both metrics and continuously tracks a near-

optimal cache organization from the many possible configurations. DCC lies under CC-FR’s

data placement and relocation categories and addresses diverse workload characteristics and

growing non-uniform access latencies challenges. Simulation results show that DCC improves

the average L1 miss time by as much as 21.3% (10% execution time) versus previous static

(fixed) designs.

Deciding upon the placement of a cache block from the first touch, as employed by PDA,

might be sub-optimal. Virtually, multiple threads can compete for shared cache blocks.

Ideally, we want to place a cache block at an L2 bank that best optimizes the overall access

latencies from all the sharing cores. The best location for a shared block can’t be known

until runtime. As discussed earlier, ACM synergistically monitors the access patterns of

cores and periodically migrates blocks to banks that minimize the access time for the sharing

cores. As such, and to make PDA more practical, I suggest combining PDA and ACM in

9

one scheme referred to as the Dynamic Pressure and Distance Aware (DPDA) placement

scheme. DPDA lies under CC-FR’s data placement and relocation categories and addresses

interference misses, growing non-uniform access latencies, the bandwidth wall problem, and

the processor-memory speed gap.

Finally, and to implement all CC-FR’s approaches and address all the presented CMP

caching challenges, I propose combining DCC and FSB together in one scheme referred to

as the Dynamic Cache Clustering and Balancing (DCCB) scheme. DCC increases the ag-

gregate cache footprint via allowing replication of shared cache blocks at multiple clusters.

Furthermore, DCC already implements two of CC-FR’s components (i.e., data placement

and relocation) and requires only a retention strategy to fully incorporate all CC-FR’s cat-

egories. Clearly, augmenting FSB with DCC would fulfill the objective. However, with

DCCB, it has been observed that DCC’s interference misses were not significantly dimin-

ished. FSB demonstrated more effectiveness under the nominal shared NUCA organization

than under DCC. Two main conclusions were drawn: (1) implementing more components

of CC-FR might not necessarily correlate to a monotonic improvement in system perfor-

mance, and (2) the additional obtained performance improvement from a combined scheme

that implements all CC-FR’s components (e.g., DCCB) might not even justify the incurred

hardware overhead. Table 1 shows the CC-FR’s categories and the caching challenges that

each proposed scheme in this thesis targets and addresses.

1.5 CONTRIBUTIONS

The major contributions of my thesis are as follows:

• A general CMP Caching Framework (CC-FR) that defines three main management ap-

proaches: (1) data placement, (2) data retention, and (3) data relocation. I claim that

any proposed CMP caching scheme would lie under one or more of CC-FR’s categories.

• A new technique, Constrained Associative-Mapping-of-Tracking-Entries (C-AMTE), that

enables flexible data placement and relocation CMP caching schemes. This location strat-

egy can, in fact, be generally applied to cache organizations that extend the conventional

10

private and shared designs. Furthermore, it opens opportunities for architects to pro-

pose creative cache management strategies with no necessity to stick to either private or

shared traditional paradigms.

• A Pressure and Distance Aware (PDA) scheme that implements CC-FR’s data placement

component.

• A Flexible Set Balancing (FSB) scheme that implements CC-FR’s data retention com-

ponent.

• An Adaptive Controlled Migration (ACM) scheme that implements CC-FR’s data relo-

cation component.

• A Dynamic Cache Clustering (DCC) scheme that implements CC-FR’s data placement

and relocation components.

• A combined scheme referred to as Dynamic Pressure and Distance Aware Placement

(DPDA) that targets CC-FR’s data placement and relocation approaches via combining

PDA and ACM in one paradigm.

• A combined scheme referred to as Dynamic Cache Clustering and Balancing (DCCB)

that targets all CC-FR’s approaches via combining DCC and FSB in one paradigm.

• Two main observations that implementing more components of CC-FR might not nec-

essarily correlate to a monotonic improvement in system performance, and that the

additional obtained performance improvement from a combined scheme that targets all

CC-FR’s categories (e.g., DCCB) might not even justify the incurred hardware overhead

for implementing that scheme.

1.6 ROADMAP

The rest of the thesis is organized as follows. Chapter 2 presents prior work and the evalu-

ation methodology. Chapter 3 discusses the Constrained Associative-Mapping-of-Tracking-

Entries (C-AMTE) strategy. In Chapter 4 I motivate and present the Pressure and Distance

Aware Placement (PDA) scheme. The Flexible Set Balancing (FSB), the Adaptive Con-

trolled Migration (ACM), and the Dynamic Cache Clustering (DCC) schemes are described

in Chapters 5, 6, and 7, respectively. Dynamic Pressure and Distance Aware (DPDA) place-

11

ment and Dynamic Cache Clustering and Balancing (DCCB) are discussed in Chapter 8.

Finally, conclusions and future work are given in Chapter 9.

12

2.0 RELATED WORK AND EVALUATION METHODOLOGY

2.1 BASELINE PROCESSOR ARCHITECTURE

Economic, manufacturing, and physical design considerations promote tiled CMP architec-

tures (e.g., Tilera’s Tile64 and Intel’s Teraflops Research Chip) that co-locate distributed

cores with distributed cache banks in tiles communicating via a network on-chip (NoC) [29].

Besides, tiled architectures have been recently advocated as a scalable processor design ap-

proach [56]. A tile typically includes a core, private L1 caches (I/D), and an L2 cache bank.

Fig. 5 displays a typical 16-tile CMP architecture with a magnified single tile to demonstrate

the incorporated components. I assume a 16-tile CMP model with a 2D mesh NoC in my

experimental studies.

Figure 5: Tiled CMP architecture (Figure not to scale).

As described in Chapter 1, the distributed L2 cache banks can be either allocated one

bank for one core (private scheme), or one bank for all cores (shared scheme). The private

scheme replicates shared cache blocks at the L1 and L2 caches. As such, an engine is required

13

to maintain coherence at both levels (typically by using a distributed directory protocol. See

Fig. 5 (a). Dir stands for directory). In contrast, the shared scheme requires an engine

to maintain coherence at only the L1 level because no replication of shared cache blocks is

allowed at the L2 cache. A core maps and locates a cache block, B, to and from a target

L2 bank at a tile referred to as the static home tile (SHT) of B. The SHT of B stores B

itself and its coherence state. The SHT of B is determined by a subset of bits (denoted as

home select bits or HS bits) from B’s physical address (e.g., block interleaved). This thesis

assumes a shared NUCA design and employs a distributed directory protocol for coherence

maintenance.

2.2 RELATED WORK

Much work has been done to effectively manage single-core as well as multi-core caches.

Many proposals advocate CMP cache management at either fine (block) or coarse (page)

granularities and base their work on either the nominal shared or private schemes. Further-

more, each proposal addresses reducing NUCA latencies, zero reuse lines and interference

misses, bandwidth wall problem, and/or diverse workload characteristics. Each proposal lies

under one or more of CC-FR’s categories. I discuss below some of the prior related work

that are most relevant to my proposed schemes and categorize them into single-core (mainly

those that target interference misses challenge), CMP page-granular, or CMP block-granular

caching schemes. Table 2 shows taxonomy of all the CMP discussed schemes in the context

of my CC-FR framework.

2.2.1 Single-Core Caching Schemes

Reducing interference misses in uniprocessor caches has been for decades a hot topic of

research [19, 37, 45, 65, 67, 72]. In summary, two main directions have been proven to

reduce conflict misses effectively: (1) higher set associativity and (2) victim caching [37, 45].

A recent study, namely Dynamic Set Balancing Cache (DSBC) [55], suggests reducing

14

Scheme Baseline Granularity
CC-FR’s Addressed
Category Challenges

Adaptive Set Pinning (ASP) [61] Shared Block
Retention/ IM/
Placement BW and PMSG

Cooperative Caching (CC) [12] Private Block Retention
IM/

BW and PMSG

Dynamic Spill-Receive (DSR) [50] Private Block Retention
IM/

BW and PMSG
Hardware and Software

Shared Page Placement
IM/

Page Placement [58] BW and PMSG

OS-Based Page Allocation [17] Shared Page Placement
IM/

BW and PMSG

Victim Replication (VR) [74] Shared Block Retention NUCA Latencies

CMP-NuRAPID [16] Private Block
Retention/ NUCA Latencies/
Placement/ IM/
Relocation BW and PMSG

Adaptive Selective

Private Block Retention

NUCA Latencies/
Replication (ASR) [6] IM/

BW and PMSG/
DWC

Dynamic NUCA (DNUCA) [7] Shared Block Relocation NUCA Latencies

Nahalal [22] Shared Block
Placement/

NUCA Latencies
Relocation

Migration-Based NUCA [39] Shared Block Relocation NUCA Latencies

Victim Migration (VM) [73] Shared Block
Retention

NUCA Latencies
Relocation

NUCA CMP Substrate [34] Shared Block
Placement

NUCA Latencies
Relocation

PageNUCA [13] Shared Page Relocation NUCA Latencies

Dynamic Page Placement [3] Shared Page
Placement/ NUCA Latencies/
Relocation DWC

R-NUCA [29] Shared Page
Placement/

NUCA Latencies
Relocation

Virtual Hierarchies (VHs) [44] Shared Page Placement
NUCA Latencies/

DWC

Table 2: Taxonomy of some CMP related work (IM = Interference Misses,

PMSG = Processor-Memory Speed Gap, DWG = Diverse Workload Character-

istics).

15

interference misses via mitigating the large asymmetry in cache sets’ usages. DSBC associates

every two cache sets within a single cache structure, making the capacity of an underutilized

set available for a pressured one. Once a set reaches a saturation level (set’s miss rate hits a

maximum value of 2K − 1 where K is the associativity of the cache) it requests a free (not

associated yet) underutilized set. If such a set is detected, both sets, the highly pressured

one (or referred to as source) and the underutilized one (or referred to as destination), are

associated. As long as the two sets are associated, the source is allowed to retain its lines at

the destination but not the reverse (i.e., unidirectional retention).

Variable-Way Set Associative Cache (V-WAY) [53] addresses the problem of workload

imbalance among sets via varying the associativity of a cache by increasing the number of

tag-store entries relative to the number of data lines. The tag and data stores are decoupled.

As such, and to associate tags and data lines, forward and reverse pointers are used. The

extra tag-store entries are added as additional sets rather than as additional ways in order

to keep the number of tag comparisons required on each access unchanged. Besides, the

data-store is structured as one large piece and a global frequency based replacement policy,

referred to as Reuse Replacement is employed in order to achieve better replacements. In

reverse, the tag-store keeps a conventional set granular (local) replacement strategy (e.g.

LRU). The global replacement policy is triggered only if an invalid tag entry is found upon

a miss. Otherwise, V-WAY bypasses the global policy, identifies a tag victim using an LRU

local policy, and uses the tag’s associated forward pointer to index the corresponding data

line for replacement.

Many proposals suggest alternative indexing functions to achieve a more uniform distri-

bution of memory accesses. Predictive Sequential Associative-Cache [9], Column Associative

Cache [2], and Hash-Rehash [1] are proposed in the context of direct-mapped caches. They

provide the capability of mapping a cache line at an alternative pre-determined (using dif-

ferent hash functions) cache frame in order to provide performance similar to that of 2-way

caches (schemes referred to as skewed caches). In [57], an in-depth analysis of the patho-

logical behaviors of cache hash functions is presented. Based on that analysis, the authors

propose prime modulo and prime displacement hash functions resistant to pathological be-

haviors. Rolán et al. [55] started, in fact, with a skewed set associative cache, referred to as

16

static set balancing cache (SSBC), and found it impractical. Consequently, they proposed

DSBC as a superior scheme.

Utility Based Cache Partitioning (UCP) [52] partitions at a way-granularity the last

level shared cache among concurrently running applications depending on how much each

application is likely to benefit from the cache (i.e., utility) rather than the application’s

demand for the cache. UCP suggests cost-effective monitoring circuits (UMON) to collect

information about applications’ utilities of cache resources. The collected information is then

utilized by a partitioning algorithm to effectively decide the amount of cache allocated to

each application.

Dynamic Insertion Policy (DIP) [51] makes a key observation that a large number of

cache lines become dead on arrival. Thus, a Bimodal Insertion Policy (BIP) is proposed to

insert incoming lines frequently in the LRU positions and infrequently (with a low proba-

bility) in the MRU positions. Lines inserted at the LRU positions are only promoted to the

MRU positions upon hits while residing in the LRU positions. For LRU-friendly workloads

(i.e., favoring MRU insertions), however, the changes to the insertion policy might become

detrimental to cache performance. As such, a Set Dueling mechanism is proposed to select

among BIP and LRU depending on which policy incurs fewer misses. Set Dueling dedicates

a few sets of the cache to each of the two competing policies and uses the winner policy on

the dedicated sets for the remaining follower sets.

Pseudo-Last-In-First-Out (Pseudo-LIFO) [14] proposes a family of replacement policies

that manages each cache set as a fill stack. The replacement activities are restrained within

a set to the upper part of the fill stack as much as possible. The lower part of the fill stack

is left undistributed to extend the lifetime of the resident blocks. Among three members

of the Pseudo-LIFO family, namely dead block prediction LIFO (dbpLIFO), probabilistic

escape LIFO (peLIFO), and probabilistic counter LIFO (pcounter-LIFO), peLIFO is central.

peLIFO synergistically learns the probabilities of experiencing hits beyond each of the fill

stack positions and a set of highly preferred eviction positions is then deduced (based on

this probability function) in the upper part of the fill stack.

Finally, Scavenger [5] partitions the total storage budget at the last level cache (LLC)

into a conventional cache and a novel victim file (VF). Block addresses missing at the LLC

17

are prioritized based on the number of times they have been observed in the LLC miss

stream. This is accomplished by incorporating a skewed bloom filter and a pipelined heap

with the VF architecture. If a block is evicted from the conventional part of the cache and

indicates a high priority (i.e., frequently missed in the recent past), it gets stored in the VF.

2.2.2 CMP Page-Granular Caching Schemes

Many researchers examined reducing interference misses at coarser (page) granularity [58,

36, 17, 3]. Sherwood et al. [58] proposed reducing misses using hardware and software page

placement. Their software page placement algorithm performs a coloring of virtual pages

using profiles at compile time. The generated colored pages can be used by the OS to guide

the allocation of physical pages. Their hardware approach works by adding a page remap

field to the TLB. This field is used as part of the index to the L2 cache (instead of the physical

page number) thus allowing a page to be remapped to a different color in the cache while

keeping the same physical page in memory. Cho and Jin [17] proposed an OS-based page

allocation algorithm that maps cache blocks to the L2 cache space using a simple interleaving

on page frame numbers.

To reduce non-uniform access latencies, Chaudhuri [13] proposed data migration at a page

granularity. Access patterns of cores are dynamically monitored and pages are migrated to

banks that minimize the access time for the sharing cores. Awasthi et al. [3] proposed re-

coloring pages at runtime (via elegant use of shadow addresses to rename pages) then moving

them to the center of gravity from various requester cores. Hardvellas et al. [29] proposed

reactive NUCA (R-NUCA) that relies on OS to classify cache accesses onto either private,

shared, or instructions. R-NUCA then places private pages into the local L2 cache banks

of the requesting cores, shared ones into fixed address-interleaved on-chip locations, and

instructions into non-overlapping clusters of L2 cache banks. Marty and Hill [44] proposed

imposing a two-level virtual coherence hierarchy on a physically flat CMP that harmonizes

with virtual machines (VMs) assignments.

18

2.2.3 CMP Block-Granular Caching Schemes

Dynamic Insertion Policy (DIP) [51] discussed above, uses a single policy (LRU or BIP) for

all the concurrently running applications. A subsequent proposal, namely Thread-Aware

Dynamic Insertion Policy (TADIP) [35], extends DIP to use a single policy for each ap-

plication in the context of chip multiprocessors. Promotion/Insertion Pseudo-Partitioning

(PIPP) [71] combines dynamic insertion and probabilistic promotion policies to provide the

benefits of cache partitioning, adaptive insertion, and capacity stealing all with a single

mechanism. Adaptive Set Pinning (ASP) [61] associates processors to cache sets and solely

grant them permissions to evict blocks from their sets on cache misses. Therefore, references

that may potentially cause inter-processor misses are no more allowed to interfere with each

other even if they index the same set. Blocks that could lead to inter-processor misses are

redirected to small processor owned private (POP) caches.

Based on nominal private caching, Chang and Sohi [12] proposed cooperative caching

(CC) that creates a globally managed shared aggregate on-chip cache. CC employs spilling

(instead of evicting) singlet blocks (blocks that have no replicas at the L2 cache space) to

random L2 banks seeking to reduce intra-processor misses. Qureshi [50] proposed dynamic

spill-receive (DSR) that improves upon CC by allowing private caches to either spill or receive

cache blocks, but not both at the same time.

While all of the above CMP schemes attempt to reduce interference misses, many others

explored reducing non-uniform access latencies. Zhang and Asanović [74] proposed victim

replication (VR) that mitigates the average on-chip access latency via keeping replicas of

local primary cache victims within the local L2 cache banks. Chisti et al. [16] proposed

CMP-NuRAPID that controls replication based on usage patterns. Beckmann et al. [6] pro-

posed adaptive selective replication (ASR) that dynamically monitors workloads behaviors

to control replication on the private cache organization.

Beckmann and Wood [7] studied generational promotion and suggested Dynamic NUCA

(DNUCA) that migrates blocks towards banks close to requesting processors. Guz et al. [22]

presented a new CMP architecture that utilizes migration to divert only shared data to cache

banks at the center of the chip close to all cores. Kandemir et al. [39] proposed a mechanism

19

Component Parameter

Number of Tiles 16

Network On-Chip 2D Mesh

Cache Line Size 64 B

L1 I/D-Cache Size/Associativity 32KB/2way

L1 Hit Latency 1 cycle

L1 Replacement Policy LRU

L2 Cache Size/Associativity 512KB per L2 bank or 8MB aggregate/16way

L2 Bank Access Penalty 12 cycles

L2 Replacement Policy LRU

Latency Per NoC Hop 3 cycles

Memory Latency 320 cycles

Table 3: System parameters.

20

Name Input

SPECJbb Java HotSpot (TM) server VM v 1.5, 4 warehouses

Bodytrack 4 frames and 1K particles (16 threads)

Fluidanimate 5 frames and 300K particles (16 threads)

Swaptions 64 swaptions and 20K simulations (16 threads)

Barnes 64K particles (16 threads)

Lu 2048×2048 matrix (16 threads)

MIX1 Hmmer (reference) (16 copies)

MIX2 Sphinx (reference) (16 copies)

MIX3
Barnes, Ocean(1026×1026 grid), Radix (3M Int), Lu, Milc (ref),

Mcf (ref), Bzip2 (ref), and Hmmer (2 threads/copies each)

MIX4 Barnes, FFT (4M complex numbers), Lu, and Radix (4 threads each)

Table 4: Benchmark programs.

that determines suitable locations for data blocks at runtime, and then promotes these

blocks to these calculated locations. Zhang and Asanović [73] examined direct migration

and promoted cache blocks straightforwardly from their home tiles to the tiles of the initial

requesters (i.e., a first touch migration policy). Huh et al. [34] proposed a spectrum of

degrees of sharing to manage NUCA caches and suggested generational migration to reduce

their negative latency effects.

2.3 EVALUATION METHODOLOGY

Throughout this thesis I use the following evaluation methodology unless otherwise specified.

All results are presented based on detailed full-system simulation using Virtutech’s Simics

3.0.29 [68]. I use my own CMP cache modules fully developed in-house. I implement the XY-

21

routing algorithm and accurately model congestion for both coherence and data messages. A

tiled CMP architecture comprised of 16 UltraSPARC-III Cu processors is simulated running

with Solaris 10 OS. Each processor uses an in-order core model with an issue width of 2 and

a clock frequency of 1.4 GHz. The tiles are organized as a 4×4 grid connected by a 2D mesh

NoC. A 3-cycle latency (in addition to the NoC congestion delay) per hop is incurred when

a datum traverses through the mesh network [74, 73]. Each tile encompasses a switch, 32KB

I/D L1 caches, and a 512KB L2 cache bank. A distributed MESI-based directory protocol

is employed. Table 3 shows my configuration’s experimental parameters.

To study the proposed and related schemes, a mixture of multithreaded and multipro-

gramming workloads is utilized. For multithreaded workloads I use the commercial bench-

mark SpecJBB [63], five shared memory programs (Ocean, Barnes, Lu, Radix, and FFT)

from the SPLASH-2 suite [70], and three applications (Bodytrack, Fluidanimate, and Swap-

tions) from the PARSEC suite [8]. Besides, six applications (Parser, Art, Equake, Mcf,

Ammp, and Vortex) from SPEC2K [63] and five programs (Hmmer, Sphinx, Milc, Mcf, and

Bzip2) from SPEC2006 [63] are used. I compose multiprogramming workloads using different

programs from SPLASH-2, SPEC2K, and SPEC2006 benchmarks. Table 4 shows the data

sets and other important features of all the examined benchmark programs. The workloads

are fast forwarded to get past of their initialization phases. After various warm-up periods,

each SPLASH-2 and PARSEC benchmark is run until the completion of its main loop, and

each of SpecJBB, MIX1, MIX2, MIX3, and MIX4 is run for 8 billion user instructions.

22

3.0 CONSTRAINED ASSOCIATIVE-MAPPING OF TRACKING ENTRIES

In this chapter I describe Constrained Associative-Mapping-of-Tracking-Entries (C-AMTE),

a scalable mechanism to facilitate flexible and efficient distributed cache management in

large-scale chip multiprocessors (CMPs). C-AMTE enables data placement and relocation

in CMP caching schemes. In Section 3.1 I define the location problem in CMP cache man-

agement and outline my proposed solution. Section 3.2 describes C-AMTE mechanism. An

evaluation of C-AMTE applied to a classical CMP caching scheme is presented in Section 3.3

and conclusions are given in Section 3.4.

3.1 PROBLEM DEFINITION AND PROPOSED SOLUTION

3.1.1 Problem Definition

The nominal private scheme replicates cache blocks at the L2 banks of the requesting cores.

Hence, an effective cache associativity which equates the aggregate associativity of the L2

cache banks is provided [12]. For instance, 16 private L2 banks with 8-way associativity

effectively offer 128-way set associativity. A cache block can map to any of the 128-way

entries, and if shared amongst cores, can reside in multiple L2 banks. A high bandwidth

on-chip directory protocol can be employed to keep the multiple L2 banks coherent. The

directory can be held as a duplicate set of L2 tags distributed by set index across tiles [4, 74].

I generally refer to a mapping process that exploits the aggregate associativity of the L2 cache

banks as an associative mapping strategy. In particular, I designate the mapping strategy

of the private scheme as one-to-many associative mapping because a single block can be

23

mapped to multiple L2 banks.

In contrast to the private design, the nominal shared scheme maintains the exclusiveness

of cache blocks at the L2 level. A core maps and locates a cache block, B, to and from a

target L2 bank at a tile referred to as the static home tile (SHT) of B. The SHT of B is

determined by a subset of bits denoted as home select bits (or HS bits) from B’s physical

address. As such, the shared strategy requires maintaining coherence only at the L1 level.

The SHT of B can store B itself and a bit vector indicating which cores had cached copies

of B in their L1 private caches. This on-chip coherence practice is referred to as an in-cache

coherence protocol [10, 74]. In this thesis I refer to an entry that tracks copies (either at

L1 or L2) of a certain cache block as a tracking entry. I, furthermore, identify a mapping

process that maps an entry (block or tracking) to a fixed tile as a fixed mapping strategy

(e.g., the shared design employs fixed mapping).

Recent research work on CMP cache management has recognized the importance of the

shared scheme [61, 22, 34, 64, 39]. Besides, many of today’s multi-core processors, the Intel

CoreTM2 Duo processor family [54], Sun Niagara [41], and IBM Power5 [59], have featured

shared caches. A shared design, however, suffers from a growing on-chip delay problem.

Access latencies to L2 banks are non-uniform and proportional to the distances between

requester cores and target banks. This drawback is referred to as the NUCA problem.

To mitigate the NUCA problem, many proposals have extended the nominal basic shared

design to allow associative mapping (i.e., leveraging the aggregate associativity of the L2

cache banks). For instance, block migration [7, 22, 34, 39, 73] exploits associative mapping

by moving frequently accessed blocks closer to requesting cores. I denote such a strategy as

one-to-one associative mapping due to the fact that the exclusiveness of cache blocks at the

L2 level is still preserved (only a single copy of a block is promoted along identical sets over

different banks). In contrast to migration, replication duplicates cache blocks at different L2

banks [16, 12, 74]. Accordingly, a replication scheme is said to adopt one-to-many associative

mapping.

A major shortcoming of using associative mapping for blocks in any CMP cache man-

agement scheme is the location process. For example, a migration scheme that promotes a

cache block B to a tile different than its home tile, denoted as the current host of B, can’t use

24

anymore the HS bits of B’s physical address to locate B. Consequently, different strategies

for the location process need to be considered. A tracking entry can always be retained at a

centralized directory or at B’s home tile (if the underlying directory protocol is distributed)

to enable tracking B after promotion. Hence, if a core requests B, the repository of the

tracking entries is reached first then the query is forwarded to B’s host tile to satisfy the

request. The disadvantage of this option is the arousal of 3-way cache-to-cache communi-

cation which can degrade the average L2 access latency. An alternative location strategy

could be to broadcast queries to all the tiles assuming no tracking entry for B is kept at a

specific repository. Such a strategy can, however, burden the NoC and potentially degrade

the overall system performance.

3.1.2 Proposed Solution

I propose Constrained Associative-Mapping-of-Tracking-Entries (C-AMTE), a mechanism

that flexibly accelerates cache management in CMPs. In particular, C-AMTE presents

constrained associative mapping that combines the effectiveness of both, the associative and

fixed mapping strategies and applies that to tracking entries to resolve the challenge of

locating cache blocks without broadcasting and with minimal 3-way communications.

To summarize, the contributions of C-AMTE are as follows:

• It enables fast location of cache blocks without swamping the NoC.

• It can be applied whenever associative mapping is used for cache blocks, either in case

of one-to-one (i.e, migration) or one-to-many (i.e, replication).

• It can be generally applied to cache organizations that extend the conventional private

or shared schemes. Furthermore, it opens opportunities for architects to propose more

creative cache management designs with no necessity to stick to either private or shared

traditional paradigms.

25

3.2 THE CONSTRAINED

ASSOCIATIVE-MAPPING-OF-TRACKING-ENTRIES (C-AMTE)

MECHANISM

Constrained Associative-Mapping-of-Tracking-Entries (C-AMTE) is not an autonomous CMP

cache organization that can run by itself but rather a mechanism that can be applied to CMP

cache designs that employ one-to-one (i.e., migration) or one-to-many (i.e., replication) as-

sociative mappings. A shared NUCA architecture maps and locates a cache block, B, to

and from a home tile determined by a subset of bits (home select or HS bits) from B’s

physical address. Accordingly, B might be mapped to a bank far away from the requester

core, causing the core significant latency to locate B. Such a problem is referred to as the

NUCA problem. Migration and replication have been suggested as techniques to alleviate

the NUCA problem. To save latency on subsequent requests to B, migration and replication

relocate and replicate, respectively B at a tile different than its home tile, denoted as the

host tile of B, closer to requesting cores. Consequently, B can have, in addition to the home

tile, one or more host tiles. To locate B at a host tile, the HS bits of B’s physical address

can’t be used anymore. C-AMTE offers a robust and versatile location strategy to locate B

at host tiles.

Assuming a distributed directory protocol, C-AMTE supports storing one tracking entry

corresponding to a block B at the home tile of B. I refer to this tracking entry as the

principal tracking entry. The principal tracking entry points to B and can always be checked

by any requester core to locate B at its current host. The principal tracking entry is stored

using a fixed mapping strategy because the home tile of B is designated by the HS bits of

B’s physical address. C-AMTE also supports storing another type of tracking entries for

B at requester tiles. I refer to this type of tracking entries as replicated tracking entries.

A replicated tracking entry at a requester tile also points to the current host of B but

can be rapidly checked by a requester core to directly locate B (instead of checking with

B’s home tile to achieve that). The idea of replicating tracking entries at requester tiles

capitalizes on the one-to-many associative mapping strategy traditionally applied for cache

blocks. C-AMTE combines associative and fixed mapping strategies and applies that to

26

Block Mapping Tracking Entries Mapping

Private Scheme (P) Associative (at requesting tiles) Fixed (at home tiles)

Shared Scheme (S) Fixed (at home tiles) Fixed (at home tiles)

Scheme With C-AMTE
Associative (one-to-one or one-to-many Constrained=Fixed (at home tiles)

depending on the underlying cache scheme) + Associative (at requesting tiles)

Table 5: Mapping strategies of private and shared CMP caches and the hybrid

mapping approach of C-AMTE.

tracking entries in order to efficiently solve the location problem. Table 5 illustrates the

hybrid approach adopted by the C-AMTE mechanism. I refer to such a hybrid mapping

process as a constrained associative mapping strategy.

Based on the above discussion, per each tile, T, a principal tracking entry is kept for each

cache block B whose home tile is T but had been mapped/promoted to another tile. Besides,

replicated tracking entries are retained at T to track the locations of other corresponding

cache blocks that have been recently accessed by T but whose home tile is not T. Though

both, principal and tracking entries essentially act as pointers to the current hosts of cache

blocks, I differentiate between them for consistency and replacement purposes (more on this

shortly). I can add two distinct data structures per each tile to store the two types of

the tracking entries. A data structure, referred to as the principal tracking entries (PTR)

table, can hold principal tracking entries, and a data structure, referred to as the replicated

tracking entries (RTR) table, can hold replicated ones. Alternatively, a single table, could be

referred to as the tracking entries (TR) table, can be added to hold both classes of tracking

entries pertaining that a hardware extension (i.e. an indicative bit) is engaged to distinguish

between the two entries.

Assume a CMP organization with PTR and RTR tables. Whenever a core issues a

request to a block B, its RTR table is checked first for a matching replicated tracking entry.

C-AMTE then proceeds as follows:

27

• On a miss at the RTR table, the home tile of B is reached and its PTR table is looked

up.

– If a miss occurs at the PTR table, B is fetched from the main memory and mapped to

a tile T specified by the underlying cache scheme. If T is not B’s home tile, principal

and replicated tracking entries are stored at the PTR table of B’s home tile and the

RTR table of the requester core, respectively. If, in contrary, T is B’s home tile, no

tracking entries are kept at either PTR or RTR tables (B can be located directly

using the HS bits of B’s physical address).

– If, on the other hand, a hit occurs at the PTR table, B is located at its current host

tile and a replicated tracking entry is stored at the requester’s RTR table.

• On a hit at the RTR table, B is located directly at its current host designated by the

matched replicated tracking entry.

Therefore, upon a hit to the requester’s RTR table, a 3-way cache-to-cache communication,

which would have been incurred if I had to approach B’s home tile to locate B, is avoided.

Similar logic applies if C-AMTE assumes a single TR table instead of two distinct PTR and

RTR ones.

Figure 6: A first example on locating a migratory block B using the C-AMTE

mechanism.

28

Fig. 6 demonstrates an example of the C-AMTE mechanism on a tiled CMP platform,

assuming an underlying shared scheme and a migration policy that promotes cache blocks

towards requesting cores. Fig. 6(a) shows a request made by core 3 to a cache block, B.

Core 3 looks up it local RTR table. I assume a miss occurs and the request is subsequently

forwarded to B’s home tile, T12. The PTR table and the regular L2 bank at T12 are looked

up concurrently. I assume misses occur at both. Consequently, B is fetched from the main

memory and mapped to B’s home tile, T12 (following the mapping strategy of the nominal

shared scheme). As such, no tracking entries are retained at either PTR or RTR tables.

Fig. 6(b) shows a subsequent request made by core 3 to B. B is located at its home tile, T12.

Assume after that hit, B is migrated to T11 (closer to T3). Thus, corresponding principal

and replicated tracking entries are stored at T12 and T3, respectively. If at any later time

core 3 requests B again, a hit will occur at its RTR table (as long as the entry has not been

replaced yet) and B can be located straightforwardly at T11 avoiding thereby 3-way cache-

to-cache transfers. Lastly, note that if any other core requests B, T12 can always indirectly

satisfy the request and a corresponding tracking entry can be stored at the new requester’s

RTR table.

Figure 7: A second example on locating a block B using the C-AMTE mecha-

nism.

29

Fig. 7 demonstrates C-AMTE in operation assuming a cache scheme that might map

cache blocks to tiles different than their home tiles. Fig. 7(a) shows a request made by core

3 to a cache block B. Core 3 looks up it local RTR table. I assume a miss occurs and the

request is subsequently forwarded to B’s home tile, T12. The PTR table and the regular L2

bank at T12 are looked up concurrently and misses are then incurred. Consequently, B is

fetched from the main memory and mapped to T15 (determined by the mapping strategy of

the cache scheme). As such, principal and replicated tracking entries are kept at T12 and

T3, respectively. Fig. 7(b) shows a request made again by core 3 to B. A hit occurs at T3’s

RTR table. Consequently, B is directly located at T15. Clearly, the two examples shown in

Figures 6 and 7 reveal the efficiency and versatility of C-AMTE as a strategy that exploits

distance locality. C-AMTE, in fact, opens opportunities for architects to propose creative

migration, replication, and placement CMP strategies with the required location process

being on-hand.

The principal and replicated tracking entries need to be kept coherent. I accomplish this

by embedding a bit vector with each principal tracking entry at the PTR tables to indicate

which cores had cached related replicated tracking entries at their RTR tables (similar to the

in-cache coherence protocol in [10]). For instance, given the example depicted in Fig. 6, each

time B is migrated to a different tile, the principal and the replicated tracking entries that

correspond to B are updated to point to the new host of B. Besides, C-AMTE can easily

preclude potential false misses that can occur when L2 requests fail to hit on cache blocks

because they are in transit between L2 banks. When migration is to be performed, a copy,

B’, of the cache block B is kept at the current bank so as if an L2 request arrives while B is in

transit, the request is immediately satisfied without incurring any delay. When B reaches the

new host, an acknowledgement message is sent back to the old host to discard B’. The old host

keeps track of any tile that accesses B’, and when receiving the acknowledgment message,

sends an update message to the new host to indicate the new sharers that requested B while

it was in transit. The directory state entry of B is consecutively updated. Clearly, enforcing

coherence among tracking entries and precluding false misses impose traffic overhead on the

network on-chip. Section 3.3.1 demonstrates the increase in message hops per 1K instructions

incurred by the C-AMTE mechanism.

30

To that end, each principal tracking entry would include: (1) The tag of the related

block (typically 22 bits), (2) a bit vector that acts as a directory to keep the principal and

the replicated tracking entries coherent (16 bits for a 16-tile CMP model), and (3) an ID

that points to the tile that is currently hosting the block (4 bits for a 16-tile CMP model).

On the other hand, a replicated tracking entry would include only the tag of the related

block and the ID of the current host tile. In contrast, in case of a single TR table, both,

the principal and the replicated tracking entries would each encompass a tag, a bit vector,

an ID, and an indicative bit to distinguish between the two types of entries (required for

replacement purposes). Clearly, the bit vector added to each replicated entry becomes in

this case redundant. Thus, splitting TR table into RTR and PTR might be preferable for

reducing storage overhead.

Finally, PTR and RTR tables can employ the LRU replacement policy. However, in

case of a single TR table, it is wise to never evict a principal tracking entry in favor of a

replicated one (this is the reason of why I suggested distinguishing between the two entries).

An eviction of a principal tracking entry causes evictions to the corresponding cache block

and all the related replicated tracking entries. Therefore, the TR replacement policy should

replace the following three classes of entries in an ascending order: (1) an invalid entry, (2)

the LRU replicated tracking entry, (3) and the LRU principal tracking entry. Besides, upon

storing a replicated tracking entry, only the first two classes are considered for replacement.

If no entry belonging to one of these two classes is detected, a replicated tracking entry is

not retained.

3.3 QUANTITATIVE EVALUATION

I study C-AMTE with an implementation of the DNUCA scheme [34, 7]. I employ DNUCA

on my tiled CMP architecture (see Section 2.1) via allowing migration in vertical and hor-

izontal directions seeking to reduce hit latencies. Each cache block is augmented by four

2-bit saturation counters in correspondence to the four plausible ways: north, south, west,

and east. Once a counter saturates, its value is cleared and the block is migrated towards

31

Name Input

SPECJbb Java HotSpot (TM) server VM v 1.5, 4 warehouses

Ocean 514×514 grid (16 threads)

Barnes 32K particles (16 threads)

Lu 2048×2048 matrix (16 threads)

Radix 3M integers (16 threads)

Bodytrack 4 frames and 1K particles (16 threads)

Fluidanimate 5 frames and 300K particles (16 threads)

Swaptions 64 swaptions and 20K simulations (16 threads)

MIX1 Hmmer (reference) (16 copies)

MIX2 Sphinx (reference) (16 copies)

MIX3
Barnes, Ocean, Radix, Lu, Milc (ref), Mcf (ref),

Bzip2 (ref), and Hmmer (2 threads/copies each)

MIX4 Barnes, FFT (4M complex numbers), Lu, and Radix (4 threads each)

Table 6: Benchmark programs.

32

the indicated direction (i.e., promoted up, down, left, or right one tile upon the saturation

of the north, south, west, or east counter, respectively). To locate cache blocks after mi-

gration, C-AMTE is utilized. I refer to this DNUCA implementation with C-AMTE being

incorporated as DNUCA(C-AMTE).

To demonstrate the potential performance gain from C-AMTE I compare DNUCA(C-

AMTE) against the baseline shared (S) scheme and three other DNUCA implementations

that are only different in their location processes. First, I consider DNUCA with a broadcast

location strategy. That is, queries to all tiles are sent upon every L2 request to locate the

required block. I denote this implementation as DNUCA(B). Second, a 3-way cache-to-cache

transfer strategy is employed similar to the one in [73]. This implementation is designated

as DNUCA(3W). Lastly, I consider DNUCA with an ideal location strategy to set an upper

bound for C-AMTE and see how close it draws to a perfect approach. The ideal strategy

assumes that cores have oracle knowledge about the on-chip residences of blocks. Hence,

every L2 request is routed directly to the correct L2 bank. I refer to such an implementation

as DNUCA(Ideal).

The evaluation methodology I use in this chapter is the one described in Section 2.3. In

addition, a tracking table (TR) with 16K entries is incorporated to each tile. The latency to

lookup a TR table is hidden under the delay to enqueue the request in the port scheduler of

the local switch [13]. Lastly, Table 6 illustrates the simulated programs as they are a little

different than the ones shown in Table 4. After various warm-up periods, each SPLASH-2

and PARSEC benchmark is run until the completion of its main loop, and each of SpecJBB,

MIX1, MIX2, MIX3, and MIX4 is run for 20 billion user instructions.

3.3.1 Results

Fig. 8 demonstrates the average L2 access latency (AAL) of S, DNUCA(B), DNUCA(3W),

DNUCA(C-AMTE), and DNUCA(Ideal) schemes normalized to S. The incurred latency per

L2 access is defined depending on three scenarios. First, it can involve only the L2 access

time. This happens when a hit occurs to a local L2 bank from a requesting core. Second,

it can incorporate distance latency (computed in terms of the number of hops traversed

33

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(#%"

)*+,-.." /,+01" .021+)" 20345" 67")89:;<=>" .<?@AB9CD" EFGH?9=HI9AJ" K45(" K45$" K45L" K45%" 0MN#"

0
M
J
B9
N
J
"6
$
"0
C
C
J
>
>
"6
9
AJ
=
C
@
"

.J=COI9BD>"

)" 317,0P.Q" 317,0PLRQ" 317,0P,S0KT+Q" 317,0P43+06Q"

Figure 8: Average L2 access latency of the baseline shared scheme (S),

DNUCA(B), DNUCA(3W), DNUCA(C-AMTE), and DNUCA(Ideal) normal-

ized to S (B= Broadcast, 3W = 3 Way).

S DNUCA(B) DNUCA(3W) DNUCA(C-AMTE) DNUCA(Ideal)

SPECjbb 5.3 87.5 5.7 4.8 2.4
Ocean 2.5 35.8 3 3.1 2.4
Barnes 3.6 55.1 4.4 4 2.9
Radix 6.9 136.4 9.8 13.5 9.4

Lu 70 905.4 78.3 76 70.5
Swaptions 4.8 64.3 6.6 7.2 3.2
Bodytrack 5.2 95 8.5 11.3 4.9

Fluidanimate 11.3 174.9 11.88 11.82 10.3
MIX1 35.5 573.8 37.3 37.6 27.4
MIX2 22.1 370.2 32.6 47 19
MIX3 11.6 168 16.4 14.9 10.3
MIX4 50.8 691.7 54.8 80 26

Table 7: Message-Hops per 1K insructions

34

between the requester and the target tiles and the observed NoC congestion delay) and the

L2 access time. This occurs upon a hit to a remote L2 bank. Third, it can involve mem-

ory latency because of a miss on L2. DUNCA(C-AMTE) achieves AAL improvement over

S by an average of 18.4%, and by as much as 34.4% for Radix. This makes DNUCA(C-

AMTE) significantly close to DNUCA(Ideal) which accomplishes, in contrast, an average

AAL improvement of 23%. DNUCA(C-AMTE) doesn’t come closer to DNUCA(Ideal) be-

cause of two main reasons: (1) misses to TR tables by requester cores and (2) overhead

to keep the principal and the replicated tracking entries coherent after blocks’ migrations.

Consequently, DNUCA(C-AMTE) generates a higher NoC traffic which causes more NoC

delay and, subsequently, inferior AAL. Table 7 shows the number of message-hops per 1K

instructions experienced by all the studied schemes for the examined benchmark programs.

A message-hop is defined as one message travelling one hop on a router in the 2D mesh NoC.

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)*+,-.." /,+01" .021+)" 20345" 67")89:;<=>" .<?@AB9CD" EFGH?9=HI9AJ" K45(" K45$" K45L" K45%" 0MN#"

+
O
J
C
G
;
<
=
"P
HI

J
"

.J=CQI9BD>"

)" 317,0R.S" 317,0RLTS" 317,0R,U0KP+S" 317,0R4?J9FS"

Figure 9: Execution times of the baseline shared scheme (S), DNUCA(B),

DNUCA(3W), DNUCA(C-AMTE), and DNUCA(Ideal) normalized to S (B=

Broadcast, 3W = 3 Way).

As shown in Fig. 8, DNUCA(B) and DNUCA(3W) provide AAL improvements over S

by averages of 9.4% and 3.6%, respectively. DNUCA(B) is similar to DNUCA(Ideal) in

that it offers a direct locations for cache blocks. However, DNUCA(B) profoundly outbursts

the NoC with superfluous queries. This causes more NoC delay which translates to a lower

35

AAL improvement. Two factors determine the eligibility of an application to accomplish a

higher or a lower AAL under DUNCA(B): (1) the gain, G, out of direct locations to cache

blocks and (2) the loss, L, from congestion delay. When L is offset by G, DNUCA(B)

improves AAL (e.g., SpecJBB), otherwise, a degradation over S is observed (e.g., Ocean).

DNUCA(3W), on the other hand, fails to exploit distance locality and is expected, accord-

ingly, not to surpass S. Nonetheless, most of the applications experience AAL improvement

under DNUCA(3W) (SpecJBB, Barnes, Radix, Lu, Fluidanimate, MIX1, MIX3, MIX4).

This improvement comes, in fact, from the fewer off-chip accesses attained by DNUCA.

Computer programs exhibit large asymmetry in cache sets’ usages [55, 53]. DNUCA inad-

vertently equalizes the non-uniformity across cache sets via the employment of the one-to-one

associative mapping.

To that end, Fig. 9 presents the execution times of S, DNUCA(B), DNUCA(3W),

DNUCA(C-AMTE), and DNUCA(Ideal) normalized to S. Across all benchmarks, DNUCA(B),

DNUCA(3W), DNUCA(C-AMTE), and DNUCA(Ideal) outperform S by averages of 1.4%,

2.6%, 6.7%, and 8%, respectively. Though DNUCA(B) accomplished 9% and 9.2% AAL

reductions over S for Barnes and Radix respectively, this didn’t effectively translate to an

improvement in the overall system performance.

3.4 SUMMARY

Cache management in CMP is crucial to fuel its performance growth. I propose C-AMTE,

a mechanism that effectively simplifies the process of locating cache blocks in CMP caching

schemes that employ either one-to-one or one-to-many associative mappings. C-AMTE

stores tracking entries that correspond to cache blocks at per-core data structures for direct

locations at subsequent accesses. From the perspective of my CC-FR framework, C-AMTE

enables data placement and relocation CMP caching schemes. I demonstrated the effective-

ness of C-AMTE by applying it to the DNUCA [7, 34] migration scheme (i.e., a scheme that

adopts one-to-one associative mapping). A performance improvement of up to 25.2% has

been achieved, close to that of a perfect location strategy.

36

4.0 PRESSURE AND DISTANCE AWARE PLACEMENT

In this chapter I describe Pressure and Distance Aware (PDA) Placement, a novel mechanism

that involves cache pressure as well as distance locality in its placement algorithm. PDA

targets CC-FR’s data placement category and addresses interference misses, growing non-

uniform access latencies, the bandwidth wall problem, and the processor-memory speed gap

challenges. In Section 4.1, I provide a motivational study and outline my proposed solution. I

detail PDA in Section 4.2. A quantitative evaluation of PDA and related designs is presented

in Section 4.3 and conclusions are given in Section 4.4.

4.1 MOTIVATION AND PROPOSED SOLUTION

4.1.1 Motivation

As discussed earlier in Section 3.1.1, recent research work on CMP cache management has

recognized the importance of the NUCA shared design. However, a NUCA shared organiza-

tion suffers from a growing on-chip delay as well as interference misses. An application can

evict useful L2 cache content belonging to other co-scheduled programs. Thus, a program

that exposes temporal locality can experience high cache misses caused by interferences. (I

showed in Section 1.2.3 that 69.5% of misses on a 16-way tiled shared CMP platform are

inter-processor).

I primarily correlate the interference misses problem to the root of CMP cache man-

agement, the cache placement algorithm. Fig. 10 demonstrates the number of misses per 1

million instructions experienced by cache sets across L2 cache banks for two benchmarks,

37

!"

!#!$"

!#%"

!#%$"

!#&"

%" '(")*" %*)" %+$" &*%" &((" *&*" *,)" '%$" ',%" $!("

-
.
-
/"

0123"456733"8&"9:;<3"

0=:>?7;3"

-4@"012" -/A"012" 4BC#""

!"

#"

$"

%"

&"

'"

#
"

$
$
"

&
%
"

(
&
"

)
'
"

#
!
(
"

#
$
*
"

#
&
)
"

#
(
+
"

#
+
!
"

$
#
#
"

$
%
$
"

$
'
%
"

$
*
&
"

$
+
'
"

%
#
(
"

%
%
*
"

%
'
)
"

%
*
+
"

&
!
!
"

&
$
#
"

&
&
$
"

&
(
%
"

&
)
&
"

'
!
'
"

,
-
,
."

/012"345622"7$"89:;2"

,.<%"

,3<"/01" ,.="/01" 3>?@"

Figure 10: Number of misses per 1 million instructions (MPMI) experienced by

two local cache sets (the ones that experience the max and the min misses) at

different sets across L2 banks for two benchmarks, Swaptions and MIX3.

Swaptions (from the PARSEC suite [8]) and MIX3 (see Section 4.3 for details on these

benchmarks). A set across L2 banks is formally
⋃n

k=1 setki where setki is the local set with

index i at bank k. Again, I assume a 16-way tiled CMP platform with physically distributed,

logically shared L2 banks. I only show results for two local sets (sets on the same L2 bank)

that exhibit the maximum and the minimum misses, in addition to the average misses, per

each set across L2 cache banks. Clearly, we can see that memory accesses between sets

across L2 banks are asymmetric. A placement strategy that is aware of the current pressure

at each bank can reduce the workload imbalance among sets across L2 banks by preventing

placing an incoming cache block at an exceedingly pressured local set. This can potentially

minimize interference misses and maximize system performance.

4.1.2 Proposed Solution

Traditionally, cache blocks are stored at cache locations solely based on their physical ad-

dresses. This makes the placement process unaware of the disparity in the hotness of the

shared cache sets and the distances from requesting cores. I identify two main requirements

for enabling pressure and distance aware placement strategies. First, the physical location of

38

a cache block has to be decoupled from its address. A block can thereby be placed at any tile

independent of its address. This allows flexibility on the placement process as it effectively

transforms the cache associativity of the L2 cache to equate the aggregate associativity of

the L2 cache banks. For instance, 16 L2 banks with 8-way associativity would offer 128-way

set associativity and a requested cache block can be placed at any of these 128-way entries.

Second, by having a pressure and distance aware placement algorithm, a location strategy

capable of rapidly locating cache blocks would be required.

In this chapter, I explain the importance of incorporating pressure and distance aware

placement strategies to improve CMP system performance. I propose pressure and distance

aware placement (PDA), a novel mechanism that involves a low-hardware overhead frame-

work to monitor the L2 cache banks at a group (comprised of local cache sets) granularity

and periodically record pressure information at an array embedded within the memory con-

troller. The collected pressure information is utilized to guide the placement process. Upon

fetching a block, B from the main memory, PDA looks up the pressure array at the memory

controller, identifies the underutilized banks, and places B in an underutilized bank that is

closest to the requesting core. PDA is said, accordingly, to exploit distance locality (i.e.,

attempting to place blocks in close proximity to requesting cores).

Typically, the pressure at an L2 bank can be measured in terms of cache misses or hits.

However, it is not possible to measure cache misses in a meaningful way at L2 banks when

a pressure and distance aware placement strategy is employed. Unlike an address-based

placement strategy, on an L1 miss to a block B, there is no address that dictates the bank

responsible for caching B. Besides, B might map to any bank (versus mapping only to the

SHT on the nominal shared). As such, a reported L2 miss can’t be correlated to any specific

L2 bank but rather to the whole L2 cache space. Hence, I don’t use misses to collect pressures

at L2 banks but rather hits. More specifically, I quantify a pressure value as the number

of unique lines that yield cache hits during a time interval, referred to as an epoch, and

designate that as spatial pressure.

39

4.2 THE PRESSURE AND DISTANCE AWARE PLACEMENT

MECHANISM

4.2.1 A Pressure Limit and Manhattan Distance

I define the distance between a requester core, C, and a tile, T, that hosts a cache block

requested by C as the Manhattan distance between C and T. Besides, I define a high pressure

limit (HPL) to designate the highly and the underutilized pressured L2 banks. A bank

that exhibits a pressure that is below HPL is deemed underutilized; otherwise, it is highly

pressured. HPL is defined in equation (1). The range of underutilized and highly pressured

banks can be expanded or contracted by altering α. The max and min parameters are simply

the maximum and minimum pressures on banks.

HighPressureLimit(HPL) = max − (α × (max - min)) (1)

4.2.2 Pressure and Distance Aware Placement

Figure 11: Address-based versus pressure and distance aware placements. (a)

The nominal shared scheme placement strategy. (b) The PDA strategy. (T15 is

the requesting core, f(.) denotes the placement function, HS is the home select

bits of block B, and P is the pressure array)

40

I propose a pressure and distance aware placement strategy that maps cache blocks to

the L2 cache space depending on the observed pressures at the L2 cache banks (refined

shortly to groups of local cache sets) and the distances from requesting cores. The pressure

at each L2 bank can be collected at run time, stored, and utilized to guide the placement

process. Specifically, a pressure array is maintained at the memory controller(s) of the CMP

system. Each slot on the array corresponds to an L2 bank and represents the pressure on

that bank. For instance, for 16 banks (assuming a 16-tile CMP) the pressure array would

consist of 16 slots. On a miss to L2, the main memory is accessed and the pressure array is

probed. I select the bank that is closest to the requesting core and is underutilized to host the

fetched cache block. Fig. 11 demonstrates a descriptive comparison between the placement

strategies of the nominal shared NUCA design and my proposed scheme. I assume that T15

is the requesting core and α = 0.25. As described earlier in Section 2.1, by using the shared

scheme’s placement strategy, a subset of bits (the HS bits) from the physical address of a

requested block, B, is utilized to map B to its static home tile (SHT). Assuming the HS

bits of B are 0100, B is accordingly placed at tile T4. Alternatively, by using PDA, the

pressure array at the memory controller is inspected before B is mapped to L2. The closest

underutilized tile to the requesting core is tile T11 (the pressure array indicates that T11’s

pressure is less than HPL), thus selected.

PDA doesn’t rely on prior knowledge of the program but on hardware counters. A

saturating counter per bank (or group of local sets as will be discussed shortly) can be

installed at each tile to count the number of successful accesses to that bank (group) during

an epoch. At the end of every epoch the values of the counters are copied from the local tiles

to the pressure array at the memory controller(s). Besides, in order to allow PDA to adapt to

phase changes of applications, at the copy time I keep only 0.25 of the last epoch’s pressure

values (by shifting each value 2 bits to the right) and add to them the newly collected ones.

Finally, by having a pressure distance aware placement algorithm, a location strategy

capable of rapidly locating cache blocks at the L2 cache space is required. PDA adopts C-

AMTE (see Chapter 3) to achieve fast location of L2 cache blocks. In summary, upon placing

a cache block, B, at an L2 bank using PDA, C-AMTE stores two corresponding tracking

entries, replicated and principal, in special tracking entries (TR) tables at the requesting tile

41

and B’s SHT, respectively. Subsequently, when the requesting core requests B and misses

at L1, its TR table is looked up and if a hit is obtained, B is located directly at the L2

bank designated by the matched tracking entry at TR. Furthermore, if any other sharer core

requests B, the SHT of B can be always approached and its TR table can be looked up to

locate B at its current L2 bank. If no matching entry is found in SHT’s TR table, an L2

miss is reported and the request is satisfied from the main memory.

4.2.3 Group-Based Pressure Collection

Collecting pressures at a bank granularity might be relatively imprecise. We can gather

more detailed, and thus more accurate, pressures from individual sets or groups of sets. A

cache bank can be divided into a number of groups. I denote a group size as the number of

local sets (sets on the same bank) that a group can include. As such, the upper bound on

the number of groups per bank is equal to the number of sets per bank (as a group can’t

consist of less than one set). The lower bound, conversely, is 1 (as a group can include all the

cache sets at an L2 bank). The dimension of the pressure array (rows vs. columns) at the

memory controller changes depending on the number of groups per bank (n-group per bank)

and the number of banks/tiles (p-bank). With n-group and p-bank the pressure array would

consist of n rows and p columns. Therefore, a 1-group (i.e., bank) granularity indicates

a linear pressure array and can be probed straightforwardly (as described in the previous

subsection). With finer granularities, however, we need to select the row first (denoting the

group number of an incoming cache block K) and then the column (denoting the bank that

exhibits low pressure for the selected group). The group number (GN) of a block, K, can be

simply determined by dividing the index of K by the group size.

Fig. 12 demonstrates PDA using different granularities. For intuitive presentation, I

assume a simplified 2-tile (T0 and T1) CMP with two logically shared, physically distributed

L2 cache banks and show only the L2 banks referred to by the names of the tiles. Each bank

is 2-way associative and has space for 8 cache blocks thus encompassing 4 cache sets. I further

assume that T0 is the requesting core and α = 0.25. Fig. 12(a) illustrates PDA operating

at 1-group granularity. I start with a pressure array of zero values and assume that each

42

Figure 12: Placing block K (with index = 1) using PDA with various granulari-

ties. (a) 1-group. (b) 2-group. (c) 4-group. (GN is the group number)

43

of the blocks on the banks has been successfully accessed for only one time during the last

epoch (this describes the numbers displayed in the array). By inspecting the pressure values

stored at the array, bank T1 (the closest underutilized bank to T0) is selected to host an

incoming block K. Assuming that the index of K is 01, K is mapped subsequently to set1 of

bank T1. As a consequence, a conflict miss occurs. Had bank T0 (though exposing higher

pressure as indicated by the pressure array) been selected, no conflict miss would have been

incurred (because set1 of bank T0 has a free space for an incoming block) and more access

latency will be additionally saved (i.e., bank To is local to the requesting core). This explains

the rationale behind collecting pressures at finer granularities for the sake of a more precise

behavior.

Fig 12(b) demonstrates PDA operating at a 2-group granularity. Given that the index of

the incoming block K is 01, GN of K is accordingly 0 (index/group size = 1/2). Hence, row 0

is investigated. Group T00 at bank T0 exhibits a lower pressure than group T10 at bank T1

(though both are underutilized) and is closer to the requesting core at T0. It is, accordingly,

selected to host K. Compared to a 1-group operating PDA (illustrated in Fig. 12(a)), no

conflict miss is incurred and more latency is expected to be saved on subsequent accesses

to K from T0. In Fig. 12(c) I refine the granularity more, specifically to 4-group. GN of

K is now 1, and row 1 is therefore explored. Again, group T00 at bank T0 reveals a lower

pressure than group T11 at bank T1 and is closer to the requesting core at T0 thus selected.

Note that the placement strategy with a 4-group and a 2-group granularities demonstrate

a similar behavior for K. This hints to the fact that we might not need hitting the upper

bound in refining the group granularity in order to attain the most accurate behavior.

4.3 QUANTITATIVE EVALUATION

The evaluation methodology and the benchmark programs I use in this chapter are the

ones described in Section 2.3. Besides, after every 20 million instructions, I keep only 0.25

of the pressure values (see Section 4.2.2). Finally, I compare PDA to the nominal shared

(S) baseline architecture, the private scheme (P), and two related proposals; victim caching

44

(VC) [37], and cooperative caching (CC) [12].

4.3.1 Comparing Against the Shared NUCA Design

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)*+,-..")/012345" 63789:0;<" =>?@704@A09B" 60:4B5" C?" DEF(" DEF$" DEFG" DEF%" HIJ#"

K
3
:A

0
>@
L
B
7
"C
$
"D

@5
5
"M
0
9B
"

6B4;NA0:<5"

)" *OH"

Figure 13: L2 miss rates of PDA and shared (S) schemes (normalized to S).

Let me first compare PDA against the baseline shared (S) scheme. I assume a high

pressure limit (HPL) with α = 0.25. In Section 4.3.3 I offer a sensitivity study on different

α values. Besides, I consider a tracking entries (TR) table with 16K entries. The overhead

incurred by the TR table is justified in Section 4.3.6. Each access to a TR table requires

1.35ns estimated using CACTI v5.3 [32]. Fig. 13 shows the L2 miss rates of S and PDA

normalized to S. As discussed in Section 4.2.3, PDA can run with different granularities

(varying from 1-group to 512-group given our employed number of sets per L2 bank). All

the results shown in this subsection are for PDA with 32-group granularity. Dividing a bank

into only 32 groups (i.e., a counter per each group of 16 sets) provides, in fact, close benefits

to dividing it into 512 groups (i.e., a counter per each set). Section 4.3.2 shows results for

PDA with all the possible granularities. On average, PDA achieves an L2 miss rate reduction

of 21.6% over S, and by as much as 73.9% for the Swaptions program.

In addition to reducing interference misses, PDA seeks to alleviate the growing non-

uniform access latencies exposed by S via attempting to place cache blocks fetched from

45

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!"

,-./011" ,2345678" 96:;<=3>?" @ABC:37CD3<E" 93=7E8" FB" GHI#" GHI$" GHI%" GHI&"

J
"6
K"
-
A3
>
E
D
E
7
<8
"<
6
"F
6
>
3
A"
F
$
"

9
3
7
?
8
"

9E7>LD3=?8"

Figure 14: Percentage of placements to local L2 banks under PDA.

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

-
%
#.
/0
1
#2
34
5
6
7
8
9
:
#;
"
<#

./01#/:#-8=5>#-%#25:61# ./01#/:#?4@804#-%#25:61#

SpecJBB Swaptions Bodytrack Fluidanimate Barnes Lu MIX1 MIX2 MIX3 MIX4

Benchmarks

Figure 15: L2 hits breakdown. Moving from left to right, the 2 bars for each

benchmark are for S and PDA schemes, respectively.

46

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)*+,-..")/012345" 63789:0;<" =>?@704@A09B" 60:4B5" C?" DEF(" DEF$" DEFG" DEF%" HIJ#"

K
3
:A

0
>@
LB
7
"H
H
C
"

6B4;MA0:<5"

)" *NH"

Figure 16: Average L2 Access Latencies (AALs) of PDA and shared (S) schemes

(normalized to S).

the main memory in underutilized L2 banks that are closest to the requesting cores. Fig. 14

shows the percentage of blocks’ placements to local L2 banks accomplished by PDA. Clearly,

we can see that for many of the examined benchmarks, the local L2 banks (the closest to the

requesting cores) are most of the time underutilized and are, as such, selected to host the

incoming cache blocks. I note, however, that placing a large number of blocks at local L2

banks might exacerbate the L2 miss rate especially when the local banks get dwarfed by the

quantity of the mapped blocks. Evidently, PDA controls the capacity pressure via involving

HPL and, accordingly, precludes such a scenario from occurring. This fact is corroborated

in Fig. 13.

To illustrate the contributions of local placements to the reduction in the average L2

access latency (AAL) and, consequently, the system performance, Fig. 15 depicts the L2 hits

breakdown. For all the simulated programs, we observe an increase in hits to local L2 banks.

Lastly, Fig. 16 demonstrates AAL of S and PDA normalized to S. PDA improves the AAL

of S by an average of 15.9%, and by as much as 34.4% for MIX3.

The L2 miss rate and AAL reductions provided by PDA come at the advantage of lower

47

!"

#!!"

$!!"

%!!"

&!!"

'!!"

(!!"

)!!"

*!!"

+!!"

,-./011" ,2345678" 96:;<=3>?" @ABC:37CD3<E" 93=7E8" FB" GHI#" GHI$" GHI%" GHI&"

@
AC
<J
K
6
4
8"
-
E
="
#
L
"H
7
8<
=B
>5
6
7
8"

9E7>MD3=?8"

," -NO"

Figure 17: On-chip network traffic.

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

!"#$%&&' !()*+,-.' /,0123)45' 67890)-9:)2;' /)3-;.' <8' =>?@' =>?A' =>?B' =>?C' DEFG'

H
,
3:

)
79
I;
0
'#
J
;
4
8
+
,
-
'K
9:

;
'

/;-4L:)35.'

!' "MD'

Figure 18: Execution times of PDA and shared (S) schemes (normalized to S).

48

network on-chip (NoC) traffic. Fig. 17 shows the number of flit-hops per 1K instructions

experienced by S and PDA. A flit-hop is defined as one flit traveling one hop on a router

in the 2D mesh NoC. On average, PDA reduces the NoC traffic of S by 16.9%. For some

benchmarks (Swaptions, Bodytrack, and MIX3) PDA, however, degrades the interconnect

traffic versus S. This degradation is correlated to the use of the C-AMTE location strategy.

C-AMTE introduces more coherence messages (mainly control messages) on the NoC for

maintaining consistency among principal and replicated tracking entries. To the contrary,

PDA reduces the inter-tile communications via placing cache blocks in close proximity to

requesting cores. If the gain from assuaging the inter-tile communications offsets the loss

from the incurred C-AMTE interconnect traffic, PDA diminishes the flit-hops number over

S, otherwise, PDA aggravates against S. Note that such a little degradation doesn’t, in

fact, affect AAL. For instance, although MIX3 shows a 5.9% increase in flit-hops per 1K

instructions under PDA as compared to S, PDA accomplishes an AAL improvement of

34.4% over S for MIX3. To that end, Fig. 18 presents the execution times of S and PDA

normalized to S. Across all benchmarks, PDA outperforms S by an average of 8.9%, and by

as much as 21.1% for SPECJbb.

4.3.2 Sensitivity of PDA to Different Group Granularities

I demonstrate PDA’s behavior with all possible group granularities. Fig. 19 plots the out-

come. For each program I show cycles per instruction (CPI). As explained in Section 4.2.3,

collecting pressures at a more refined granularity might make PDA perform better (e.g.,

MIX1) but not necessarily until striking the upper bound (e.g., Barnes). Besides, I note that

many programs show irregularities in performance (e.g., MIX4) as we proceed in refining

group granularities. This is due to a skew in pressure values at the array in the memory

controller when compared to the actual pressures at cache groups. Actual pressures might

deviate (e.g., as a consequence of phase changes or nondeterministic behaviors of programs)

some time before the end of an epoch (the time at which I update the array at the memory

controller) causing the array to be a little biased in representing actual pressures at cache

groups.

49

!"#$%

!"$%

!"$$%

!"&%

!"&$%

'% !% #% (% '&%)!% &#% '!(% !$&% $'!%

*
+
,%

-./01%-.23042.567%

819:;<<%

!"##$%

!"#&%

!"#&$%

!"#'%

!"#'$%

(%)% *% '% (#% +)% #*% ()'%)$#% $()%

,
-
.%

/0123%/0452640789%

:1;9804<=%

!"##$

!"#%$

!"%$

!"%&$

!"%'$

&$ '$ ($ #$ &)$ *'$)($ &'#$ '+)$ +&'$

,
-
.$

/0123$/0452640789$

:627;457<48=$

!"

!#$"

!#%"

!#&"

'" $" %" (" '&")$" &%" '$(" $*&" *'$"

+
,
-"

./012"./34153/678"

9:32;04<"

!"

!#$"

!#%"

!#&"

!#'"

(" $" %" '" (&")$" &%" ($'" $*&" *($"

+
,
-"

./012"./34153/678"

93/4:;"

!"#$

!"#%$

!"&$

!"&%$

!"'$

!"'%$

($ #$ '$)$ (*$ &#$ *'$ (#)$ #%*$ %(#$

+
,
-$

./012$./34153/678$

91$

!"#$%

!"#&%

!"#'%

!"(%

!"(!%

!%)% #% &% !*% +)% *#% !)&%)(*% (!)%

,
-
.%

/0123%/0452640789%

:.;!%

!"#$%

!"#&%

!"#'%

!"#!%

!"##%

(% $% '%)% (#% &$% #'% ($)% $!#% !($%

*
+
,%

-./01%-.23042.567%

8,9$%

!"#$

!"#%$

!"%$

!"%%$

!"&$

!"&%$

!$ '$ #$ ($!&$)'$ &#$!'($ '%&$ %!'$

*
+
,$

-./01$-.23042.567$

8,9)$

!"#$%

!"&%

!"&$%

!"'%

!"'$%

(%

(%)% *% &% (+% ,)% +*% ()&%)$+% $()%

-
.
/%

01234%0156375189:%

;/<*%

Figure 19: The PDA behavior with different granularities (varying from 1-group

to 512-group).

50

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(" %")" (!" (*" (&" (+" $$" $," $'" *(" *%" *)" %!" %*" %&" %+" ,$" ,," ,'" &(" &%" &)")!")*")&")+" '$" '," ''" +(" +%" +)"(!!"

-
.
/
0
1
23
4
5
6
"7
8
9"

(!!":;<=">3?@"A1/3.;="B/1<;21/3C5="

Figure 20: S-Curve for CPI improvement of PDA over S.

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)*+,-..")/012345" 63789:0;<" =>?@704@A09B" 60:4B5" C?" DEF(" DEF$" DEFG" DEF%" HIJ#"K
3
:A

0
>@
L
B
7
"+
M
B
;
?
2
3
4
"N
@A

B
"

6B4;OA0:<5"

)" *PHQ!#(R" *PHQ!#$SR" *PHQ!#GR"

Figure 21: S-Curve for CPI improvement of PDA over S.

51

Finally, we observe that for all the examined programs, PDA always provides a robust

performance versus S. That is, none of the programs, running under any group granularity,

shows performance degradation against S. Fig. 20 demonstrates the S-Curve1 of the CPI im-

provement provided by CE for the 100 runs (10 workloads each with 10 group granularities).

4.3.3 Sensitivity of PDA to HPL

So far, I have been using α = 0.25 for the high pressure limit, HPL. As Section 4.2.1 describes,

by altering α, the range of underutilized and highly pressured banks can be expanded or

contracted. I tested PDA with two more α values, particularly 0.1 and 0.3 for HPL. Fig. 21

shows the results. PDA(0.1), PDA(0.25), and PDA(0.3) denote utilizing HPL with α values

of 0.1, 0.25, and 0.3, respectively. As demonstrated in the figure, PDA(0.1), PDA(0.25),

and PDA(0.3) outperform S by averages of 8.8%, 8.9%, and 9.3%, respectively. PDA(0.3)

surpasses PDA(0.1) and PDA(0.25) (by a little margin) as it allows more blocks to be placed

in the vicinity of requesting cores without largely affecting the L2 miss rate. We observe

that PDA is not very sensitive to the examined α values. As such, 0.25 can be utilized as a

default value for α and is important because it is power of 2. With this setting, a multiplier

is not needed to compute HPL but a simple shifter.

4.3.4 Accounting for the Overhead of the Location Strategy

Cache performance can be improved not only via efficient cache management but also by

increasing cache size and associativity. To justify the overhead incurred by C-AMTE as

a location strategy adopted by PDA, I add to each cache set of S two more ways. Given

my system parameters, each L2 bank encompasses 512 sets and each cache line is 64 byte.

Therefore, each L2 bank is augmented by an additional 64KB cache area. I refer to this

configuration as S(2W). Moreover, I examine S’s performance by doubling the size of each

L2 bank (i.e., from 512KB to 1MB). I refer to the latter configuration as S(D). Fig. 22 shows

the L2 miss rates of S, S(2W), S(D), and PDA normalized to S. S(2W), S(D), and PDA

1An S-Curve is plotted by sorting the data from lowest to highest. Each point on the graph represents
one data-point from this sorted list [50].

52

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)*+,-..")/0*1234" .256780,9" :;<=503=>07+" .083+4" ?@" ABC(" ABC$" ABCD" ABC%" EFG#"

H
2
8>

0
;=
I
+
5
"?
$
"A

=4
4
"J
0
7+
"

.+3,K>0894"

)")L$MN")LON" POE"

Figure 22: L2 miss rates of S, S with two more ways added (S(2W)), S with

double sized cache (S(D)), and PDA (all normalized to S).

reduce L2 miss rates over S by averages of 5.1%, 15.6%, and 21.6%, respectively. I conclude

that PDA is quite attractive as with small design and storage overhead (i.e., 1.4MB increase

in aggregate) it provides more miss rate reduction benefits over S with twice its cache size

(i.e., 8MB increase in aggregate).

4.3.5 Scalability

The storage overhead incurred by PDA is mainly from the utilization of C-AMTE as a

location strategy to rapidly locate L2 cache blocks after placement. C-AMTE incurs at least

one principal and one replicated tracking entries per each cache block, B, when placed at a

tile different than its static home tile. On the other hand, C-AMTE incurs at most N − 1

tracking entries (one principal and the rest are replicated) per B with N being the number of

tiles on the CMP platform. The worst case scenario occurs only when B exhibits a sharing

degree of N . As discussed earlier in Section 3.2 each principal tracking entry includes: (1)

the tag of B (typically 22 bits), (2) a bit vector that acts as a directory to keep the principal

and the replicated tracking entries coherent (e.g., 16 bits for a 16-tile CMP model), and

53

(3) an ID that points to the tile that is currently hosting B (e.g., 4 bits for a 16-tile CMP

model). On the other hand, a replicated tracking entry includes only B’s tag and the ID to

B’s current host tile.

!"

#!"

$!!"

$#!"

%!!"

%#!"

$&" '%" &(" $%)" %#&" #$%" $!%("*
"+
,
-.
/
0
1/
"2
3"
4
,
56
7
89
"6
0
-7
/
"

6
0
9
0
-8
:;
"

<=>?/."23"@8A/1"

BCDEF=AAG" BCDE62>9(G" BCDE62>9)G"

Figure 23: Storage requirements of PDA with a full-map bit vector (PDA(Full)),

a compact vector with 1 bit for every 4 cores (PDA(Comp4)), and a compact

vector with 1 bit for every 8 cores (PDA(Comp8)).

Assuming split tracking entries tables, a principal tracking table (PTR) and a replicated

tracking table (RTR) each with 8K entries per tile, PDA demonstrates a 12% increase of

on-chip cache capacity (Section 4.3.4 justifies such an incurred overhead). To illustrate how

the area overhead of PDA scales, Fig. 23 shows the storage requirements of PDA under

16-tile, 32-tile, 64-tile, 128-tile, 256-tile, 512-tile, and 1024-tile platforms. The figure shows

that PDA with full-map bit vector (one bit for every core) per each principal tracking entry

(PDA(Full)) scales poorly especially after involving more than 64 cores on a single chip.

Clearly, what makes PDA non-scalable to large number of tiles is the bit vector associated

with each principal tracking entry. PDA, however, needs not incorporate full-map vectors.

Similar to sparse directories [23] and SGI Origin style design [42], PDA can involve more

compact (coarse) vectors to improve upon the poor scalability at a moderate bandwidth

54

increase. For instance, a bit vector can contain one bit for every four cores (PDA(Comp4)),

or one bit for every eight cores (PDA(Comp8)) and rely on a broadcast or multicast protocol

to track replicated tracking entries. PDA engages distance locality in its placement process

and was shown to effectively reduce network on-chip (NoC) traffic and the average L2 access

latency (AAL). As such, PDA optimizes NoC bandwidth utilization and can potentially offset

the bandwidth increase resulted from the usage of compact vectors. Note, furthermore, that

with a scaled number of tiles, PDA is expected to improve system performance more due to

the higher exposure of the NUCA problem which PDA attempts to tackle by placing blocks

close to requesting cores.

4.3.6 Comparing with Related Designs

In addition to comparing with the nominal shared (S) scheme, I compare PDA against the

nominal private (P) design, victim caching (VC) [37], and cooperative caching (CC)) [12].

VC effectively extends the associativity of hot sets in the cache and reduces conflict misses.

For fair comparison, I choose the size of an L2 victim cache per tile to approximately match

the area increase in PDA (the utilized TR table consists of 16K entries which translates to

an 88KB area overhead). Consequently, I set the size and associativity of each victim cache

per tile to 64KB and 16-way, respectively. The time to access a victim cache is set to 4.3

ns (or 6 cycles) estimated using CACTI v5.3 [32]. The CC design attempts to reduce L2

(intra-processor) misses. The performance of CC is highly dependent on the cooperation

throttling probability [50]. Hence, I evaluate two configurations of CC, one with probability

of 100% (CC(100%)) and another with probability of 70% (CC(70%)).

Fig. 24 depicts the execution times of all the compared schemes normalized to S. First,

P shows an average performance degradation of 0.6% versus S. Second, when multiple hot

sets compete for a victim cache space, the victim cache is flushed quickly and fails subse-

quently to reduce conflict misses appreciably (e.g., MIX3). VC degrades S by an average

of 0.9%. Third, CC spills cache blocks to neighboring L2 banks without knowing if spilling

helps or hurts cache performance [50]. As such, CC sometimes degrades performance (e.g.,

MIX2) while in some other times demonstrates improvement (e.g., SpecJBB). On average,

55

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(#%"

)*+,-..")/012345" 63789:0;<" =>?@704@A09B" 60:4B5" C?" DEF(" DEF$" DEFG" DEF%" HIJ#"

K
3
:A

0
>@
LB
7
"+
M
B
;
?
2
3
4
"N
@A

B
"

6B4;OA0:<5"

)" *" P," ,,(!!Q" ,,R!Q" *SH"

Figure 24: Execution times of shared (S), private (P), victim caching (VC),

cooperative caching 100% (CC(100%)), cooperative caching 70% ((CC(70%)),

and PDA schemes (normalized to S).

CC(100%) reveals a performance degradation versus S by an average 0.1%. On the other

hand, CC(70%) outperforms S by an average of only 0.6%. In summary, PDA outperforms

S, P, VC, CC(100%), and CC(70%) by averages of 8.9%, 9.5%, 9.6%, 9%, and 8.3%, respec-

tively.

4.4 SUMMARY

This chapter investigates the interference misses and the growing non-uniform access laten-

cies problems inherent in distributed shared CMP caches and proposes pressure and distance

aware placement (PDA), a novel strategy that mitigates L2 misses and latencies. I indicate

the significance of applying a pressure and distance aware placement strategy on a shared

CMP organization to achieve high system performance. Spatial pressure information is col-

lected at a group granularity and recorded in an array at the memory controller. On an

incoming cache block, PDA inspects the pressure array, identifies the underutilized groups,

56

and maps the block to the group that is closest to the requesting core. Clearly, PDA imple-

ments CC-FR’s data placement component. Simulation results using a full system simulator

demonstrate that PDA reduces the cache misses and the average L2 access latency of a

shared NUCA design by averages of 21.6% and 15.9%, respectively. Furthermore, results

show that PDA outperforms the nominal private design, victim caching [37], and coopera-

tive caching [12] by averages of 9.5%, 9.6%, and 8.3%, respectively.

57

5.0 FLEXIBLE SET BALANCING

In this chapter I describe Flexible Set Balancing (FSB) that targets CC-FR’s data retention

category and addresses interference misses, the bandwidth wall problem, and the processor-

memory speed gap challenges. In Section 5.1 I provide a motivational study and outline my

proposed solution. Section 5.2 details FSB mechanism. A quantitative evaluation of FSB

and related designs is presented in Section 5.3 and a conclusion is given in Section 5.4.

5.1 MOTIVATION AND PROPOSED SOLUTION

5.1.1 Motivation

As discussed earlier in Section 1.2.3, more than two thirds of cache lines placed on a last

level cache (LLC) logically shared by 16 CMP cores remain unused between placement and

eviction. Therefore, these lines don’t contribute to good utilization of the silicon estate

devoted to the caches. One reason for this phenomenon (referred to as the zero reuse lines

problem) is that cache lines might be re-referenced at distances greater than the cache

associativity [51]. The problem is magnified on CMPs that share caches as on-chip lifetimes

of cache lines can become shorter due to the increasing interferences between concurrently

running threads/processes. Cache performance can be improved by retaining some fraction

of the working set long enough to provide cache hits for future reuses [51, 35].

Computer programs exhibit a non-uniform distribution of memory accesses across dif-

ferent cache sets [55, 53]. Fig. 25 demonstrates this fact by showing the number of misses

experienced by cache sets at different physically distributed, logically shared L2 banks on a

58

!"

#!!!!"

$!!!!"

%!!!!"

&!!!!"

'!!!!!"

'#!!!!"

'$!!!!"

'%!!!!"

'&!!!!"

(!" ('" (#" ()" ($" (*" (%" (+" (&" (,"('!"(''"('#"(')"('$"('*"

-
".
/"
0
#
"1

23
3
4
3
"

0#"(5673"

189)"

1:9";4<"

18=";4<"

!"

#!!!!"

$!!!!!"

$#!!!!"

%!!!!!"

%#!!!!"

&!" &$" &%" &'" &(" &#" &)" &*" &+" &,"&$!"&$$"&$%"&$'"&$("&$#"

-
".
/"
0
%
"1

23
3
4
3
"

0%"&5673"

89:;<&&"

1=>"84?"

1@A"84?"

Figure 25: Number of misses experienced by two cache sets at different L2

banks for two benchmarks, SPECJBB and MIX3 (MAX Set = the set that

experiences the maximum misses and MIN Set = the set that experiences the

minimum misses).

16-way tiled CMP for two benchmarks, SpecJBB and MIX3 (experimental parameters and

the benchmark programs used are described in Section 5.3) Only the sets that exhibit the

maximum and the minimum misses are shown. Clearly, we can see that some sets suffer from

large local miss ratios while some others remain underutilized. My work extends the lifetime

of cache lines by exploiting this phenomenon via flexibly retaining cache lines evicted from

highly pressured sets at underutilized sets.

5.1.2 Dynamic Set Balancing Cache and Inherent Shortcomings

A recent study, namely Dynamic Set Balancing Cache (DSBC), suggests extending the life-

time of some cache lines by exploiting the asymmetry in cache sets’ usages [55]. Specifically,

DSBC proposes shifting lines within the same L2 cache bank from sets with high local miss

rates to sets with low local miss rates where they can be found later. Once a set reaches a

saturation level (set’s miss rate hits a maximum value of 2K − 1 where K is the associa-

tivity of the cache) it requests a free (not associated yet) underutilized set. If such a set is

detected, both sets, the highly pressured one (or referred to as source) and the underutilized

one (or referred to as destination), are associated. As long as the two sets are associated, the

59

source is allowed to retain its lines at the destination but not the reverse (i.e., unidirectional

retention).

The association between the source and the destination sets can be simply broken upon

the eviction of the last retained line at the destination set (the destination set includes only

retained lines from the source set). DSBC maintains a table with one entry per set called

the Association Table (AT). AT stores in the i-th entry AT(i).index which corresponds to

the index of the set associated with set i. Besides, AT stores a source/destination (s/d) bit

(AT(i).s/d) that indicates whether the set is associated or not. Each AT entry can have

three different values. First, if a cache set is not associated, its corresponding AT entry

stores the set’s index and s/d = 0. Second, if a set is a source set, its corresponding AT

entry stores the destination index and s/d = 1. Lastly, if a set is a destination set, AT stores

the source index and s/d = 0. When a certain request misses at a source set, the destination

set is looked up for either a secondary hit or a definitive miss.

DSBC has a number of shortcomings. First, once a destination set, D, is designated, it

will continue receiving retained lines from a source set, S, until the association is broken.

This overlooks the fact that D’s pressure progressively increases while receiving more lines

from S. Nevertheless, after association, a new program phase can start where S might remain

pressured (and still associated with D) and D becomes highly pressured (due to receiving

lines not only from S but further from a new large working set which maps now originally

onto it). As a result, S and D compete on only D’s resources causing significant thrashing.

I illustrate this basic problem by an example.

Consider a 2-way set associative cache shown in Fig. 26. For simplicity I represent a

cache by a linear array consisting of only 4 sets. Assume first (Fig. 26(a)) that a working

set A with reference pattern [a0, a1, a2, a3] maps to set 3 and has been observed twice by a

program. The sequence of references of A can’t co-reside in set 3. Accordingly, DSBC selects

an underutilized set, say set 0, in the cache and displaces the evicted blocks from set 3 to

set 0. Fig. 26(a) shows the final residences of lines in the cache after the completion of the

program. A’s resultant misses and hits are, consequently, 4 and 4, respectively (the cache is

assumed to be initially empty). If the traditional caching strategy is to be followed 4 more

misses will be incurred.

60

a1

a0

a3

a2

SET

0

1

2

3

L2 Bank

A

Working Set A = [a0, a1, a2, a3]

Misses (A) = 4

Hits (A) = 4

b0

a3

a1

a0

SET

0

1

2

3

L2 Bank

A

Misses (A) = 6

Hits (A) = 2

B

Misses (B) = 2

Hits (B) = 0

Statistics:

Retain Retain

(a)

Working Set A = [a0, a1, a2, a3]

Statistics:

(b)

Working Set B = [b0]

Figure 26: DSBC in operation. (a) A maps originally to set 3. The program

executes A’s references in the order of A, A. DSBC is able to save much A’s

interference misses. (b) A and B map originally to sets 3 and 0, respectively.

The program executes A’s and B’s references in the order of A, B, A,B. DSBC is

incapable of adapting to the phase change in the program.

a0

c2

c1

b1

b0

a2

a1

SET

0

1

2

3

L2 Bank

A

Working Set A = [a0, a1, a2]

Misses (A) = 3

Hits (A) = 3

a2

a1

a4

a3

SET

0

1

2

3

L2 Bank

A

Misses (A) = 12

Hits (A) = 0

Statistics:

Retain Retain

(a)

Working Set A = [a0, a1, a2, a3, a4]

Statistics:

(b)

Working Set B = [b0, b1]

Working Set C = [c0, c1, c2]

B

C
Misses (B) = 2

Hits (B) = 2

Misses (C) = 6

Hits (C) = 0

Figure 27: DSBC in operation. (a) The program executes A’s, B’s, and C’s

references in the order of A, B, C,A, B, C. DSBC doesn’t allow one-from-many

sharing. (b) The program executes A’s references twice. DSBC doesn’t allow

many-from-one sharing.

61

In Fig. 26(b), presumably at a different phase in the program, a new working set B

with reference pattern [b0] is considered and assumed to map to set 0. As in Fig. 26(a),

working set A still maps originally to set 3 and acts as a source set associated with set 0 as

a destination set. I assume that the program executes A’s and B’s references in the order of

A, B, A,B. The figure shows the final residences of lines after the completion of the program.

A’s resultant misses and hits are, consequently, 6 and 2, respectively. B, on the other hand,

experienced 2 misses and got no hits. Note that DSBC didn’t even attempt to break the

association between sets 0 and 3 during the program’s execution because there was always

at least one retained block at set 0. If DSBC would rather adapt to the phase change in the

program, during the first execution of B’s references, the evicted blocks from set 0 (i.e., a0)

can be retained at another underutilized set (say set 1) so that in the second execution of A’s

and B’s references no misses will be incurred.

I refer to the sharing policy employed by DSBC among cache sets as one-from-one shar-

ing. That is, a destination set is shared by only a single source set. Fig. 27(a) shows three

working sets A, B, and C with reference patterns [a0, a1, a2], [b0, b1], and [c0, c1, c2], re-

spectively. I assume that A, B, and C map originally to sets 3, 2, and 1, respectively. The

figure demonstrates two issuances of A’s, B’s, and C’s reference patterns in the order of

A, B, C,A, B, C. A’s lines can’t all co-reside in set 3 and DSBC selects set 0 as a destination

set for set 3. Also, C’s lines can’t all co-exist in set 1. However, DSBC doesn’t select any

destination set for set 1 because no set that is both underutilized and not associated yet is

found. As a result, C’s references will experience zero hits during their two issuances (with

this cache topology C is said to experience far-flung reuses). The cache depicts the final

residences of all the cache lines after the completion of the program. The misses and hits

counts of A are 3 and 3, respectively. On the other hand, B’s references miss twice and

hit twice. Lastly, C’s references miss 6 times and get no hits. If DSBC would allow set

0 to be shared by both sets, 3 and 1, C’ misses will be avoided when issued on the second

time. I refer to this kind of flexible sharing as one-from-many sharing. That is, a single

destination set can be shared by multiple source sets.

Finally, as a consequence of the adopted one-from-one sharing strategy, DSBC doesn’t

allow a source set S to retain blocks in more than one destination set D. As such, if the

62

working set that maps to S is large enough that both S and D are incapable of providing

enough capacity as required, many conflict misses can be incurred. Fig. 27(b) assumes a

working set A with reference pattern [a0, a1, a2, a3, a4] that maps to set 3. The program

issues A’s references twice. DSBC selects an underutilized set; say set 0, where evicted

lines from set 3 can be retained. The cache in the figure depicts the final residences of

A’s lines after the completion of the program. The final misses and hits counts are 12 and

0, respectively (assuming that the cache was initially empty). In this case, DSBC didn’t

provide any benefit for A. If DSBC would allow more than one destination set to be shared

by set 3; A’s misses will be avoided when issued on the second time. I refer to this kind of

flexible sharing as many-from-one sharing. That is, many destination sets can be shared

by a single source set.

5.1.3 Proposed Solution

I propose Flexible Set Balancing (FSB), a caching strategy that adapts to phase changes in

programs and allows many-from-many sharing among cache sets. The difference in this work

compared to DSBC are two key insights: (1) retention should be efficiently and dynamically

allowed at any point during the program’s execution in any direction looking for spare

space to effectively minimize interference misses, (2) one-from-many and many-from-one

(i.e., many-from-many) sharing should be allowed among cache sets for high flexibility. I

demonstrate my solution with an example.

Fig. 28(a) demonstrates the same example shown in Fig. 26(b) but with FSB being incor-

porated instead of DSBC. Again, A and B are assumed to map to sets 3 and 0, respectively.

The program executes A’s and B’s references in the order of A, B, A,B. In the first issuance

of A’s references, FSB selects set 0 as a destination set for set 3. Afterwards, when B is

issued, line a0, which has been already retained at set 0, is evicted again. FSB doesn’t dis-

card a0 but yet retain it again at a new underutilized set, say set 1. In the second issuance

of the working sets, A’s and B’s references hit on all their cache lines. As such, misses and

hits outcomes become 4 and 4 for A, and 1 and 1 for B. Therefore, FSB saves 3 misses

as compared to DSBC. The figure shows the final residences of all the cache lines after the

63

b0

a1

a0

a3

a2

SET

0

1

2

3

L2 Bank

A

Misses (A) = 4

Hits (A) = 4

B

Misses (B) = 1

Hits (B) = 1

Retain

Working Set A = [a0, a1, a2, a3]

Statistics:

(a)

Working Set B = [b0]

a0

c0

c2

c1

b1

b0

a2

a1

SET

0

1

2

3

L2 Bank

A

Working Set A = [a0, a1, a2]

Misses (A) = 3

Hits (A) = 3

a1

a0

a2

a4

a3

SET

0

1

2

3

L2 Bank

A

Misses (A) = 6

Hits (A) = 6

Retain Retain

Working Set A = [a0, a1, a2, a3, a4]Working Set B = [b0, b1]

Working Set C = [c0, c1, c2]

B

C

Misses (B) = 2

Hits (B) = 2

Misses (C) = 3

Hits (C) = 3

Statistics:

(b)

Statistics:

(c)

Figure 28: My solution. (a) The program executes A’s, and B’s references in

the order of A, B, A,B. I adapt to the phase change in the program. (b) The

program executes A’s, B’s, and C’s references in the order of A, B, C,A, B, C. I

allow one-from-many sharing. (c) The program executes A’s references twice. I

allow many-from-one sharing.

program’s completion. Clearly, this example illustrates FSB’s capability to adapt to phase

changes in programs.

Fig. 28(b) shows the same example illustrated in Fig. 27(a). Again, I assume that A,

B, and C map to sets 3, 2, and 1, respectively and that the program observes A’s, B’s,

and C’s references in the order of A, B, C,A, B, C. FSB allows set 0 to be shared by many

source sets. As such, in the first iteration of the working sets when lines of C can’t all

co-reside in set 1, FSB retains c0 at set 0 (the current least pressured set available). In

the second iteration, the references of A, B, and C hit on all their cache lines. Misses

and hits outcomes become, accordingly, 3 and 3 for A, 2 and 2 for B, and 3 and 3 for C.

As compared to DSBC, FSB saves the three misses incurred by C in Fig. 27(a). The cache

array in the figure displays the final residences of all the lines after the program’s completion.

Clearly, this example demonstrates FSB’s efficiency in reducing conflict misses by allowing

one-from-many sharing among cache sets.

Lastly, Fig. 28(c) illustrates the same example demonstrated in Fig. 27(b). Again, I

assume that A maps to set 3 and that the program issues A’s sequence of references twice.

64

FSB allows many sets to be shared by a source set. As such, in the first issuance of A,

FSB selects an underutilized set, say set 0, and retains a1 and a0 at, then selects another

underutilized set, say set 1, and retains a2 at. In the second issuance, all references of A hit

in the cache. FSB, consequently, saves the 6 misses incurred by DSBC in Fig. 27(b). Clearly,

this example magnifies the potential of FSB in reducing interference misses by employing

many-from-one sharing among cache sets.

5.2 FLEXIBLE SET BALANCING (FSB) MECHANISM

Flexible Set Balancing (FSB) regulates cache allocation by flexibly retaining a fraction of a

working set at underutilized cache sets to minimize interference misses and maximize system

performance. FSB is extensible and practical in that it can be employed on single-core as well

as multi-core architectures. FSB is oriented towards last level caches (in my case L2). FSB

requires three main capabilities: (1) deciding upon source and destination sets, (2) retaining

working sets of source sets at destination sets in a many-from-many sharing fashion, and

(3) locating retained blocks on destination sets upon future reuses. I next describe each

capability in turn and close with an analysis on FSB’s hardware storage, area, energy, and

latency requirements.

5.2.1 Retention Limits

FSB is a pressure-aware strategy where lines evicted from highly pressured sets (source sets)

are retained at low pressured sets (destination sets). The pressure at a cache set can be

measured in terms of cache misses or hits. In this work I adopt cache misses as a pressure

function but provide in Section 5.3.2 a study on a variety of pressure functions. The pressure

information can be recorded in an array embedded within the L2 controller of a cache bank.

Each cache set corresponds to an entry in the pressure array and the indexes of the cache

sets are used to index the array. Each time a miss occurs at a certain set, the array can be

updated accordingly (by incrementing the corresponding array slot). In order to allow the

65

array to accurately represent pressures at sets, after every time interval, I keep only part

of the pressure values (e.g., 0.25 of values by shifting each value 2 bits to the right). That

permits FSB to adapt to undergoing phase changes in programs. The collected pressures

can be utilized to guide the retention process.

Clearly, the set that corresponds to the maximum value in the pressure array is the most

highly pressured set. In contrast, the lowest pressured set is the one that corresponds to

the minimum value in the array. In this work I define two limits, the low pressure limit

(LPL) and the high pressure limit (HPL), to allow a range of highly pressured sets to retain

their blocks at a range of low pressured sets. A range can encompass one or many sets.

When the pressure of a set is below LPL, the set is deemed to be within the limit of the

destination sets and can receive lines from any source set. In contrast, when the pressure

of a set is above HPL, the set is considered to be within the limit of source sets and is

permitted, accordingly, to retain its lines at multiple destinations sets. Clearly, this allows

many-from-many sharing among cache sets. LPL and HPL are defined in equations (1) and

(2). The range of source and destination sets can be expanded or contracted by altering

α. The max and min parameters are the maximum and minimum pressures on the pressure

array.

LowPressureLimit(LPL) = min + (α × (max - min)) (1)

HighPressureLimit(HPL) = max − (α × (max - min)) (2)

5.2.2 Retention Policy

FSB maintains a small retention table (RT) per each L2 bank. Each cache set has a cor-

responding RT entry. As such, the number of entries in RT equals the number of cache

sets in the L2 bank. RT can store in the i-th entry many RT(i).index values, each pointing

to a destination set with a different index. In Section 5.3.1, I empirically show that four

RT(i).index pointers are enough to attain an efficient FSB. RT(i).index pointers can be used

by FSB to locate retained blocks upon future reuses (more on this shortly).

When an LRU line, L, is evicted from a set i, my retention policy proceeds as follows:

1. The i’s corresponding pressure value in the pressure array is looked up, minimum (MIN)

66

and maximum (MAX) values are generated, and HPL and LPL are calculated.

2. If i’s pressure is greater than HPL, i becomes a source set and L is deemed eligible for

retention. Otherwise, L is evicted.

3. In parallel, RT(i) entry is looked up. If L is eligible for retention and RT(i) entry has no

pointers to destination sets, MIN is checked if less than LPL. If satisfied, L is retained

at the cache set corresponding to MIN and an equivalent RT(i).index pointer is created.

Otherwise, L is evicted.

4. If RT(i) entry, on the other hand, has pointers (or at least one pointer), these pointers

are used to index the pressure array, generate the minimum value out of the indexed

values, and compare it against LPL. If satisfied, L is retained at the corresponding cache

set and no RT(i).index pointer is created. Otherwise, an invalid RT(i).index is checked

if exists.

5. If an invalid RT(i).index is found and MIN satisfies LPL, L is retained at the correspond-

ing set and an equivalent RT(i).index pointer is created. Otherwise, L is discarded.

Note that upon retention, L is inserted as the most recently used (MRU) line in the

selected destination set. The LRU line evicted at the destination set, to make room for L,

is discarded simply because the destination set doesn’t satisfy HPL. As such, FSB avoids

ripple effects.

The LRU evicted line, L, at the source set can be either native or retained. If L is native,

FSB simply proceeds with the retention process. Otherwise, L is checked if active. L is

defined to be active if at least one core on the CMP platform had cached a copy of L (in its

L1). This can be easily determined from L’s associated directory bit vector. I assume that

an active L is currently in use by the caching core(s) and, accordingly, attempt to retain it

again. If L is retained and not active, I assume that it has been kept long enough in the

cache without providing a cache hit, and, as such, avoid retaining it over again (although

eligible for retention).

The pressure array is updated not only at a miss/hit but further when retaining a line at

a destination set. When a destination set receives a retained line, its corresponding pressure

value is incremented. This is critical so as to reflect the progressive increasing pressure on

a destination set each time it receives a retained line. This makes FSB very flexible and

67

attentive as it allows selecting a different destination set once the pressure of the current

destination set surpasses LPL.

Retaining cache lines at destination sets requires extending lines’ tags. This is due to

the fact that a cache line must have a one-to-one correspondence with a unique address. For

instance, assume a line E is retained at a destination set S and that S has a line F which

has an identical tag field as E. E and F addresses are, in fact, only distinct because they

differ in their index fields. Now E and F co-reside at S and thus become indistinguishable.

Nevertheless, this suggests a simple solution. That is, augmenting each line’s tag with the

index field. Section 5.2.4 describes FSB’s storage, area, energy, and latency requirements.

Finally, upon discarding a retained line, R, from a destination set, D, R’s augmented

index j is matched with the augmented indexes of D’s resident lines. A “no match” outcome

means that R is the last retained line at D from the source set j. Consequently, I index

RT(j) entry and invalidate the RT(j).index pointer that points to D. To that end, I note

that the retention process is activated in parallel with the resolution of a definitive miss

(which usually takes hundreds of cycles to fetch the requested line from the main memory).

5.2.3 Lookup Policy

Upon a request to a cache line, L, the cache starts always looking up the set i that L’s index

designates. RT(i) entry is also looked up concurrently. If a hit occurs at set i, the request is

satisfied and the pressure array is updated (only if the pressure function involves hits). If, on

the other hand, a miss occurs at set i, the cache sets identified by the RT(i).index pointers

(if any) are serially looked up until either a secondary hit is acquired or a definitive miss

is proclaimed. Set lookups are serialized to keep FSB simple, avoid port contention, and

reduce power dissipation1. Section 5.3.1 demonstrates that such a serial policy doesn’t hurt

performance because the gain from hits on retained lines exceedingly offsets the loss from

sequential lookups. Upon a secondary hit, the request is satisfied and the pressure array

is updated (only if the pressure function involves hits). If a definitive miss is asserted, the

1Prior research has made use of serialization to increase flexibility and improve performance in large
caches [15, 24]. Existing processors have also adopted serialization for looking up tag and data arrays
seeking to reduce power dissipation [21, 69].

68

Component Bits Per Entry K Entries K Bytes Per Tile

RT Entry 9 2 2.3

Augmented Bits Per an L2 Line 9 8 9.2

Total KBytes 11.5

% Increase of On-Chip Cache Capacity 1.9%

Table 8: FSB storage overhead.

pressure array is updated at slot i (if the pressure function involves misses), the retention

policy is triggered and, in parallel, the requested cache line is fetched from the main memory

and inserted in set i.

FSB doesn’t swap retained lines upon hits to return them to their original sets for many

reasons. First, this simplifies management. Second, FSB is oriented towards last level

caches. As such, once a hit is obtained on a retained line, the line is moved to the upper

level of the memory hierarchy where successive accesses can find it. Third, swapping is

undesirable because it requires four accesses to the tag-store, consumes energy, and increases

port contention [53].

5.2.4 FSB Cost

FSB comes at a little storage, area, latency, and energy overheads. In this work I assume

a 32 KB 2-way associative I/D L1 caches and a 512KB 16-way associative L2 bank (i.e.,

encompassing 512 cache sets) per each CMP tile. Section 5.3.1 shows that 4 pointers per

each RT entry are enough for an effective FSB. Each RT pointer requires 9 bits. Table 8

shows that less than 2% storage overhead is required by FSB.

To model area and energy I use CACTI v5.3 [32]. I assume a 45nm technology. Table 9

demonstrates the area and energy per access required for both a baseline L2 bank and an L2

bank with FSB being incorporated. The TR table, in addition, requires 0.14 mm2 and 0,015

nJ area and energy per access, respectively. Note that the energy savings due to reducing

69

Technology Baseline Energy FSB Energy Baseline Area FSB Area

45nm 1.23nJ 1.26nJ 5.36mm2 5.47mm2

Table 9: Baseline and FSB required energy and area in a 512KB/16-

way/64B/LRU L2 bank.

off-chip accesses is not considered. Such savings are expected, in fact, to counterbalance my

calculated energy overhead and further provide advantages as chip crossings are one of the

greediest energy consumers [33]. Finally, and due to augmenting lines’ tags by indexes, FSB

incurs a negligible increase in latency (only 0.02 ns) per each L2 bank access.

5.2.5 Scalability

As FSB alleviates the workload imbalance across cache sets within each L2 cache bank

irrespective of the number of tiles, it becomes very scalable to large-scale CMP platforms.

The discussed cost in Section 5.2.4 pertains to each L2 bank and is completely independent

of the number of banks. Furthermore, the performance is expected to scale successfully with

larger number of tiles as that might lead to a higher exposure of the interference misses

problem which FSB attempts to tackle.

5.3 QUANTITATIVE EVALUATION

The evaluation methodology and the benchmark programs I use in this chapter are the ones

described in Section 2.3. Besides, after every 20 million instructions, I keep only 0.25 of the

pressure values (see Section 5.2.1).

70

(a)

(b)

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)*+,-..")/0*1234" .256780,9" :;<=503=>07+" .083+4" ?@" ABC(" ABC$" ABCD" ABC%" EFG#"

H
2
8>

0
;=
I+
5
"?
$
"A

=4
4"
J
0
7+
"

.+3,K>0894"

)" :).L(" :).L$" :).L%" :).L'"

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)*+,-..")/0*1234" .256780,9" :;<=503=>07+" .083+4" ?@" ABC(" ABC$" ABCD" ABC%" EFG#"

H
2
8>

0
;=
I+
5
"J
K+
,<
1
2
3
"L
=>

+
"

.+3,M>0894"

)" :).N(" :).N$" :).N%" :)N'"

Figure 29: L2 miss rates and execution times of the baseline shared scheme (S),

FSB-1, FSB-2, FSB-4, and FSB-8 (all normalized to S).

71

5.3.1 Comparing FSB against Shared Baseline

Let me first compare FSB against the baseline shared (S) scheme. Fig. 29 (a) shows the L2

miss rates of S and four FSB configurations normalized to S. I denote FSB with retention

tables (RT) storing 1, 2, 4, and 8 RT(i).index pointers per each entry i as FSB-1, FSB-2,

FSB-4, and FSB-8, respectively. Furthermore, I assume a low pressure limit (LPL) and a high

pressure limit (HPL) each with α = 0.2. Section 5.3.3 offers a sensitivity study on different

α values. I adopt cache misses as a pressure function but Section 5.3.2 provides a study on

a variety of other functions. The figure demonstrates that as the number of pointers per an

RT entry increases, FSB achieves higher L2 miss rate reductions. This behavior is apparent

on all the examined benchmark programs. FSB centers around the flexible many-from-many

sharing policy. More pointers indicate more exploitation to the many-from-many sharing

strategy and, consequently, more alleviation to the imbalance across sets. On average, FSB-

1, FSB-2, FSB-4, and FSB-8 accomplish average miss rate reductions of 14.6%, 23.9%, 36.6%,

and 48.7%, respectively.

FSB strategy adopts a serial lookup policy (see Section 5.2.3 for more details). Upon

a miss on the original set i, RT(i).index pointers (if any) are utilized to serially index and

lookup corresponding L2 cache sets. Only the tag-stores are looked up until either a sec-

ondary hit is obtained or a definitive miss is asserted. Each tag-store access takes less than

0.68 ns, estimated by CACTI v5.3 [32] assuming a 45nm technology. This incurs a higher la-

tency per each L2 access that misses at the original set. As such, although more RT(i).index

pointers result in more L2 miss rate reductions, a latency cost is to be paid. Fig. 29 presents

the execution times of S, FSB-1, FSB-2, FSB-4, and FSB-8 normalized to S. A main obser-

vation is that as I proceed through FSB configurations (FSB-1 to FSB-8), the performance

of each application monotonically improves until FSB-8 is reached. Under FSB-8 the case

changes and programs are split into three categories: (1) no benefit is accomplished (e.g.,

SpecJBB), (2) a benefit is achieved (e.g., Fluidanimate, Barnes, Lu, MIX1, MIX2, and

MIX3), and (3) a degradation is observed versus FSB-4 (e.g., Swaptions, Bodytrack, and

MIX4).

Two factors define the eligibility of applications for accomplishing higher or lower per-

72

!"

#"

$"

%"

&"

'"

("

)"

*"

+"

,-./#" ,-./$" ,-./&" ,-./*"

0
12
3"4
"5
6"
-7
89
"-
7:
;<
=
7>

"

-8;:872?"

-@7<A.."

-B:@C5D9"

.5>?8;:<E"

,FGH>:DHI:87"

.:;D79"

JK"

LMN#"

LMN$"

LMN%"

LMN&"

Figure 30: The average number of L2 cache sets searched under FSB-1, FSB-2,

FSB-4, and FSB-8.

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

,-./011" ,23-4567" 1589:;3/<" =>?@836@A3:." 13;6.7" BC" DEF#" DEF$" DEF%" DEF&" GHIJ"

K
"5
L"
M
@:
7"
5
6
"N
.
:3
@6
.
8
"1
>5
/<
7"

1.6/OA3;<7"

=,1P#" =,1P$" =,1P&" =,1P*"

Figure 31: The percentage of hits on retained cache lines under FSB-1, FSB-2,

FSB-4, and FSB-8.

73

formance when switching between FSB’s configurations: (1) the gain, G, from miss rate

reduction and (2) the loss, L, from increased access latency. Let 4i be defined as G − L

for FSB-i. When 48 exceeds 44, the performance of the application improves by switching

from FSB-4 to FSB-8, otherwise, it degrades. Swaptions, Bodytrack, and MIX4 achieve

miss rate reductions of 6.1%, 7%, and 7%, respectively after increasing RT pointers from 4

to 8. In fact, under FSB-8, these three applications reduce the L2 miss rates the least as

compared to the other examined programs (see Fig. 29 (a)). Clearly, 44 of each of Swap-

tions, Bodytrack, and MIX4 overpasses 48, thus they degrade under FSB-8 in comparison

to FSB-4. FSB-1, FSB-2, FSB-4, and FSB-8 outperform S by averages of 4.3%, 8.8%, 13%,

and 18.6%, respectively. Although FSB-8, on average, surpasses the remaining FSB’s config-

urations, I consider FSB-4 more desirable for two main reasons. First, FSB-4 doesn’t observe

any degradation in performance for any application when compared against the preceding

configurations. Second, FSB-4 offers a better tradeoff between hardware complexity, power

dissipation, and performance.

!"

#!!!!"

$!!!!!"

$#!!!!"

%!!!!!"

%#!!!!"

&!" &$" &%" &'" &(" &#" &)" &*" &+" &," &$!" &$$" &$%" &$'" &$(" &$#"

-
".
/"
0
%
"1

23
3
4
3
"

0%"&5673"

89:;<&&"

1=>"84?"@8A" 1BC"84?"@8A" 1=>"84?"@D8&E(A" 1BC"84?"@D8&E+A"

!"

#!!!!"

$!!!!!"

$#!!!!"

%!!!!!"

&!" &$" &%" &'" &(" &#" &)" &*" &+" &," &$!" &$$" &$%" &$'" &$(" &$#"

!
"#
$"
%
&
"'

()
)
*
)
"

%&"+,-.)"

'/01"

'20"3*4"536" '/7"3*4"536" '20"3*4"583+9:6" '/7"3*4"583+9:6"

Figure 32: The number of L2 misses experienced by cache sets at different

L2 banks for SpecJBB and MIX3 programs under the baseline shared scheme

(S) and FSB-4. Only the sets that exhibit the maximum (MAX Set) and the

minimum (Min Set) misses are shown.

To that end, Fig. 30 depicts the average number of L2 cache sets searched for all the

applications under FSB-1, FSB-2, FSB-4, and FSB-8. Furthermore, Fig. 31 displays the

percentage of hits on retained cache lines for each program. In fact, the latter figure explores

FSB’s efficiency in satisfying far-flung reuses after retaining some fraction of the working

74

set at underutilized sets. With FSB-4, more than half of the hits are satisfied by retained

lines. On average, the percentage of hits on retained lines provided by FSB-1, FSB-2,

FSB-4, and FSB-8 are 25%, 35.8%, 52.6%, and 62.8%, respectively. Finally, Fig. 32 explores

FSB’s effectiveness in mitigating non-uniformity across sets by showing the number of misses

experienced by cache sets at different L2 banks for two benchmarks, a multithreading one

(i.e., SpecJBB) and a multiprogramming one (i.e., MIX3). I present only the sets that

exhibit the maximum and the minimum misses for the baseline shared, S, and FSB-4.

5.3.2 Sensitivity to Different Pressure Functions

(a) (b)

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)(")$")*"

+
,
-
./
0
-
"1
$
"2

34
4
"5
/
6-
"

7.-448.-")89:;<94"

=")=>?(")=>?$")=>?%")=>?'"

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)(")$")*"

+
,
-
./
0
-
"1
2
-
3
4
5
6
7
"8
9:

-
"

;.-<<4.-")473567<"

=")=>?(")=>?$")=>?%")=>?'"

Figure 33: Average L2 miss rates and execution times of all the benchmark

programs under the baseline shared scheme (S), FSB-1, FSB-2, FSB-4, and

FSB-8 (all normalized to S) (F1, F2, and F3 are pressure functions that involve

misses, hits, and spatial hits, respectively).

In the previous section I utilized cache misses as a pressure function. I tested other

functions that can be used to measure pressures at cache sets. Fig. 33 plots the results for

only three functions F1, F2, and F3 which denote functions with misses only, hits only, and

spatial hits, respectively. I assume a low pressure limit (LPL) and a high pressure limit

(HPL) each with α = 0.2. The spatial hits function simply updates the pressure array with

different values upon hits depending on lines’ frames. That is, upon a hit on a line, Lmru,

75

which exists at the MRU position, the function increments the bucket that corresponds

to Lmru’s set by 1. However, upon a hit on a line, Lmru −1, next to Lmru, the function

increments the corresponding bucket by 2, and so on. The idea stems from the fact that a

single highly contended line (say a lock) could result in a very high hit count at a particular

set when, in fact, the pressure of lines competing for that set is very low. As depicted in

Fig. 33 (b), on average, F2 produces performance improvements of 2.4%, 4.4%, 4.1%, and

5.4% for FSB-1, FSB-2, FSB-4, and FSB-8 over the baseline shared (S) scheme, respectively.

F3, on the other hand, offers average performance improvements of 2.7%, 2.6%, 4.8%, and

6% for FSB-1, FSB-2, FSB-4, and FSB-8 over S, respectively. Lastly, F1 surpasses both, F2

and F3, and provides average performance improvements of 4.3%, 8.8%, 13%, and 18.6% for

FSB-1, FSB-2, FSB-4, and FSB-8 versus S, respectively. For the examined benchmarks, I

conclude that cache misses is preferable among the tested functions to represent pressures

at cache sets. More comprehensive functions can be considered in a future work.

5.3.3 Sensitivity to LPL and HPL

So far, I have been using α = 0.2 for the low and the high pressure limits, LPL and HPL.

As Section 5.2.1 describes, by altering α, the range of source and destination sets can be

expanded or contracted. I tested FSB-1, FSB-2, FSB-4, and FSB-8 with two more α values,

particularly 0.1 and 0.3 for both LPL and HPL. Fig. 34 shows the results. RL1, RL2,

and RL3 denote the retention limits (i.e., LPL and HPL) with α values of 0.1, 0.2, and 0.3,

respectively. As demonstrated in Fig. 34(a), on average, RL1 provides L2 miss rate reductions

of 14.4%, 21.3%, 35%, and 48.3% for FSB-1, FSB-2, FSB-4, and FSB-8 against the baseline

shared (S) scheme, respectively. RL2, on the other hand, offers a little more enhancement

and produces 14.6%, 23.9%, 39.4%, and 48.7% L2 miss rate reductions for FSB-1, FSB-2,

FSB-4, and FSB-8 versus S, respectively. Finally, RL3 achieves 15.2%, 24.3%, 36.2%, and

49.8% miss rate reductions for FSB-1, FSB-2, FSB-4, and FSB-8 over S, respectively. Fig. 34

(b) depicts the performance outcome. For the simulated benchmarks, I conclude that FSB

shows low sensitivity to the examined α values .

76

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)*(")*$")*+"

,
-
.
/0
1
.
"*
$
"2

34
4
")
0
5.
"

).5.6786"*39354"

!" #!$%&" #!$%'" #!$%(" #!$%)"

(a) (b)

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)*(")*$")*+"

,
-
.
/0
1
.
"2
3
.
4
5
6
7
8
"9
:;

.
"

).<.8678"*:;:<="

>" ?>@A(" ?>@A$" ?>@A%" ?>@A'"

Figure 34: Average L2 miss rates and execution times of all the benchmark

programs under the baseline shared scheme (S), FSB-1, FSB-2, FSB-4, and

FSB-8 (all normalized to S) (RL1, RL2, and RL3 are the Retention Limits- HPL

and LPL- with α = 0.1, α = 0.2, and α = 0.3, respectively).

5.3.4 Impact of Increasing Cache Size and Associativity

We can improve cache performance not only by efficient cache management but also via

increasing cache size and associativity. In this section I consider only FSB-4 (see Section 5.3.1

for a discussion on FSB’s configurations). FSB-4 requires 11.5KB storage overhead per tile

(see Table 8). To justify FSB-4’s incurred overhead, I optimistically augment each cache

set of the baseline shared scheme, S, with two more ways. In total, this adds to each L2

bank a 64KB more capacity. I refer to this configuration as S(2W). Moreover, I examine S

with a double sized cache (i.e., 1MB instead of 512KB). I denote this latter configuration by

S(D). Fig. 35 shows the L2 miss rates of S, S(2W), S(D), and FSB-4 normalized to S. The

figure demonstrates that doubling the size of the cache results in a greater miss reduction

than increasing associativity by two ways. Nonetheless, FSB-4 surpasses S(D) for all the

examined programs except Lu. On average, S(2W), S(D) and FSB-4 achieves L2 miss rate

reductions of 5.1%, 15.6%, and 36.6%, respectively. I conclude that FSB-4 is quite attractive

as with small design and storage overhead it provides more than 2x miss rate reduction over

77

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)*+,-..")/0*1234" .256780,9" :;<=503=>07+" .083+4" ?@" ABC(" ABC$" ABCD" ABC%" EFG#"

H
2
8>

0
;=
I+
5
"?
$
"A

=4
4"
J
0
7+
"

.+3,K>0894"

)")L$MN")LON" :).P%"

Figure 35: L2 miss rates of the baseline shared scheme (S), S with two more ways

added (S(2W)), S with double sized cache (S(D)), and FSB-4 (all normalized to

S).

S(D) which incurs 88.8% increase in the on-chip cache capacity.

5.3.5 FSB versus Victim Caching

In this section I compare FSB against victim cache (VC) [37]. Again, I contrast only against

FSB-4. VC effectively extends the associativity of hot sets in the cache to reduce conflict

misses. For a fair comparison, I consider a fully associative 16KB VC per tile to approxi-

mately match the storage overhead incurred by FSB-4. I, furthermore, optimistically assume

only a 6 cycle access time to VC after each miss on an L2 bank. Fig. 36 depicts the execution

times of S, VC, and FSB-4 normalized to S. VC outperforms S by an average of 6.3%. In

contrast, FSB-4 improves upon S and VC by averages of 13% and 7.2%, respectively.

5.3.6 FSB versus DSBC and V-WAY

In addition to comparing with victim caching, I compare FSB against the closely related dy-

namic set balancing cache (DSBC) [55] and variable-way set associative cache (V-WAY) [53]

78

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)*+,-..")/0*1234" .256780,9" :;<=503=>07+" .083+4" ?@" ABC(" ABC$" ABCD" ABC%" EFG#"

H
2
8>

0
;=
I+
5
"J
K
+
,
<
1
2
3
"L
=>

+
"

.+3,M>0894"

!" #$" %!&'("

Figure 36: Execution times of the baseline shared scheme (S), victim cache (VC),

and FSB-4 (all normalized to S).

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

!" '" #" (" $")" %" *+"

,
"-
."
/-
01
2"3
#"
45
67
8
-
9
:"

;<=:<">-=90"

?@<7ABB"

?C1@8-9:"

B-DE0F17G"

H2=6D"

B1F9<:"

3I"

JKL'"

JKL#"

JKL("

JKL$"

99%

Figure 37: Distribution of L2 cache lines’ reuses before evicted from L2 (Reuse

Count = the number of L2 accesses to a cache line after its initial fill).

79

(a)

(b)

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)*+,-..")/0*1234" .256780,9" :;<=503=>07+" .083+4" ?@" ABC(" ABC$" ABCD" ABC%" EFG#"

H
2
8>

0
;=
I+
5
"?
$
"A

=4
4"
J
0
7+
"

.+3,K>0894"

)" LMNEO" P).Q" :).M%"

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)*+,-..")/0*1234" .256780,9" :;<=503=>07+" .083+4" ?@" ABC(" ABC$" ABCD" ABC%" EFG#"

H
2
8>

0
;=
I+
5
"J
K
+
,
<
1
2
3
"L
=>

+
"

.+3,M>0894"

)" NOPEQ" R).S" :).O%"

Figure 38: L2 miss rates and execution times of the baseline shared scheme

(S), variable-way set associative cache (V-WAY), dynamic set balancing cache

(DSBC), and FSB-4 (all normalized to S).

80

designs. Similar to FSB, both DSBC and V-WAY are directly extensible to CMPs. Sec-

tions 5.1.2 and 2.2 detail DSBC and V-WAY, respectively.

To elaborate more on V-WAY’s reuse replacement policy, each data line in the cache is

associated with a reuse counter. A reuse count is defined as the number of L2 accesses to a

cache line after its initial fill. Upon replacement, a line with a reuse counter equal to zero

is replaced. An engine tests and decrements each non-zero reuse counter until one with a

zero value is detected. The reuse replacement policy is critical to V-WAY. Hence, to decide

upon the number of bits required for reuse counters, I conducted a study to scrutinize the

distribution of reuse counts for all evicted L2 cache lines from my benchmark programs.

Fig. 37 explores such a distribution. I observe that 99% of L2 cache lines are reused three

or fewer times. Consequently, I choose to use two-bit saturating reuse counters.

Fig. 38(a) depicts the L2 miss rates of S, V-WAY, DSBC, and FSB-4 normalized to S. On

average, V-WAY and DSBC achieve miss rate reductions of 14.7% and 11.3%, respectively.

FSB-4 surpasses V-WAY and DSBC by averages of 27.2% and 29.2%, respectively. Fig. 38(b)

shows the execution time results. V-WAY and DSBC outperform S by averages of 5.9% and

5%, respectively. FSB-4, however, improves upon V-WAY and DSBC by averages of 7.8%

and 8.8%, respectively.

5.4 SUMMARY

Memory accesses are not evenly distributed across cache sets. Such a skew in sets’ usages

reduces the effectiveness of the conventional cache designs and cache lines become less likely

to be re-referenced before eviction. I propose Flexible Set Balancing (FSB), a strategy that

exploits the demand imbalance across sets to retain cache lines evicted from highly pressured

sets at underutilized sets so as to satisfy far-flung reuses. FSB adapts to phase changes in

programs and promotes a very flexible sharing among cache sets. An underutilized set is

allowed to share its space by any stressed set during any point in a program’s execution, a

policy that I refer to as one-from-many sharing. Besides, many sets are allowed to share their

capacities with a highly utilized set, a policy that I refer to as many-from-one sharing. FSB

81

targets CC-FR’s data retention category and addresses interference misses, bandwidth wall

problem, and processor-memory speed gap challenges. FSB incurs a little storage, area, and

energy overheads. Simulation results show that FSB achieves an average miss rate reduction

of 36.5% for the benchmark programs I examined. This produces an average execution time

improvement of 13%. Furthermore, evaluations manifested the outperformance of FSB over

some relevant designs including DSBC [55] and V-WAY [53].

82

6.0 ADAPTIVE CONTROLLED MIGRATION

In this chapter I describe Adaptive Controlled Migration (ACM), a novel relocation mech-

anism that builds on an area-efficient shared cache design and dynamically migrates cache

blocks to cache banks that best minimize the average L2 access latency. ACM targets

CC-FR’s data relocation category and addresses the growing non-uniform access latencies

challenge. In Section 6.1 I provide a motivational study and outline my proposed solution.

I then detail the ACM mechanism in Section 6.2. A quantitative evaluation of ACM and a

related design is presented in Section 6.3 and conclusions are given in Section 6.4.

6.1 MOTIVATION AND PROPOSED SOLUTION

6.1.1 Motivation

As described in Section 1.2.1, the nominal shared NUCA caches have a latency problem.

Block replication and migration have been suggested as techniques for shared caches to

tackle this latency problem by frequently copying or moving accessed blocks to cache banks

closer to the requesting processors [40, 18, 59, 38, 6, 16, 12, 74, 43]. Replication in general

results in reduced cache hit latencies but may degrade cache hit rate. In fact, blind replica-

tion can be detrimental since the capacity occupied by replicas could increase significantly

resulting in performance degradation [6]. Migration, on the other hand, maintains the ex-

clusiveness of cache blocks on chip and preserves the high utilization of the caching capacity.

Furthermore, it maintains the simplicity of the underlying cache coherence protocol. How-

ever, migration has been shown to be less effective for CMP caches than for uniprocessors

83

[7, 40]. The challenge in the CMP domain is that migration in multiple directions can cause

migration conflicts, with shared blocks ping-ponging between processors [34]. Besides, lo-

cating migratory blocks in bank sets may turn out to be very expensive to an extent that it

might offset the benefits offered by the migration technique.

Figure 39: (a) The Original Shared CMP Scheme. (b) A Simple Migration

Example.

I demonstrate through an example the difficulty behind block migration and the ineffi-

ciency it may cause with shared L2 cache design in the CMP context. Figure 39(a) illustrates

a 16-core tiled CMP. Again, I assume a shared scheme where L2 cache slices are logically

shared among all tiles. Upon an L2 miss, a line is fetched from the main memory and placed

at its static home tile (SHT) determined by a subset of bits (the HS bits) of the line’s phys-

ical address. The figure shows a case where a block, B, has been originally requested by tile

3 and mapped to tile 6. Later tiles 0 and 8 request the same cache block B. Tile 3 incurs

6 network hops, computed as twice the Manhattan distance between the requester and the

target tiles (dimension-ordered routing [46]), to reach B’s SHT, T6, and satisfy its request.

Tiles 0 and 8 incur 8 hops each to satisfy their requests.

Figure 39(b) illustrates a näıve first touch migration policy that directly migrates B to

the original requester. Employing that, tile 3 will save the 6 network hops when touching

B for the second time, assuming that it checks its local L2 tags before accessing B’s SHT.

Block B, however, has been pulled away from the other two sharers incurring additional 6

84

hops for each one to locate the block on its new host tile. Consequently, even though one tile

made a gain, in total there is a loss of 6 network hops. Besides, the on-chip network traffic

increases due to the three-way cache-to-cache communications to satisfy sharers’ requests.

Specifically, when tile 0 (or 8) requests B, it has to check with tile 6 first, which is B’s SHT,

before its request is redirected to tile 3.

Though the above example shows a näıve migration policy, it highlights the intuition that

applying migration in a non-controlled fashion to NUCA designs can lead to performance

degradation. The problem, in fact, is that the best host of a cache block is not known

apriori. Consequently, migration or replication can interfere to rectify the situation. It

would be highly beneficial if there is a mechanism that can dynamically and adaptively

locate the best host on chip for each cache block, and move consecutively the block to that

host without incurring undesirable implications.

6.1.2 Proposed Solution

This chapter grants a fresh thought to the data migration technique as a way to manage

shared NUCA caches and studies its effectiveness in tiled CMPs. I propose a novel hardware-

based adaptive controlled migration (ACM) mechanism that relies on prediction to collect

information about which tiles have accessed a block and then, assuming that each of these

tiles will access the block again, dynamically migrates the block to a tile that minimizes the

overall number of network hops needed. Simulation results demonstrate the effectiveness,

scalability, and stability of the proposed scheme using a variety of workloads that exhibit

no-sharing, little sharing, or sharing of cache blocks.

In summary, the contributions of the ACM mechanism are as follows:

• It demonstrates that migration, if done in an adaptive controlled fashion, yields an

average L2 access latency that is on average 20.4% better than the nominal shared cache

scheme, and 20.8% better than a conventional replication strategy for the simulated

benchmarks.

• It demonstrates the effectiveness of migration in the CMP domain and opens new research

opportunities and directions for computer architects.

85

• It avoids replication of cache blocks and reduces the overall L2 cache access latency

without degrading the cache miss rate.

6.2 THE ADAPTIVE CONTROLLED MIGRATION (ACM) MECHANISM

6.2.1 Predicting Optimal Host Location

Keeping a block in its home tile is often sub-optimal. Ideally, we want to place a cache block

in the tile that best optimizes the overall latencies. However, the best host tile for a block is

not known until runtime because many cores may compete for that block. Consequently, a

dynamic adaptive mechanism that monitors the runtime accessibility of a block and makes

a decision about the best location for the block is needed.

I propose a simple location algorithm that attempts to locate the optimal host of a cache

block at runtime and designates it as its new host tile. It computes the total latency cost for

a given cache block, B, on each of the potential hosts and chooses the minimum. In order to

achieve this, the algorithm keeps some runtime information, particularly, a pattern for the

accessibility of B. The pattern is essentially a bit vector to indicate whether B has been ac-

cessed by a specific core or not. It can be built at run time with different migration frequency

levels. The migration frequency level is the number of times B is accessed before attempting

to migrate it. Whenever a core accesses B, its corresponding bit is set in the associated bit

vector and a use counter associated with B is incremented. This continuously shapes up

an accessibility pattern for B and provides the aspired runtime information. When the use

counter reaches the specified migration frequency level, the location algorithm interferes and

selects a new host for B that minimizes the total L2 access latency for all B’s sharing cores.

After migrating B, its corresponding pattern and use counter are cleared so as to initiate

a new pattern construction. As such, ACM pertains a simple prediction scheme that depends

on the past to predict the future. A core that accessed B in the past is likely to access it

again in the future. Because ACM’s algorithm makes its decision based on this pattern, I

refer to the located host a predicted optimal host. Lastly, by having a migration algorithm

86

that relocates blocks from their SHTs, a location strategy capable of rapidly locating cache

blocks at the L2 cache space is required. ACM adopts C-AMTE (see Chapter 3) to achieve

fast location of L2 cache blocks.

Figure 40: An Example of How ACM Works (S = Sharer, H = Host).

To exemplify how the ACM mechanism works, Figure 40 portrays 4 different cases for

potential hosts that a cache block may migrate to. S stands for a sharer and H for the

current host. A sharer is a tile that accessed the block in the past. A host is a tile that

is currently hosting the cache block. The designated block has two sharers, tiles 0 and 6.

The block can be potentially hosted by any of the 16 tiles, but in Figure 40 I depict only

four cases where the tiles 3, 15, 2, and 0 host the block. Total latencies of 14, 22, 10, and 8

network hops are incurred by the sharers to locate the data block in these four designated

hosts respectively. Among these, host 0 gives the minimum aggregate latency and is selected

by the ACM mechanism to be the predicted optimal host.

6.2.2 Replacement Policy Upon Migration: Swapping the LRU Block with the

Migratory One

After the location algorithm designates a new host for a block, B, and the migration is to be

performed, a decision must be made about which block to replace in the new host, T, located

for B. If there is no invalid block in the target set at T, a näıve approach would replace the

87

LRU block, say, D. However, because cache accesses might not be well distributed over the

cache sets, there could be a capacity pressure at T, and D could be requested again. Hence,

I try not to discard block D but to swap it with B so as to maintain the copy on chip.

Blocks B and D can be migratory or non-migratory blocks. Migratory blocks are those

that have been already migrated out of their SHTs while non-migratory ones are those that

have not been migrated yet. If B is non-migratory, a principal tracking entry should be

allocated at its SHT in the TR table. If no entry is found to be replaced at the TR table,

as planned by the C-AMTE replacement policy, migration is not performed. If B could

be migrated and D is a migratory block, then they are simply swapped and D’s associated

tracking entries are all updated to reflect the change of the host location. If D is non-

migratory, the TR table at its SHT is checked for a valid tracking entry to replace. If a

valid entry is found, a corresponding principal tracking entry is allocated and B and D are

swapped. If no valid entry is found then D is simply discarded and B is migrated to the new

located host. Of course, if B also is a migratory block then when migrated, all its associated

tracking entries are updated to denote its new host.

Figure 41: An Automatic Data Attraction Case offered by ACM.

The above swapping policy is, in fact, very effective and robust that it makes my scheme

applicable even to workloads that don’t share cache blocks. I illustrate this effectiveness and

88

robustness via an example. Figure 41 depicts a case for a single thread that exhibits no

sharing at all and runs on tile 3 (the microarchitecture of the portrayed tiles is discussed in

Section 3). I assume that the thread’s working set is too large to fit entirely in the L2 cache

bank of tile 3. To reduce L2 access latency, and with migration frequency level of 1, my

location algorithm will choose to migrate all requested blocks to the L2 bank of tile 3 after

accessing each for the second time. Figure 41(a) depicts the placement of block B after it

has been requested by tile 3 and mapped to B’s SHT, tile 5 (HS of B = 0101). Figure 41(b)

demonstrates the migration of B to the L2 bank of tile 3 after tile 3 accessed B for the second

time. Note that a principal tracking entry, b, is allocated in the TR table at B’s SHT and a

replicated one allocated at tile 3, as planned by the C-AMTE mechanism.

The case shows the capability of the ACM mechanism to automatically attract data to

local tiles, thus allowing cores to access blocks very fast for subsequent requests. However,

ACM is robust enough that it doesn’t allow such automatic data attraction to continue freely

and blindly, potentially causing increase in L2 miss rate. The swapping with the LRU policy

suggests that when no invalid block at the target set of the located host T is found (capacity

pressure), an attracted block B is swapped with the LRU block at T, thus avoiding increase

in L2 miss rate. Figure 41(c) assumes that when B has been migrated to tile 3 it produces

capacity pressure. The LRU block, C, at tile 3 is accordingly swapped with B as planned

by the swapping with LRU policy, thus maintaining C on chip and accordingly avoiding any

increase in the L2 miss rate. Note that a principal tracking entry, c, is allocated in the TR

table at tile 3 as planned by the C-AMTE mechanism.

Essentially, the case demonstrates some resemblance to the victim replication strat-

egy [74]. Victim replication also automatically attracts data to local tiles upon L1 evictions

in order for subsequent accesses to save latency. However, it doesn’t provide control on the

capacity usage and can greatly reduce the available caching space. Section 6.3 presents a

comparison between ACM and the victim replication scheme.

Finally, different cache blocks may experience entirely different degrees of sharing over

time and demonstrate diverse access patterns. The ACM algorithm collects those non-

uniform access patterns and based on them, finds a suitable location for data blocks that

best minimize the L2 access latency. Thus ACM inherently doesn’t prefer any specific on-

89

chip tile over the other. However, if at any course of execution, a cache bank receives a

capacity pressure more than other banks (similar to the above case), ACM robustly relaxes

the pressure via the swapping with the LRU policy.

6.3 QUANTITATIVE EVALUATION

In this section, I evaluate the ACM mechanism and alternative cache designs. I compare

ACM against the nominal shared (S) and the victim replication (VR) schemes [74]. The

rationale behind comparing against VR is to demonstrate that migration, if done in an

adaptive-controlled fashion, generates favorable results compared to replication. Replication

has been considered useful for tackling the NUCA problem [6, 16]. Migration, on the other

hand, hasn’t been proved to be highly effective in the context of CMPs [7, 73]. By showing

that ACM outperforms the shared design and one of the conventional replication strategies,

I thereby demonstrate that migration is in fact an effective technique for managing L2 caches

in CMPs.

6.3.1 Experimental Methodology

In this chapter I adopt a little different evaluation methodology than the one described

in Section 2.3, thus I detail it. As throughout the whole thesis, my evaluation employs a

detailed full system simulator built on Simics 3.0.29 [68]. I simulate a 16-way tiled CMP

architecture organized as a 4×4 2D mesh grid and runs under the Solaris 10 OS. Programs

are compiled for an UltraSPARC-III Cu processor. Each core runs at 1.4 GHz, uses in-order

issue, and has a 16KB I/D L1 cache and a 512KB L2 cache with the LRU replacement policy.

The aggregate L2 cache is consequently 8MB for the 16-tiled CMP model. Each L1 cache

is 4-way set associative with 1-cycle access time and 64 byte line. Each L2 cache is 16-way

set associative with 6-cycle access time and 64 byte line. A 5-cycle latency per hop, based

on a recent processor from Intel [66], is incurred when a datum traverses through the mesh

network including both, a 3-cycle switch [17, 73, 74] and a 2-cycle link latencies. The 4-GB

90

off-chip main memory latency is set to 300 cycles.

ACM, S, and VR are studied using a mixture of single-threaded, multithreaded, and mul-

tiprogramming workloads. For multithreaded workloads, I use the commercial benchmark

SPECjbb, and four other shared memory benchmarks from the SPLASH2 suite [70] (Ocean,

Barnes, LU, Radix). For single-threaded workloads I use six programs from SPEC2K [63],

three integers (vortex, parser, mcf) and three floating-points (art, equake, ammp) with the

reference data sets. These benchmarks were chosen because they demonstrate different access

patterns and different working set sizes [63, 20]. Two multiprogramming workloads, MIX1

(vortex, ammp, mcf, equake) and MIX2 (art, equake, parser, mcf), are constructed from

the selected 6 SPEC2K programs. Initialization phases of applications are skipped using

magic breakpoints from Simics. For the single-threaded and multiprogramming workloads,

a detailed simulation is run for each benchmark until at least one core completes 1 billion

instructions. Table 10 summarizes all the simulated benchmarks. Last but not least, I fix

the migration frequency level to 10 throughout the simulation.

6.3.2 Comparing Schemes, Single-threaded and Multiprogramming Workloads

Multiprogramming workloads tend to have very little sharing among the different threads [12,

73]. Single-threaded benchmarks represent the no-sharing case. VR is very appealing in this

situation because it can automatically attract data blocks to the only tile running the thread,

thus supposedly reducing access latency by decreasing inter-tile accesses from replica hits.

However, this may make the tile running the thread experience some high capacity demand.

This may result in poor utilization of the on-chip cache capacity. If the scheme fails to offset

the increased miss rate then this could lead to performance degradation. This intuition is

confirmed by the results shown in Fig. 42. The L2 miss rates of all the single-threaded

benchmarks shown for VR are all much larger than that for S. However, across all the

workloads VR successfully offsets the miss rate from fast replica hits. Contrary to that, VR

fails to offset the increase in L2 miss rate for the multiprogramming workloads. Clearly, the

SPEC2k applications have small working sets that more or less fit in L1 and L2 caches as

they expose negligible L2 miss rates as is shown in the figure for the S scheme. The L2 miss

91

Name Input

SPECjbb Java HotSpot (TM) server VM v 1.5, 4 warehouses

lu 1024×1024 matrix (16 threads)

ocean 514×514 grid (16 threads)

radix 2M integers (16 threads)

barnes 16K particles (16 threads)

parser reference

art reference

equake reference

mcf reference

ammp reference

vortex reference

MIX1 reference for all (vortex, ammp, mcf, and equake)

MIX2 reference for all (art, equake, parser, mcf)

Table 10: Benchmark programs.

Figure 42: Single-threaded and Multiprogramming Results (S = Shared, VR =

Victim Replication).

92

rate for the 6 single-threaded benchmarks is on average 0.04%. As the memory footprint

of the benchmark decreases, the space made available to replicas increases and accordingly

more performance improvement can be achieved. For the multiprogramming workloads,

4 benchmarks are now sharing the L2 cache space. Hence, the memory footprint of the

workload has been increased. The L2 miss rate for MIX1 and MIX2 is now 0.3% on average,

or 8.7x more than that of the single-threaded workloads. VR failed to offset this increase

and produced 41.8% and 46.0% AAL degradation over S and ACM schemes respectively.

Contrary to that, ACM still offers this automatic data attraction functionality suggested

by the VR scheme but in a very controlled fashion that it can efficiently customize allo-

cation of on-chip capacity via the swapping with LRU policy as is discussed in Section 2.

Consequently, it successfully generated AALs that are on average 20.5% and 3.7% better

than S and VR respectively for the single-threaded workloads, and 2.8% and 31.3% better

than S and VR respectively for the multiprogramming ones. VR performs better than ACM

only for the benchmarks vortex, parser, and mcf. It has been observed that 81%, 50%, and

57% of the cache blocks of the vortex, parser, and mcf benchmarks respectively are accessed

for less than 10 times (the specified migration frequency level). As a result, for all these

cache blocks, the ACM mechanism didn’t even attempt to migrate them to better hosts so

as to minimize the L2 access latency. This is because I fixed the migration frequency level

throughout simulations. Migration to any cache block is triggered upon being accessed for

the number of times that the migration frequency level specifies. For that reason, ACM is

not exhibiting its full ability to exploit the optimum performance though it still on average

greatly surpasses both of the schemes, S and VR. With an adaptive tunable migration fre-

quency level, the ACM mechanism would hit its optimum and consequently provide larger

performance improvements. This is to be explored in future research work.

As clearly shown in Fig. 42, ACM maintains the L2 miss rates of S for all the simulated

single-threaded and multiprogramming benchmarks. Moreover, it optimizes some of them

because of the swapping with the LRU policy and generates on average 2x and 1.5x reduc-

tions in L2 miss rates over S for the single-threaded and the multiprogramming benchmarks

respectively. Finally, Fig. 43 shows the average memory access cycles per 1K instructions

experienced by all the simulated benchmarks. VR performs on average 15.1% better than

93

S and 38.4% worse than S for the single-threaded and the multiprogramming benchmarks

respectively. ACM, on the other hand, performs on average 18.6% and 2.6% better than

S, and 3.4% and 29.4% better than VR for the single-threaded and the multiprogramming

benchmarks respectively.

Figure 43: Average Memory Access Cycles Per 1K Instructions Results (S =

Shared, VR = Victim Replication).

6.3.3 Comparing Schemes, Multithreaded Workloads

Figure 44: Multithreaded Results (S = Shared, VR = Victim Replication).

The multithreading workloads expose different degrees of sharing among threads and

accordingly allow us to study the efficiency of the ACM mechanism with such a case. Fig. 44

94

depicts AALs and the L2 miss rates of the multithreading workloads compared to S and VR.

ACM exhibits AALs that are on average 27.0% and 37.1% better than S and VR respectively.

VR reveals 26.7% worse AAL than S for all the simulated benchmarks. This is due to the fact

that VR has a static replication policy that depends on the blocks’ sharing behaviors. An

increase in the degree of sharing suggests that the capacity occupied by replicas could increase

significantly leading to a decrease in the effective L2 cache size. As such, if replicas displace

too much of the L2 cache capacity, the L2 miss rate could increase considerably, degrading

thereby the average L2 access latency. This was clearly illuminated by the behaviors of the

Ocean, Barnes, and Radix benchmarks where reduction in latencies via replica hits failed

to offset the excessive latencies deduced by the increased miss rate. Barnes for instance

utilizes a tree data structure that exhibits a sharing degree of 71% [7] and accordingly incurs

a significant increase in capacity pressure when VR is used. Note that such an inferred VR

behavior is more elucidated in this work than in the original evaluation [74] as the L2 cache

has been downsized to half. VR was successful in offsetting the impact of increased offchip

accesses for the LU and JBB workloads.

On the other hand, ACM, a pure migration technique, maintains the exclusiveness of

cache blocks on chip and consequently preserves the L2 miss rates of S for the three bench-

marks Barnes, Lu, and Radix. Only Ocean and JBB reveal a small increase in the L2 miss

rate for ACM over S. This is because when some block, B1, is to be migrated to a new host,

H, no valid entry for the LRU block, B2, that is to be swapped with B1, is found in the

MT table of H, and accordingly discarded as planned by the swapping with the LRU policy.

That discarded block, B2, can be requested again by some other threads. VR only performs

better than ACM for the JBB benchmark. The reason is the fixed migration frequency level

that I assume throughout the simulation process. I ran JBB with doubling and tripling the

migration frequency and respectively obtained 3.7% and 6.7% more AAL improvements over

the base run with a migration frequency of 10. Lastly, Fig. 43 shows the average memory

access cycles per 1K instructions. For the multithreading benchmarks, VR performs on av-

erage 19.6% worse than S. ACM, in contrary, performs on average 20.7% and 29.7% better

than S and VR respectively.

95

6.3.4 On-Chip Network Traffic

Figure 45: On-Chip Network Traffic Comparison. (a) Single-threaded Workloads

(b) Multithreaded Workloads

A supplementary advantage of the ACM mechanism is the reduced on-chip network traf-

fic that it offers. Fig. 45 depicts the number of message-hops per 1k instructions that the

three schemes, S, VR, and ACM exhibit for the single-threaded, multiprogramming, and

multithreaded workloads. The ACM scheme offers 25.3%, 3.0%, and 41.6% on-chip net-

work traffic reduction over S for the single-threaded, multiprogramming, and multithreaded

workloads respectively. The VR scheme, on the other hand, offers 35.6%, 33.6%, and 75.7%

on-chip network traffic reduction over S for the three workloads respectively. Consequently,

VR offers more on-chip network reduction over S than what ACM does because it decreases

more inter-tile accesses from replica hits. Though the ACM mechanism bears some resem-

blance to the VR strategy for the single-threaded workloads as discussed in Section 2, but

with a fixed migration frequency level of 10, a tile waits for 10 accesses to the block to attract

it to its local L2 bank. Therefore, it incurs more inter-tile accesses compared to VR that

tries to attract the block to its local L2 bank immediately after being evicted from L1. If VR

fails to replicate cache blocks while ACM succeeded to attract blocks to its local L2 bank,

ACM will surpass VR. The Art benchmark is the only case that exhibits such a situation.

Finally, I studied the increase in network congestion for ACM over S without employing the

C-AMTE mechanism. I found on average an increase of 17.6%, 4.1%, and 1% over S for

96

the single-threaded, multiprogramming, and multithreaded workloads respectively. Clearly,

this demonstrates the decisiveness and usefulness of such a mechanism when applying block

migration in CMPs.

6.3.5 Scalability

The area scalability presented in Section 4.3.5 applies to ACM because, similar to PDA,

ACM utilizes C-AMTE to rapidly locate migratory L2 cache blocks. Furthermore, ACM

demonstrates an effective adaptability to upcoming futuristic CMP models. ACM always

selects a host for a cache block, B, that minimizes the total L2 access latency for B’s sharing

cores irrespective of the number of cores on the CMP platform. However, more exposure

to the NUCA problem translates effectively to a larger benefit from the ACM scheme. I

demonstrate such a pro of ACM via extending my CMP model to 32 tiles and running

simulations for three selected benchmarks. Each tile still maintains, as with the 16-tiled CMP

model, a 16KB I/D L1 cache and a 512KB L2 cache bank. The three benchmarks that have

been chosen to conduct the study are, Ocean, ammp, and MIX1, from the multithreaded,

single-threaded, and multiprogramming workloads, respectively. These benchmarks revealed

the highest L2 miss rates among the others in their sets; hence, selected.

Figure 46: Results for CMP Systems with 16 and 32 Processors. (a) Average

L2 Access Latencies (b) L2 Miss Rate

Fig. 46 depicts the AALs and the L2 miss rates of the selected benchmarks. For 16

tiles, ACM shows AAL improvements of 13.1%, 20.0%, and 1.7% for Ocean, ammp, and

97

MIX1 over S, respectively. However, for 32 tiles, ACM shows AAL improvements of 56.5%,

59.6%, and 53.8% over S, respectively. On average, ACM exhibits 11.6% and 56.6% AAL

improvements over S for the 16-tile and 32-tile models, respectively.

6.3.6 Sensitivity and Stability Studies

So far I have assumed for simplicity that the size and associativity of the TR tables are

identical to that of the L2 caches. There is nothing, in fact, that prevents this data structure

from being of a smaller size or associativity. To study the sensitivity of the ACM mechanism

to this component, I ran simulations for the three benchmarks, Ocean, ammp, and MIX1

with TR table sizes reduced to half (50%) and quarter (25%) the size of the base cache, and

with a 16-way set associativity. With half and quarter configurations, I got AAL increases

of 5.9% and 11.3% respectively over the base one, but still improvements of 7.6% and 2.9%

respectively over S. The highest contribution for the AAL increases was from the ammp

benchmark. The ammp benchmark shows alone 19.9% AAL increase, averaged for both

the half and quarter configurations, over the base, though still 6.1% better than S. It was

observed that 60.7% of the cache blocks in ammp are accessed at least 10 times (the specified

migration frequency level) before getting evicted from L2, consequently triggering migrations.

To decrease the pressure on the TR table, I ran simulations with migration frequency of 20

rather than 10. Compared to the 19.9% AAL increase, I obtained only 12.3% increase,

averaged for both the half and quarter configurations, over the base one and consequently

10.1% on average better than S.

Finally, and to demonstrate the stability of the ACM scheme to different cache sizes, I

simulated the LU benchmark on my 16-tiled CMP model with the L2 cache being reduced

to half its size for the three different schemes: S, VR, and ACM. VR failed to demonstrate

stability and showed AAL degradation of 37.8% over S, while ACM maintained AAL im-

provement of 39.7% over S. This is because the ACM mechanism maintains the exclusiveness

of cache blocks on chip, while VR demands more capacity to store replicas. Clearly, this

reveals the effectiveness of the migration technique in the CMP domain, and particularly

that of the proposed ACM mechanism.

98

6.4 SUMMARY

Managing L2 caches in chip multiprocessors is essential to fuel its performance growth. This

chapter studied a strategy to manage non-uniform shared caches in CMP by dynamically

migrating cache blocks to optimal locations that provide the minimal L2 access latency. The

proposed mechanism optimizes the L2 miss rate via maintaining the uniqueness of cache

blocks on chip. Clearly, ACM lies under CC-FR’s data relocation category. Simulation

results demonstrated the robustness, scalability, and stability of ACM. Unlike previously

studied migration strategies in CMP literature, the proposed mechanism revealed and con-

firmed the usefulness of data migration in chip multiprocessors.

99

7.0 DYNAMIC CACHE CLUSTERING

This chapter proposes DCC (Dynamic Cache Clustering), a novel distributed cache man-

agement scheme for large-scale chip multiprocessors. Using DCC, a per-core cache cluster is

comprised of a number of L2 cache banks and cache clusters are constructed, expanded, and

contracted dynamically to match each core’s cache demand. The basic trade-offs of varying

the on-chip cache clusters are average L2 access latency and L2 miss rate. DCC uniquely and

efficiently optimizes both metrics and continuously tracks a near-optimal cache organization

from many possible configurations. DCC employs CC-FR’s data placement and relocation

approaches and addresses diverse workload characteristics and growing non-uniform access

latencies challenges. Section 7.1 provides a motivational study and outline the proposed

solution. I give a brief background on some of the fixed (static) cache designs in Section 7.2.

The DCC mechanism is detailed in Section 7.3. A quantitative evaluation of DCC and a

related design is presented in Section 7.4 and conclusions are given in Section 7.5.

7.1 MOTIVATION AND PROPOSED SOLUTION

7.1.1 Motivation

As described earlier in Section 1.2.4, computer applications exhibit different cache demands.

The traditional private and shared designs are subject to a principal deficiency. They both

entail static partitioning of the available cache capacity and don’t tolerate the variability

among different working sets and phases of a working set. For instance, a program phase

with high cache demand would require enough cache capacity to mitigate the effect of high

100

cache misses. On the other hand, a phase with less cache demand would require smaller

capacity to mitigate the NoC communications. Static designs provide either fast accesses or

capacity but not both. A crucial step towards designing an efficient memory hierarchy is to

offer both fast accesses and capacity.

7.1.2 Proposed Solution

This chapter sheds light on the irregularity of working sets and presents a novel dynamic

cache clustering (DCC) scheme that can synergistically react to programs’ behaviors and

judiciously adapt to their different working sets and varying phases. DCC suggests a mech-

anism to monitor the behavior of an executing program, and based upon its runtime cache

demand makes related architecture-adaptive decisions. The tension between higher or lower

cache demands is driven by optimizing the L2 miss rate (MR) versus the average L2 access

latency (AAL) metrics. Each core is initially started up with an allotted cache resource,

referred to as its cache cluster. Subsequently, after every re-clustering point on a time in-

terval, the cache cluster is dynamically contracted, expanded, or kept intact, depending on

the cache demand. The CMP cores cooperate to attain fast accesses (i.e, better AAL) and

efficient capacity usage (i.e, better MR).

In summary, this chapter makes the following contributions:

• I propose DCC, a hardware mechanism that detects non-uniformity amongst working

sets, or phases of a working set, and provides a flexible and efficient cache organization

for CMPs.

• I introduce novel mapping and location strategies to manage dynamically resizable cache

configurations on tiled CMPs.

• I demonstrate that DCC improves the average L1 miss time by as much as 21.3% (10%

execution time) versus previous static designs.

101

7.2 BACKGROUND

7.2.1 Fixed Cache Schemes

Figure 47: Fixed Schemes (FS) with different sharing degrees (SD). (a) FS1 (b)

FS2 (c) FS4 (d) FS8 (e) FS16

The physically distributed L2 cache banks of a tiled CMP can be organized in different

ways. At one extreme, each L2 bank can be made private to its associated core. This

corresponds to contracting a traditional multi-chip multiprocessor onto a single die. At the

other extreme, all the L2 banks can be aggregated to form one logically shared L2 cache

(shared scheme). Alternatively, the L2 cache banks can be organized at any point in between

private and shared. More precisely, [34] defines the concept of sharing degree (SD) as the

number of processors that share a pool of L2 cache banks. In this terminology, an SD

of 1 means that each core maps and locates the requested cache blocks to and from its

corresponding L2 bank (private scheme). An SD of 16, on the other hand, means that each

of the 16 cores shares with all other cores the 16 L2 banks (shared scheme). Similarly, an

SD of 2 means that 2 of the cores share their L2 banks. Fig. 47 demonstrates five sharing

schemes with different sharing degrees (SD= 1, 2, 4, 8, and 16) as implied by my 16-tile

CMP model. I refer to these sharing schemes as Fixed Schemes (FS) to distinguish them

from my proposed dynamic cache clustering (DCC) scheme.

102

7.2.2 Fixed Mapping and Location Strategies

At an L2 miss, a cache block, B, is fetched from main memory and mapped to an L2 cache

bank. A subset of bits from the physical address of B, denoted as the home select (HS)

bits, can be utilized and adjusted to map B as required to any of the shared regions of the

aforementioned fixed schemes. If B is a shared block, it might be mapped to multiple shared

regions. However, as the sharing degree (SD) increases, the likelihood that a shared block

maps within the same shared cache region increases. As such, FS16 maps each shared block

to only one L2 bank. I identify the tile at which B is mapped to, as a dynamic home tile

(DHT) of B. For any of the above defined fixed schemes, the utilized HS bits depend on

SD. Furthermore, the function that uses the HS bits of B’s physical address to designate the

DHT of B can be used to subsequently locate B.

7.2.3 Coherence Maintenance

The fixed scheme FS16 maintains the exclusiveness of shared cache blocks at the L2 level.

Thus, FS16 requires maintaining coherence only at the L1 level. However, for the other fixed

schemes with lower SDs, each L2 shared region might include a copy of a shared block. This,

consequently, requires maintaining coherence at both, the L1 and the L2 levels. To achieve

such an objective, two options can be employed: a centralized and a distributed directory

protocols. The work in [34] suggests maintaining the L1 cache coherence by augmenting

directory status vectors in the L2 tag arrays. A directory status vector associated with

a cache block, B, designates the copies of B at the private L1 caches. For the L2 cache

coherence, [34] utilizes a centralized engine. A centralized coherence protocol is deemed

non-scalable especially with the advent of medium-to-large scale CMPs and the projected

industrial plans [56]. A high-bandwidth distributed on-chip directory can be adopted to

accomplish the task [56, 74].

By employing a distributed directory protocol, directory information can be decoupled

from cache blocks. A cache block B can be mapped to its DHT, specified by the underlying

cache organization. On the other hand, directory information that corresponds to B can be

mapped independently to a potentially different tile, referred to as the static home tile (SHT)

103

of B. The SHT of B is typically determined by the home select (HS) bits of B’s physical

address (see Chapter 2, Section 2.1) 1. For the adopted 16-tile mesh-based CMP model,

a duplicate tag embedded with a 32-bit directory status vector can represent the directory

information of B. For each tile, one bit in the status vector indicates a copy of B at its L1,

and another bit indicates a copy at its L2 bank. To reduce off-chip accesses, Dir (see Fig. 5)

can always be checked by any requester core to locate B at its current DHT, using 3-way

cache-to-cache transfers.

7.3 THE DYNAMIC CACHE CLUSTERING(DCC) MECHANISM

This section begins by analytically analyzing the major metrics that are involved in man-

aging caches in CMPs, then moves to define the problem on-hand, and finally describes the

proposed DCC scheme.

7.3.1 Average Memory Access Time (AMAT)

Given the 2D mesh topology and the dimension-ordered XY routing algorithm being em-

ployed by my CMP model, upon an L1 miss, the L2 access latency can be defined in terms of

the congestion delay, the number of network hops traversed to satisfy the request, and the L2

bank access time. The basic trade-offs of varying the sharing degree of a cache configuration

are the average L2 access latency (AAL) and the L2 miss rate (MR). The average L2 access

latency increases strictly with the sharing degree. That is, as the sharing degree increases,

the Manhattan distance between a requester core and a DHT tile also increases. The L2

miss rate, on the other hand, is inversely proportional to the sharing degree. As the sharing

degree decreases, shared cache blocks occupy more cache capacity and potentially cause the

L2 miss rate to increase. Thus AAL and MR are in fact two conflicting metrics.

Besides, an improvement in AAL doesn’t necessarily correlate to an improvement in the

overall system performance. If the sharing degree, for instance, is decreased to a level that

1The SHT and the DHT of a cache block are identical for the maximum sharing degree (Max SD = 16
for 16-tile CMP)

104

doesn’t satisfy the cache demand of a running process, then MR can significantly increase.

This would cause performance degradation if the cache configuration fails to offset the in-

curred latency of the larger MR from the saved latency of the smaller AAL. Equation (1)

defines a metric, referred to as the average L1 miss time (AMTL1), that combines both

AAL and MR. The Average Memory Access Time (AMAT) metric defined in equation (2)

combines all the main factors of system performance. An improvement in AMAT typically

translates into an improvement in system performance. However, as L1 caches are kept

private and have fixed access time, an improvement in the AMTL1 metric also typically

translates into an improvement in system performance.

AMTL1 = AALL2 + MissRateL2 × MissPenaltyL2 (1)

AMAT = (1 − MissRateL1) × HitT imeL1 + MissRateL1 × AMTL1 (2)

7.3.2 The Proposed Scheme

Figure 48: A possible cache clustering configuration that the DCC scheme can

select dynamically at runtime.

This chapter suggests a cache design that can dynamically tune the AAL and MR metrics

with the objective of providing a good system performance. Let us denote the L2 cache banks

105

that a specific CMP core, i, can map cache blocks to, and consequently locate them from,

as the cache cluster of core i. Let us further denote the number of banks that the cache

cluster of core i consists of as cache cluster dimension of core i (CDi). In a 16-tile CMP,

the value of CDi can be 1, 2, 4, 8, and 16, thus generating cache clusters encompassing 1, 2,

4, 8, or 16 L2 banks, respectively. I seek to improve system performance by allowing cache

clusters to independently expand or contract depending on cache demands of the working

sets. I note that, for a certain working set, even the best performing of the 5 static cache

designs (FS1, FS2, FS4, FS8, and FS16) could fail to hit optimal system performance. This

is due to the fact that all CMP cores in these designs have the same sharing degree SDi

equal to either 1, 2, 4, 8, or 16. That is, two cores can’t have different cluster dimensions. A

possible optimal configuration (cache clustering) at a certain runtime point could be similar

to the one shown in Fig. 48 or to any other eligible cache clustering configuration. A key

feature of my DCC scheme is that it synergistically selects at run time a cache cluster for a

core i that appears optimal to the currently undergoing cache demand of a program running

on top of i. As such, DCC keeps seeking a just-in-time (JIT) near optimal cache clustering

organization from amongst all the possible configurations. To the best of my knowledge,

this is the first proposal to suggest such a fine-grained caching solution for the CMP cache

management problem.

Given N executing processes (threads) on a CMP platform, I define the problem on-

hand as the one of deciding the best cache cluster for each single core to minimize the

overall AMAT of the N running processes. Let CCi denote the current cache cluster of

the i-th core, and AMATi denote the Average Memory Access Time produced by a thread

running on the i-th core. CCi is allowed to be dynamically resized. Let the time at which

CCi is checked for an eligibility to be resized be referred to as a potential re-clustering point

of CCi. A potential re-clustering point occurs every fixed period of time, T. Although I use

a 16-tile CMP model in this paper, in general, the cache clustering of n CMP cores over a

period time T can be represented by the set {CC0, . . . CCi, . . . CCn−1}. An optimal cache

clustering for a CMP platform would minimize the following expression:

Total AMAT over time period T = Σn−1
i=0 AMATi

106

7.3.3 DCC Mapping Strategy

Figure 49: An example of how the DCC mapping strategy works. Each case

depicts a possible DHT of the requested cache block B with HS = 1111 upon

varying the cache cluster dimension (CD) of the requester core 5 (ID = 0101).

Varying the cache cluster dimension (CD) of each core over time, via expansions and

contractions, would require a function to map cache blocks to cache clusters exactly as re-

quired. I propose a function that can efficiently fulfill this objective for n = 16, however,

that function can be easily extended to any n that is a power of 2. Furthermore, appropriate

functions can be obtained for any n value. Assume that a core i requests a cache block B.

If CDi is smaller than 16, B is mapped to a dynamic home tile (DHT) different than the

static home tile (SHT) of B. As described earlier, the SHT of B is simply determined by

the home select (HS) bits of B’s physical address (4 bits for my 16-tile CMP model). On

the other hand, the DHT of B is selected depending on the cluster dimension, CDi, of the

requester core i. Thus, with CDi smaller than 16 only a subset of bits from the HS field of

B’s physical address need to be utilized to determine B’s DHT. Specifically, 3 bits from HS

are used if CDi = 8, 2 bits if CDi = 4, 1 bit if CDi = 2, and no bits are used if CDi = 1.

More formally, the following function determines the DHT of B:

DHT = (HS&MB) + (ID&MB) (3)

107

Cache Cluster Dimension (CD) Masking Bits (MB)

1 0000

2 0001

4 0101

8 0111

16 1111

Table 11: Masking Bits (MB) for a 16-tile CMP Model.

where ID is the binary representation of i, MB is a mask specified by the value of CDi

as illustrated in Table 11, MB is the complement of MB, and & and + are the bit-wise

AND and OR operations, respectively. Fig. 49 illustrates an example for a cache block B

with HS = 1111 requested by core 5. The figure depicts the 5 cases of the 5 possible CDs of

core 5 (1, 2, 4, 8, and 16). The DHT of B for each of the possible CDs is determined using

equation (3). For instance, with CD = 16, core 5 maps B to DHT 15. Again, note that when

CD = 16, the SHT and the DHT of B are the same. Similarly, with CDs of 8, 4, 2, and 1,

core 5 maps B to DHTs 7, 5, 5, and 5 respectively.

7.3.4 DCC Algorithm

The AMAT metric defined in equation (2) could be utilized to judiciously gauge the benefit

of varying the cache cluster dimension of a certain core, i. I suggest a runtime monitoring

mechanism that can infer enough about a running process behavior and feed the collected

information to an algorithm that can make related architecture-adaptive decisions. In par-

ticular, a process P starts running on core i with an initial cache cluster (i.e., CDi = 16).

After a period time T, the AMATi experienced by P is evaluated and stored, and the cache

cluster of core i is contracted (or expanded if chosen so and CDi has started from a value

smaller than 16). This is the initial AMATi of P. At every potential re-clustering point a

new AMATi (AMATi current) is evaluated and deducted from the previously stored AMATi

(AMATi previous). Suppose, for instance, that a contraction action has been initially taken.

108

Accordingly, a resultant positive value of the difference means that AMATi has degraded

after contracting the cache cluster of core i. As such, we infer that P didn’t actually benefit

from the contraction process. On the other hand, a negative outcome means that AMATi

has improved after contracting the cache cluster of core i and we infer that P benefited in

fact from the contraction process. Let 4 be defined as follows:

4i = AMATi,current − AMATi,previous (4)

Figure 50: The dynamic cache clustering algorithm.

Therefore, a positive 4i indicates a loss while a negative one indicates a gain. At every

re-clustering point, the value of 4i is fed to the DCC algorithm executing on core i (the

DCC algorithm is local to each CMP core). The DCC algorithm makes in return some

architecture-adaptive decisions. Specifically, if the gain is less than a certain threshold, Tg,

the DCC algorithm decides to keep the cache cluster as it is for the next period time T.

However, if the gain is above Tg, the DCC algorithm decides to contract the cache cluster a

step further, predicting that P is likely to gain more by the contraction process. On the other

hand, if the loss is less than a certain threshold, Tl, the DCC algorithm decides to keep the

cache cluster as it is for the next period time T. If the loss is above Tl, the DCC algorithm

109

decides to expand the cache cluster to its previous value (one step backward) assuming that

P is currently experiencing a high cache demand. Fig. 50 shows the suggested algorithm.

7.3.5 DCC Location Strategy

Figure 51: An example of the DCC location strategy using equation (3). (a)

Core 0 with current CD = 8 requesting and mapping a block B to DHT 7. (b)

Core 0 missed B after contracting its CD from 8 to 4 banks.

A core i can contract or expand its cache cluster at every re-clustering point. Hence,

the generic mapping function defined in equation (3) can’t be utilized straightforwardly to

locate blocks that have been previously mapped by core i to the L2 cache space. Fig. 51(a)

illustrates an example of core 0 (with CD = 8) fetched and mapped a cache block B (with

HS=1111) to DHT 7 determined by equation (3). Fig. 51(b) demonstrates a scenario with

core 0 contracting its CD from 8 to 4 and subsequently requesting B from L2. With current

CD = 4, equation (3) designates tile 5 to be the current DHT of B. However, if core 0 simply

sends its request to tile 5, a false L2 miss will occur. After a miss to tile 5, B’s SHT (tile

15), which keeps B’s directory information, can be accessed to locate B at tile 7 (assuming

this is the only tile currently hosting B). This is a quite expensive process as it requires

multiple inter-tile communications between tiles 0, 5, 15, 7 again, and eventually 0 to fulfill

the request. A better solution could be to straightforwardly send the L2 request to B’s SHT

110

instead of sending it first to B’s current DHT and then possibly to B’s SHT. This still might

not be acceptable because it entails 3-way cache-to-cache communications between tiles 0,

15, and a prospective host of B. Such a strategy fails to exploit distance locality. That is, it

incurs significant latency to reach the SHT of B though B resides in close proximity. A third

possible solution could be to re-copy all the blocks that correlate to core 0 to its updated

cache cluster upon every re-clustering action. Clearly, this is a costly and complex process

because it will heavily burden the NoC with superfluous data messages.

A better solution to the location problem is to send simultaneous requests to only the

tiles that are potential DHTs of B. The possible DHTs of B can be easily determined by

varying MB and MB of equation (3) for the range of CDs, 1, 2, 4, 8, and 16. As such,

the maximum number of possible DHTs, or the upper bound, would be 5, manifested when

HS of B equals to 1111. On the other hand, the lower bound on the number of L2 accesses

required to locate B at a DHT is 1. This would be accomplished when both, the HS of B

and ID are equal to 0000 (If ID 6= 0, number of L2 accesses 6= 1). In general, the lower and

upper bounds on the number of accesses that our proposed DCC location strategy requires

to satisfy an L2 request from a possible DHT are Ω(1) and O(log2(NumberofT iles)) + 1,

respectively.

Figure 52: The average behavior of the DCC location strategy.

Given that the number of possible DHTs for a given block, B, depends on the HS bits

111

of B’s physical address, it would be interesting to determine the average number of possible

DHTs for all the blocks in the address space. To derive this number, let AV (d) denote the

average number of possible DHTs for all the blocks in the address space corresponding to

cluster sizes 20, 21, . . ., 2d. If we add 2d+1, half of the blocks in the address space will have

a new DHT, while the new DHT of the other half of the blocks will coincide with the DHT

of these blocks in the cluster of size 2d. In other words,

AV (d + 1) = 1
2
AV (d) + 1

2
(AV (d) + 1) = AV (d) + 1

2
(5)

If CD = 1, each block has only one DHT, that is,

AV (1) = 1 (6)

Solving the recursive equations (5) and (6) yields,

AV (d) = 1 + 1
2
d (7)

For a CMP with n tiles, the number of possible cluster dimensions is ln(n). Hence, the

average number of possible DHTs is 1+ 1
2
ln(n). Specifically, for n = 16, the average number of

possible DHTs is 1+ 1
2
ln(16) = 3. Fig. 52 shows simulation results for the average number of

L2 accesses experienced by the DCC location strategy using 9 benchmarks (details about the

benchmarks and the utilized experimental parameters are described in Section 7.4). Clearly,

the results confirm our theoretical analysis.

Multiple copies of a cache block B can map to multiple cache clusters of multiple cores.

As such, a request from a core C to a block B can hit at multiple possible DHTs. However,

if a miss occurs at the DHT of B that corresponds to the current cache cluster dimension

of C (current DHT), though a hit occurs at some other possible DHT, a decision is to be

made of whether to copy B to B’s current DHT or not. If none of the possible DHTs

that host B resides currently inside the cache cluster of C, B is copied to its current DHT,

otherwise, it is not. The rationale behind this policy is to minimize the average L2 access

112

Figure 53: A demonstration of an L2 request satisfied by a neighboring cache

cluster. (a) Core 0 issued an L2 request to block B. (b) Core 3 satisfied the L2

request of Core 0 after re-transmitted to it by B’s SHT (tile 15).

latency. Specifically, a possible DHT hosting B and contained inside C’s cache cluster is

always closer to C than is the current DHT. Thus, B is not copied from that possible DHT

to its current DHT. The decision of whether to copy B to its current DHT can be made

by B’s SHT. The SHT of B retains B’s directory information and is always accessed by my

location strategy (B’s SHT is a possible DHT).

Finally, after inspecting B’s SHT, if a copy of B is located on-chip (i.e, mapped by a

different core with different CD) and none of the possible DHTs is found to host B, the

SHT satisfies the request from the host that is closest to C (in case many hosts are located).

Fig. 53(a) illustrates a scenario where core 0 with CD = 4 issues a request to cache block

B with HS= 1111. Simultaneous L2 requests are sent to all the possible DHTs of B (tiles

0, 1, 5, 7, and 15). Misses occur at all of them. The directory table at B’s SHT (tile 15)

is inspected. A copy of B is located at tile 3 indicated by the corresponding bit within the

directory status vector of B. Fig. 53(b) depicts B’s directory state and residences after it has

been forwarded from tile 3 to its current DHT (tile 5) and to the L1 cache of the requester

113

core 0. The figure depicts only copies at the L2 banks within tiles. However, the shown

directory status vector reflects the presence of B at the L1 cache of core 0.

7.3.6 Scalability

DCC utilizes the AMAT metric defined in equation (2) to judiciously gauge the benefit of

varying the cache cluster dimension of each core. The AMAT metric optimizes both, the L2

miss rate and the average L2 access latency. Each cluster consists of tiles that are spatially

close to each other. Furthermore, most data sharing among threads will occur per each

cluster, C, and even when none of the possible DHTs that host a requested block, B, resides

currently inside C, B is copied to C’s current DHT. In addition, the number of messages

required by the DCC’s location strategy to locate cache blocks scales with log the number

of cores as defined in equation (7). Therefore, as the number of cores per chip is increased,

the performance of DCC is expected to scale successfully. With larger number of tiles, the

NUCA and the interference misses problems which DCC attempts to tackle controllably are

exposed more, and accordingly, larger benefit from DCC is anticipated.

7.4 QUANTITATIVE EVALUATION

The evaluation methodology I use in this chapter is the one described in Section 2.3. How-

ever, the system parameters are a little different. Table 12 shows a synopsis of the main

architectural parameters. I compare the effectiveness of the DCC scheme against the 5 al-

ternative static designs, FS1, FS2, FS4, FS8, and FS16, detailed in Section 7.2.1, and the

cooperative caching scheme [12]. Cache modules with a distributed MESI-based directory

protocol for all the evaluated schemes have been developed and plugged into Simics.

I use a mixture of multithreaded and multiprogramming workloads that is also a little

different than the one presented in Table 4. Table 13 shows the data set and other important

features of each of the 9 workloads I examine. Lastly, I ran Ocean, Barnes, Radix, and

FFT in full and stopped the remaining benchmarks after a detailed simulation of 20 Billion

114

Component Parameter

Cache Line Size 64 B

L1 I-Cache Size/Associativity 16KB/2way

L1 D-Cache Size/Associativity 16KB/2way

L1 Read Penalty (on hit per tile) 1 cycle

L1 Replacement Policy LRU

L2 Cache Size/Associativity 512KB per L2 bank/16way

L2 Bank Access Penalty 12 cycles

L2 Replacement Policy LRU

Latency Per Hop 3 cycles

Memory Latency 300 cycles

Table 12: System parameters

Name Input

SPECjbb Java HotSpot (TM) server VM v 1.5, 4 warehouses

Ocean 514×514 grid (16 threads)

Barnes 64K particles (16 threads)

Lu 2048×2048 matrix (16 threads)

Radix 3M integers (16 threads)

FFT 4M complex numbers (16 threads)

MIX1 Hmmer (reference) (16 copies)

MIX2 Sphinx (reference) (16 copies)

MIX3 Barnes, Lu, 2 Milc, 2 Mcf, 2 Bzip2, and 2 Hmmer

Table 13: Benchmark programs

115

Instructions.

7.4.1 Comparing With Fixed Schemes

Figure 54: Results for the simulated benchmarks. (a) Average L1 Miss Time

(AMT) in cycles. (b) L2 Miss Rate.

This section presents the experimental evaluation of the DCC scheme against the 5 al-

ternative static designs, FS1, FS2, FS4, FS8, and FS16. The set of parameters, the period

time T , the loss and gain thresholds Tl and Tg ({T, Tl, Tg}) utilized by the DCC algorithm

are different for each simulated benchmark and selected from amongst 10 sets presented in

the next subsection. The sensitivity analysis in Section 5.3 shows that the results are not

116

much dependent on the value of parameters {T, Tl, Tg}. First of all, I study the effect of

the average L1 miss time (AMT), defined in equation (1), across the compared schemes.

Fig. 54(a) portrays the AMTs experienced by the 9 simulated workloads. A main obser-

vation is that no single static scheme provides the best AMT for all the benchmarks. For

instance, Ocean and MIX1 are best performing under FS16. On the other hand, SPECjbb

and Barnes perform superlative under FS1. As such, a single static scheme fails to adapt to

the varieties across the working sets. The DCC scheme, however, dynamically adapts to the

irregularities exposed by different working sets and always provides performance comparable

to the best static alternative. Besides, the DCC scheme sometimes even surpasses the best

static option due to the fine-grained caching solution it offers (see Subsection 4.2). This is

clearly exhibited by SPECjbb, Ocean, Barnes, Radix, and MIX2 benchmarks. Fig. 54(a)

illustrates the outperformance of DCC over FS16, FS8, FS4, FS2, and FS1 by an average of

6.5%, 8.6%, 10.1%, 10%, and 4.5% respectively across all benchmarks, and to an extent of

21.3% for MIX3 over FS2. In fact, DCC surpasses FS1, FS2, FS4, FS8, and FS16 for all the

simulated benchmarks except one. That is, MIX3 running under FS1. The current version of

the DCC algorithm doesn’t adaptively select an optimal set of thresholds {T, Tl, Tg}. Thus,

I expect that such a diminutive superiority (1.1 %) of FS1 over DCC for MIX3 is simply

because of that reason. Nevertheless, DCC always favorably converges to the best static

option.

The DCC scheme manages to reduce the L2 miss rate (MR) as it varies cache clusters

per cores depending on their L2 demands. Fig. 54(b) illustrates the MR produced by each

of the 6 compared schemes for the simulated benchmarks. As described earlier, when the

sharing degree (SD) amongst the static designs decreases, MR increases. This is because the

likelihood that a shared cache block maps within the same shared cache region decreases. For

instance, the L2 miss rate of Ocean increases monotonically as SD decreases. On the other

hand, the L2 miss rate of Radix outshines with FS1. This is due to the fact that additional

cache resources might not always correlate to better L2 miss rates [?]. A workload might

manifest poor locality, and cache accesses could sometimes be ill-distributed over sets. I

observed that Radix has a great deal of L2 misses produced by heavy interferences of cores

on cache sets (inter-processor misses). The DCC scheme, however, efficiently resolves this

117

problem and resourcefully exploits the available cache capacity. DCC improves the Radix

L2 miss rate by 4.2% and generates 7.3% better AMT.

Figure 55: Memory access breakdown. Moving from left to right, the 6 bars for

each benchmark are for FS16, FS8, FS4, FS2, FS1, and DCC schemes, respec-

tively.

As the sharing degree (SD) of the static designs and the cache cluster dimension (CD)

of the DCC scheme change, the hits to local L2 and to remote L2 banks also change. The

hits to local L2 banks monotonically increase as SD decreases. This is revealed in Fig. 55

that depicts the data accesses breakdown of all the simulated benchmarks. Increases in hits

to local L2 banks improves the average L2 access latency (AAL) as it decreases inter-tile

communications, but, on the other hand, it might exacerbate MR thus causing both, AAL

and MR to race in conflicting directions. For instance, though FS1 produces the best local L2

hits for Ocean, Fig. 54(b) shows that Ocean has the worst MR. Increasingly mapping cache

blocks to local L2 banks can boost capacity misses, and if the gain acquired from higher local

hits doesn’t offset the loss incurred from higher memory accesses, performance will degrade.

This explains the AMT behavior of Ocean under FS1. DCC, however, increases hits to local

L2 banks but in a controlled and balanced fashion that it doesn’t increase MR to an extent

that ruins AMT. Thus, for instance, DCC degrades hits to local L2 banks of Ocean by 62.3%

118

over FS1 but improved in return its MR by 4.9%. As a result, DCC generated 4.7% better

AMT for Ocean as compared to FS1. This reveals the robustness of DCC as a mechanism

that tunes up AAL and MR so as to obtaining high performance from CMP platforms.

Figure 56: On-Chip network traffic comparison.

Fig. 56 depicts the number of message-hops (including both data and coherence) per 1k

instructions for all the simulated applications with the 6 compared schemes. FS16 offers the

preeminent on-chip network traffic savings (except for MIX2) as compared to other schemes.

For each L1 miss, FS16 issues always one corresponding L2 request and that is to the static

home tile (SHT) of the requested cache block, B. In contrary, the number of L2 requests

issued by the remaining static designs depends on the access type. For a write request, B’s

SHT is accessed (in addition to accessing the shared region of the requester core) in order

for the requester core to obtain an exclusive ownership on B. Besides, for a read request

which misses at the shared region, B’s SHT is also accessed to check if B resides on-chip

(on some other shared regions) before an L2 miss is reported. However, for read requests

that hit in the shared regions, an L1 miss corresponds always to a single L2 request. As

such, if the message-hops gain (G) from read hits surpasses the message-hops loss (L) from

read misses and writes, the interconnect traffic outcome of either FS1, FS2, FS4, or FS8 will

improve over FS16. This explains the behavior of MIX2 with FS1. On the other hand, if

L surpasses G, the interconnect traffic outcome of FS16 will improve over the 4 alternative

static schemes. This explains the behavior of the remaining benchmarks. Finally, DCC

119

results in increased traffic due to multicast location requests (on average 3 per request).

On average, DCC increases interconnect traffic by 41.1%, 24.7%, 11.7%, 16.6%, and 21.5%

over FS16, FS8, FS4, FS2, and FS1, respectively. This increase in message-hops doesn’t

effectively hinder DCC from outperforming the static designs as demonstrated in Fig. 54(a).

Figure 57: Execution time (Normalized to FS16).

Lastly, Fig. 57 presents the execution time of the compared schemes, all normalized

to FS16. For Barnes, Radix, MIX1, MIX2, and MIX3, the superiority of DCC in AMT

over the static designs translates to better overall performance. However, diminutive AMT

improvements of DCC by 0.6% over FS1, 0.5% over FS16, 0.6% over FS16, and 0.9% over

FS16 for SPECjbb, Ocean, Lu, and FFT, respectively didn’t translate to an effectively

better overall performance. Nonetheless, the main objective of DCC is still successfully

met. DCC performs favorably comparable to the best static alternative. DCC outperforms

FS16, FS8, FS4, FS2, FS1 by an average of 0.9%, 3.1%, 3.6%, 2.8%, and 1.4%, respectively

across all benchmarks, and to an extent of 10% for MIX3 over FS8. DCC is expected

to way surpass all static strategies had it adaptively selected {T, Tl, Tg} parameters. As

such, DCC could provide more accurate estimations regarding expansions and contractions.

Having established the effectiveness of DCC as a scheme that can synergistically adapt to

irregularities exposed by different working sets and within a single working set, proposing

an adaptive mechanism for selecting the {T, Tl, Tg} thresholds is an obvious next step.

120

7.4.2 Sensitivity Study

Figure 58: DCC sensitivity to different T, Tl, and Tg values.

The DCC algorithm utilizes the set of parameters {T, Tl, Tg} to controllably tune up cache

clusters and avoid potential noise that might hurt performance. As the current version of

the algorithm assumes a fixed set of these parameters, I offer a study of DCC sensitivity to

different {T, Tl, Tg} values. Ten sets have been simulated, five with T = 10, 000 (T1), and

another five with T = 300, 000 (T2) instructions. Tl and Tg were assigned values 0, 0.01,

0.1, 0.15, and 0.2 and ran with both, T1 and T2. Fig. 58 portrays the study outcome. A

main conclusion is that no single fixed set of parameters provides superlative AMT for all

the simulated benchmarks. For instance, SPECjbb performs best with T1 and Tl = Tg = 0.

On the other hand, Barnes performs best with T2 and Tl = Tg = 0.01.

Overall, the DCC results with T1 are better than those with T2. Essentially, perfor-

mance deteriorates when the partition period is too short or too long. Short partitions can

hurt the accuracy of an estimation regarding a working set phase change. Long partitions,

in contrary, can delay a detection of a phase change. The DCC algorithm doesn’t expand or

contract cache clusters upon every possible re-clustering point. It just checks the eligibility

of an expansion or contraction step, and if found beneficial takes the action. Thus, DCC

takes re-clustering actions only safely. Fig. 59 demonstrates a time varying graph that shows

121

Figure 59: Time varying graph showing the activity of the DCC algorithm.

the activity of Barnes for 100 consecutive re-clustering points run under DCC with T2 and

Tl = Tg = 0.01. A computation overhead of the DCC scheme at every re-clustering point

is mainly that of computing the 4 metric, defined in equation (4). A performance over-

head, on the other hand, can occur only if estimations about re-clustering actions fail. This

is assumed, however, to be relatively little because of how the DCC algorithm inherently

makes the architecture-adaptive decisions. This essentially explains why T1 yielded overall

better DCC results than T2. The T1 moderate period of time attempts safely to capture a

potential change in a program phase as soon as it emerges. I expect that with a time period

smaller than T1, the information to feed to the DCC algorithm can be potentially skewed.

As such, the estimations concerning program phases might possibly fail, and performance

might, accordingly, degrade.

122

Figure 60: Execution times of FS1, cooperative caching (CC), and DCC (nor-

malized to FS1).

7.4.3 Comparing With Cooperative Caching

This section presents a comparison between DCC and the related work, cooperative caching

(CC) [12]. CC dynamically manages the aggregate on-chip L2 cache resources by combining

the benefits of the private and shared schemes, AAL and MR, respectively. CC approaches

the CMP cache management problem by basing its framework on the nominal private design

and seeks to alleviate its implied capacity deficiency. If a block B is the only on-chip copy,

CC refers to it as a singlet, otherwise as a replicate (because replications exist). To improve

cache capacity, CC prefers to evict the following three classes of blocks in descending order:

(1) an invalid block, (2) a replicate block, (3) and a singlet block. As such, CC refines

cache capacity by reducing replicas as much as possible. Furthermore, CC employs spilling

a singlet block from an L2 bank into another L2 bank for expected future usage. Fig. 60

demonstrates the execution time results of DCC and CC, both normalized to FS1. The

shown CC is the default cooperative caching scheme that uses 100% cooperation probability

(allows always the collection of the CC mechanisms to be used to optimize capacity). DCC

always performs competitively, if not better, than the best static alternative. Thus DCC

123

performs sometimes equivalently to FS1 and sometimes surpasses it (in case it is not the best

caching option). On the other hand, across all the simulated benchmarks, CC outperforms

only SPECjbb by 1.7%. Surprisingly, CC degrades FS1 performance by 0.16%, on average.

The reason is that CC uses the minimum replication level for each benchmark thus heavily

affecting the average L2 access latency (AAL). Replication typically mitigates AAL if done

controllably [6, 16].

7.5 SUMMARY

As the realm of CMP is continuously expanding, the pressure on the memory system to

sustain the memory requirements of the wide variety of applications also expands. This

chapter investigates the main problem with the current fixed CMP cache schemes as being

unable to adapt to workloads variations, and proposes a robust alternative, the dynamic

cache clustering (DCC) scheme. DCC suggests a mechanism that monitors the behavior of

an executing program, and based upon its runtime cache demand makes related architecture-

adaptive decisions. A per-core cache cluster comprised of a number of L2 banks can be

constructed and dynamically expanded or contracted so as to tune the average L2 access

latency and the L2 miss rate. Compared to static designs, the DCC scheme offered an

average of 7.9% cache access latency improvement.

124

8.0 COMBINED SCHEMES

In this chapter I describe Dynamic Pressure and Distance Aware (DPDA) Placement and

Dynamic Cache Clustering and Balancing (DCCB) schemes. DPDA augments PDA and

ACM in one scheme so as to implement CC-FR’s data placement and relocation components

and address both interference misses and growing non-uniform access latencies challenges. In

contrary, DCCB combines DCC and FSB to implement all CC-FR’s approaches and address

all the caching challenges presented in this thesis. In Section 8.1 I provide a motivational

study and outline my proposed solution. I detail DPDA and DCCB in Section 8.2. A

quantitative evaluation of DPDA and DCCB is presented in Section 8.3 and conclusions are

given in Section 8.4.

8.1 MOTIVATION AND PROPOSED SOLUTION

8.1.1 Motivation

8.1.1.1 PDA and ACM Deciding upon the placement of a cache block from the first

touch might be sub-optimal. For instance, though PDA places blocks at underutilized L2

banks that are closest to requesting cores, multiple other sharing cores can compete for the

blocks after placed. Thus, PDA saves latency only for the initial requester and might, in

contrary, degrade the average access latency for the subsequent sharing requesters. Ideally,

we want to place a cache block at an L2 bank that best optimizes the overall access latencies

from all the sharing cores. Clearly, the best host bank for a shared block can’t be known

until runtime.

125

Clearly, ACM is a strategy that can by employed to select better host banks for shared

blocks at runtime. ACM synergistically monitors the access patterns of cores and periodically

migrates blocks to banks that minimize the access time for the sharing cores. However,

migrating a block to a host that best minimizes the overall access latency might be a little

tricky especially if the selected host is highly pressured. Consequently, the L2 miss rate (MR)

might be negatively affected in our attempt to save the average L2 access latency (AAL).

As a result a performance degradation might be experienced. In summary, we want to save

both AAL and MR controllably and effectively.

8.1.1.2 DCC and FSB None of the schemes that have been discussed until now imple-

ment all CC-FR’s components. It is, in fact, desirable to explore the case of implementing

all CC-FR’s components and addressing all the caching challenges presented in this thesis.

My suggested FSB scheme, which implements CC-FR’s retention category, is orthogonal to

all my proposed schemes and can be employed on top of any easily and straightforwardly

so as to reduce interference misses. On the other hand, the DCC strategy implements two

of CC-FR’s components, data placement and relocation. However, DCC increases the ag-

gregate cache footprint via allowing replication of shared cache blocks at multiple clusters.

Replication in general results in reduced cache hit latency but may detrimentally affect MR

if the capacity occupied by replicas increases significantly. FSB can be directly agumented

to DCC in order to leverage cache capacity more effectively.

.

8.1.2 Proposed Solution

8.1.2.1 Dynamic Pressure and Distance Aware (DPDA) To make PDA a more

practical scheme that can save latency, not only for the initial requesters but also for all

the sharing cores, and controllably manage cache capacity, I propose combining ACM and

PDA in one scheme and refer to it as the Dynamic Pressure and Distance Aware (DPDA)

placement scheme. As a result, DPDA would implement CC-FR’s data placement and

relocation categories and addresses both interference misses and growing non-uniform access

126

latencies challenges.

8.1.2.2 Dynamic Cache Clustering and Balancing (DCCB) To explore the case

of implementing all CC-FR’s components and address all the caching challenges presented

in this thesis, I suggest combining DCC and FSB together in one scheme and refer to it as

the Dynamic Cache Clustering and Balancing (DCCB) scheme. Clearly, FSB is a pressure-

aware strategy that seeks to reduce interference misses and can be applied to any of the

proposed schemes. However, as ACM and PDA both apply only one of CC-FR’s approaches,

augmenting FSB to any of them would not fulfill the objective. On the other hand, DPDA

do apply two of CC-FR’s approaches and augmenting FSB to it would actually satisfy the

goal. DPDA, however, already involves a pressure-aware strategy to reduce misses. In

addition, DPDA involves various hardware complexities and requirements pertaining to the

usage of the PDA scheme, the C-AMTE location strategy, and the ACM algorithm all in

one. As such, applying FSB further to DPDA might not be justifiable. DCC, in contrary,

is a unique in that by itself (as one single scheme with no already other added schemes)

adopts two of CC-FR’s approaches (i.e., placement and relocation). Besides, DCC allows

replication which might negatively affect the cache capacity usage. FSB’s job is to effectively

leverage the cache capacity usage and accordingly reduce replication effects. Furthermore,

FSB satisfies the third required CC-FR’s component (i.e., retention) for DCC to become

addressing all and can be simply and directly agumented; hence, I choose to apply FSB to

DCC.

8.2 THE COMBINED SCHEMES

8.2.1 THE DYNAMIC PRESSURE AND DISTANCE AWARE (DPDA) PLACE-

MENT MECHANISM

As discussed earlier in Chapter 6, ACM computes the total latency cost for a given cache

block on each of the potential hosts (L2 banks) and chooses the minimum. In order to

127

min = Total latency cost of the current host

predicted_optimal = current host

for(i = 0 to i < number_of_tiles)
{

}

if(pressure(i) < LPL)

for(j = 0 to j < number_of_sharers)

cost += 2 * Manhattan_distance[j][i]

if(cost < min)

predicted_optimal = i

cost = 0

{

}

DPDA's Relocation Algorithm: Locate Host

Figure 61: The DPDA relocation algorithm to locate a better host for a cache

block.

achieve this, ACMs algorithm keeps for each block, B, an access pattern that designates the

sharing cores and after every migration frequency level (MFL) selects a new host for B that

minimizes the overall L2 access latency. ACM can be straightforwardly augmented to PDA

and B can be synergistically monitored and periodically migrated to a better host bank that

optimizes the on-chip access latency. However, to control the cache capacity, B shouldn’t

be migrated to a highly pressured bank. In order to meet such an objective, we can utilize

the low pressure limit (LPL) defined in Chapter 5, Section 5.2.1. A bank is not considered

a potential host unless it is underutilized. A bank is underutilized if its pressure is below

LPL. Consequently, DPDA’s migration algorithm would compute the total latency cost for

a given cache block on each of the underutilized banks and chooses the minimum. Fig. 61

shows DPDA’s migration algorithm. The placement process of DPDA remains unaltered

(i.e., as PDA’s one).

By incorporating cache pressure with DPDA’s migration algorithm, we need to have the

128

pressure values of banks (groups) available on chip. The baseline of DPDA, PDA maintains

the pressure array at the memory controller(s). Nevertheless this suggests a simple solution.

PDA quantifies pressures using hardware counters during a time interval, referred to as an

epoch. At the end of every epoch on a tile, T, the values of the counters are copied from T to

the pressure array at the memory controller(s). At the copy time, a bitmap can be populated

and sent back to T indicating the banks (groups) that are underutilized. Corresponding to

each bank (group) is a bit in the bitmap with 0 indicating a highly pressured bank and 1

indicating an underutilized one (or vice versa). A bitmap consists of n rows × p columns

with n-group and p-bank pressure array (see Section 4.2.3 for details on collecting pressures

at a group granularity). Note that the process of setting bitmaps is completely hidden under

the copy time of pressure values from tiles. Besides, at the startup of programs a fully reset

bitmap per tile is assumed (i.e., no migration is performed out of a tile until its corresponding

bitmap is updated after copying pressure values collected during the first epoch).

8.2.2 THE DYNAMIC CACHE CLUSTERING AND BALANCING (DCCB)

MECHANISM

The dynamic cache clustering and balancing (DCCB) scheme combines DCC and FSB. FSB

is oriented towards last level caches and can, in fact, be applied straightforwardly to any

caching scheme. When added to DCC, FSB can simply and as usual retain blocks evicted

from highly pressured sets at underutilized sets within an L2 bank. In addition, FSB is

triggered on DCC when a block is copied to the current dynamic home tile of the requesting

core (see Section 7.3.5).

8.3 QUANTITATIVE EVALUATION

The evaluation methodology and the benchmark programs I use in this chapter are the ones

described in Section 2.3. For DPDA, after every 20 million instructions, only 0.25 of the

pressure values is kept (see Section 4.2.2). For DCCB, the parameters used by DCC (see

129

Section 7.3.4), T , Tl, and Tg are set to 10000, 0.01, and 0.01, respectively, corroborated by

the sensitivity study in Section 7.4.2. Besides, augmented with DCC is FSB-4 with α = 0.25

substantiated by studies in Sections 5.3.1 and 5.3.3. Both DPDA and DCCB are compared

against the nominal shared (S) scheme. Furthermore, DPDA and DCCB are compared

versus their baselines PDA and DCC, respectively.

8.3.1 Comparing DPDA Against the Shared NUCA and the PDA Designs

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)*+,-..")/012345" 63789:0;<" =>?@704@A09B" 60:4B5" C?" DEF(" DEF$" DEFG" DEF%" HIJ#"

K
3
:
A
0
>@
L
B
7
"H
H
C
"

6B4;MA0:<5"

)" *NH" N*NH"

Figure 62: Average L2 Access Latencies (AALs) of PDA, DPDA, and shared (S)

schemes (normalized to S).

Let me first compare DPDA against the baseline shared (S) and the PDA schemes.

I assume a high pressure limit (HPL) and a low pressure limit (LPL) each with α = 0.25

(corroborated by the sensitivity study in Section 4.3.3). Besides, I consider a tracking entries

(TR) table with 16K entries. Each access to a TR table requires 1.35ns estimated using

CACTI v5.3 [32]. Both PDA and DPDA are run with a 32-group granularity (Section 4.3.2

shows that dividing a bank into only 32 groups provides close benefits to dividing it into 512

groups). Finally, the migration frequency level (MFL) of DPDA is set to 6. Section 8.3.2

provides a sensitivity study of DPDA to different MFLs. Fig. 62 shows the average L2 access

latency (AAL) of S, PDA, and DPDA normalized to S. On average, DPDA achieves an AAL

130

reduction of 19.4% over S, and by as much as 42.8% for the MIX3 workload. However,

compared to PDA, DPDA provides an AAL improvement of only 4.4%, and by as much as

14.7% for the Swaptions program.

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

!"#$%&&' !()*+,-.' /,0123)45' 67890)-9:)2;' /)3-;.' <8' =>?@' =>?A' =>?B' =>?C' DEFG'

H
,
3
:
)
79
I
;
0
'<
A
'=

9.
.
'J
)
2;
'

/;-4K:)35.'

!' "LD' L"LD'

Figure 63: L2 miss rates of PDA, DPDA, and shared (S) schemes (normalized

to S).

PDA alleviates AAL as it places cache blocks fetched from the main memory at under-

utilized L2 banks that are closest to the requesting cores. DPDA attempts to improve upon

PDA by dynamically relocating the blocks to better hosts at runtime seeking to save more

AAL while keeping cache capacity under control. Fig. 63 shows the L2 miss rates of S, PDA,

and DPDA normalized to S. Clearly, for some benchmarks (e.g., MIX2) DPDA maintains to

a very close extent the L2 miss rate provided by PDA. Nevertheless, for some other workloads

(e.g., Barnes) DPDA improves upon PDA while for some others it shows a little degradation

(e.g., Lu). Relocating blocks to different L2 banks might decrease or increase the L2 miss

rate depending on whether the receiving banks are overall less or more pressured than the

source banks (all the receiving banks are underutilized though). On average, DPDA achieves

its L2 miss rate goal very successfully via preserving the reductions provided by PDA. DPDA

produces further a miniature improvement over PDA (by an average of 0.6%).

The main goal of DPDA, however, is to mitigate AAL. Fig. 64 illustrates the reasons

131

!"

#"

$"

%"

&"

'"

("

)"

*"

+"

#!"

!"#$%&&' !()*+,-.' /,0123)45' 67890)-9:)2;' /)3-;.' <8' =>?@' =>?A' =>?B' =>?C'

D
',
E'
=
9F
3)
+
,
-
.
'"
;
3E
,
3:

;
0
'

/;-4G:)35.'

Figure 64: The percentage of migrations performed by DPDA.

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)*+,-..")/012345" 63789:0;<" =>?@704@A09B" 60:4B5" C?" DEF(" DEF$" DEFG" DEF%" HIJ#"K
3
:
A
0
>@
L
B
7
"+
M
B
;
?
2
3
4
"N
@A

B
"

6B4;OA0:<5"

)" *PH" P*PH"

Figure 65: Execution times of PDA, DPDA, and shared (S) schemes (normalized

to S).

132

for the diminutive AAL improvement accomplished by DPDA over PDA. Clearly, for all

the benchmark programs DPDA finds in almost all the times (more than 90% of the times)

that the cache blocks are either at the best L2 banks as predicted by the PDA or can’t be

migrated to banks closer to requesting cores due to exhibiting high pressures. Besides, some

benchmarks (e.g., SPECJbb or MIX2) expose a little or no sharing degrees. Consequently,

DPDA doesn’t need to relocate blocks to the center of gravity from all the requesting cores.

The initial requester core, C, might be the sole requester for a block, B, and PDA might

have already successfully placed B in the vicinity of C (not successful for MIX1 as it is for

MIX2). To that end, Fig. 65 presents the execution times of S, PDA, and DPDA normalized

to S. Across all benchmarks, DPDA outperforms S and PDA by averages of 10.9% and 2.2%,

respectively.

8.3.2 Sensitivity of DPDA to Different Migration Frequency Levels

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

!"#$%&&' !()*+,-.' /,0123)45' 67890)-9:)2;' /)3-;.' <8' =>?@' =>?A' =>?B' =>?C' DEFG'H
,
3
:
)
79
I
;
0
'#
J
;
4
8
+
,
-
'K
9:

;
'

/;-4L:)35.'

!' M"MDNCO' M"MDNPO' M"MDNQO'

Figure 66: The DPDA behavior with different migration frequency levels (MFLs).

DPDA(4), DPDA(6), and DPDA(8) stand for DPDA with MFL values of 4, 6,

and 8, respectively.

So far, I have been using a migration frequency level (MFL) of 6 with DPDA. I tested

DPDA with two more MFL values, particularly 4 and 8. Fig. 66 shows the outcome.

133

DPDA(4), DPDA(6), and DPDA(8) denote utilizing MFL values of 4, 6, and 8, respec-

tively. As demonstrated in the figure, DPDA(4), DPDA(6), and DPDA(8) outperform S by

averages of 9.9%, 10.9%, and 9.5%, respectively. DPDA(6) surpasses a little DPDA(4) and

DPDA(8). With higher MFL values more blocks (blocks that are accessed at L2 for less than

the MFL value before getting replaced) might miss the opportunity to be migrated to better

hosts and, accordingly, result in less average L2 access latency savings. On the other hand,

with lower MFL values more blocks might be relocated earlier on time before corresponding

access patterns are accurately shaped. Overall, for the examined MFL values, we observe

that DPDA performs best with an MFL value of 6.

8.3.3 Comparing DCCB Against the Shared NUCA and the DCC Designs

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)*+,-..")/012345" 63789:0;<" =>?@704@A09B" 60:4B5" C?" DEF(" DEF$" DEFG" DEF%" HIJ#"

K
3
:A

0
>@
L
B
7
"C
$
"D

@5
5
"M
0
9B
"

6B4;NA0:<5"

)" O,," O,,6"

Figure 67: L2 miss rates of shared (S), DCC, and DCCB schemes (normalized

to S).

Let me now compare the DCCB strategy against the nominal shared (S) and the DCC

designs. Fig. 67 shows the L2 miss rates of S, DCC, and DCCB normalized to S. DCC

provides an L2 miss reduction over S by an average of 7.2%. On the other hand, DCCB

achieves L2 miss rate reductions over S and DCC by averages of 8.3% and 0.9%, respectively.

Across all benchmarks, DCCB reduces the L2 miss rate of DCC except for Bodytrack and

134

MIX4. When DCC contracts or expands clusters it replicates cache blocks at new clusters

(specifically at the dynamic home tiles or current DHTs) without invalidating the previously

mapped blocks at the previous DHTs. These supplementary blocks are left for the LRU

policy to replace in case they are not accessed for a while. Nonetheless, these blocks incur

pressure on the available cache capacity and FSB might attempt to retain them when they

are evicted. When retaining these blocks, FSB can potentially replace blocks that have no

replicas and which may be requested in the future. Clearly, this will cause a little degradation

in the L2 miss rate. Lastly, note that for the remaining benchmark programs DCCB provides

L2 miss rate reductions over DCC only by little margins. This can be correlated to the fact

that DCC already optimizes for the L2 miss rate in its algorithm as discussed in Section 7.3.4

though it entails replication at the L2 cache space.

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)*+,-..")/012345" 63789:0;<" =>?@704@A09B" 60:4B5" C?" DEF(" DEF$" DEFG" DEF%" HIJ#"

K
3
:A

0
>@
L
B
7
"H
H
C
"

6B4;MA0:<5"

)" N,," N,,6"

Figure 68: Average L2 access latencies (AALs) of shared (S), DCC, and DCCB

schemes (normalized to S).

Fig. 68 demonstrates the average L2 access latency (AAL) of S, DCC, and DCCB nor-

malized to S. DCC and DCCB accomplish AAL improvements over S by averages of 14.7%

and 16.7%, respectively. For the Swaptions benchmark, although DCCB achieves more miss

rate reduction than DCC, DCC provides more AAL improvement. This is due the latency

overhead incurred by the FSB lookup mechanism (see Section 5.2.3). To that end, Fig. 69

depicts the execution times of S, DCC, and DCCB normalized to S. DCC and DCCB out-

135

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)*+,-..")/012345" 63789:0;<" =>?@704@A09B" 60:4B5" C?" DEF(" DEF$" DEFG" DEF%" HIJ#"

K
3
:
A
0
>@
L
B
7
"+
M
B
;
?
2
3
4
"N
@A

B
"

6B4;OA0:<5"

)" P,," P,,6"

Figure 69: Execution times of shared (S), DCC, and DCCB schemes (normalized

to S).

perform S by averages of 1.8% and 2.9%, respectively. Note that the objective of DCC (and

subsequently DCCB) is not to improve upon S (specifically) but to converge to the best

static alternative among the fixed schemes with sharing degrees of 1, 2, 4, 8, and 16 (for a

16-tile CMP) or FS1, FS2, FS4, FS8, and FS16 as denoted in Section 7.2.1. In section 7.4.1

it has been shown that no single fixed design can provide the best performance for all kinds

of workloads. Hence, for some workloads FS16 (or S) might perform the best while for some

others FS1, FS2, FS4, or FS8 might perform superlatively. DCC dynamically adapts to the

irregularities exposed by different working sets and always provides performance comparable

to the best static alternative which, for instance, might not be S (FS16) in the case of the

Lu program.

Finally, we have seen that FSB demonstrates a high effectiveness under S (see Sec-

tion 5.3.1) but not under DCC. Clearly, a main observation is that implementing more

components of CC-FR doesn’t necessarily correlate to a monotonic improvement in system

performance. Nevertheless, the incurred hardware overhead from DCCB via agumenting

DCC and FSB might not even justify the obtained little performance improvement.

136

8.4 SUMMARY

Deciding upon the placement of a cache block (especially if shared) from the first touch, as

employed by PDA, might be sub-optimal. The best location for a cache block can’t be known

until runtime. ACM synergistically monitors the access patterns of cores and periodically

migrates blocks to banks that minimize the access time for the sharing cores. As such, and

to make PDA more practical, PDA and ACM are suggested to be combined in one scheme

referred to as dynamic pressure and distance aware placement (DPDA). Accordingly, DPDA

implements CC-FR’s data placement and relocation categories and addresses interference

misses and growing non-uniform access latencies challenges.

To employ all CC-FR’s approaches and effectively address all the presented CMP caching

challenges, DCC and FSB are suggested to be combined in one scheme referred to as the

dynamic cache clustering and balancing (DCCB) scheme. With DCCB, system performance

has been shown to be intensified but by a little margin. A conclusion has been drawn

that implementing more components of CC-FR doesn’t necessarily correlate to a monotonic

improvement in system performance. Nevertheless, the incurred hardware overhead from

DCCB via augmenting DCC and FSB might not even justify the obtained little performance

improvement.

137

9.0 CONCLUSIONS

In this chapter I present a summary and draw my conclusions on work performed in this

dissertation.

9.1 SUMMARY AND CONCLUSIONS

In this dissertation I presented a general CMP caching framework (CC-FR) that defines

three components: (1) data placement, (2) data retention, and (3) data relocation. I claim

that any proposed CMP caching scheme would implement one or more of CC-FR’s compo-

nents. CC-FR categorizes CMP caching schemes and specifies caching objectives that each

scheme is attempting to satisfy. For instance, if the target is to alleviate interference misses

then a scheme proposed in this direction would apply CC-FR’s data placement and/or data

retention approaches. On the other hand, if the objective is to reduce non-uniform access la-

tencies then a suggested strategy in this direction would implement CC-FR’s data relocation

component.

Another framework that can be thought of is to simply define two components: (1) L2

miss rate and (2) average L2 access latency. It can then be claimed that the goal of any

CMP cache management scheme is to improve one or both of these components. Such a

framework is valid; however, it illustrates only the challenge(s) that a CMP caching scheme

is attempting to address. On the other hand, CC-FR demonstrates the adopted strategy of

the proposed scheme (i.e., placement, relocation, and/or retention) as well as the challenge(s)

that the scheme is targeting. Clearly, this makes CC-FR more informative and instructive.

In Chapter 3, I proposed Constrained Associative-Mapping-of-Tracking-Entries (C-AMTE),

138

a scalable strategy to facilitate flexible and efficient distributed cache management in large-

scale CMPs. C-AMTE enables data placement and relocation designs. It stores in each

core tracking data structures to avoid on-chip interconnect traffic outburst or long distance

directory lookups. Three schemes (i.e., PDA, ACM, and DPDA) in this thesis make use

of C-AMTE to rapidly locate L2 cache blocks and mitigate the average L2 access latency.

In fact, C-AMTE can be applied whenever associative mapping is used for cache blocks,

either in case of one-to-one (i.e., migration) or one-to-many (i.e., replication). I believe that

C-AMTE opens opportunites for architects to propose creative CMP cache management or-

ganizations as it precludes the necessity to stick to either the traditional private or shared

paradigms (all the proposed CMP caching scheme in literature start from one of these two

conventional schemes). I showed in Section 3.3 that C-AMTE is very effective in that it

can achieve a cache access latency improvement by up to 34.4%, close to that of a perfect

location strategy.

To implement CC-FR’s data placement component and motivated by the large non-

uniform distribution of memory accesses across cache sets in different L2 banks, Chapter 4

presented the Pressure and Distance Aware (PDA) placement strategy. Unlike conventional

CMP caching schemes that involve blok placement that are oblivious to the disparity in

the pressure on shared cache sets, PDA innovatively decouples the physical locations of

cache blocks from their addresses and makes, consequently, the placement process fully

aware of the cache capacity. Spatial pressure at the on-chip last-level cache is continuously

collected at a group (comprised of local cache sets) granularity and periodically recorded at

the memory controller(s) to guide the placement process. An incoming block is consequently

placed at an underutilized cache group that is closest to the requesting core. Without C-

AMTE, PDA might not be practical. PDA utilizes C-AMTE to rapidly locate L2 cache

blocks on subsequent accesses. Simulation results show that PDA outperforms the nominal

shared scheme by an average of 8.9% and by as much as 21.1% for the examined benchmark

programs. In summary, PDA reveals the importance and the effectiveness of incorporating

flexible (i.e., address independent) placement strategies accross banks in the CMP caching

domain.

In Chapter 5, Flexible Set Balancing (FSB) is presented. While PDA exploits the large

139

asymmetry in cache set’s usages across cache sets in different L2 banks, FSB explores a

different direction where it leverages the non-uniformity of memory accesses in cache sets

within a local L2 bank. FSB implements CC-FR’s data retention component and addresses

the interference misses challenge. Cache lines evicted from highly pressured sets are retained

at underutilized ones (in the very same L2 bank) so as to satisfy far-flung reuses. FSB

adapts to phase changes in programs and promotes a very flexible sharing among cache sets.

An underutilized set is allowed to share its space by any stressed set during any point in

a program’s execution, a policy that I refer to as one-from-many sharing. Besides, many

sets are allowed to share their capacities with a highly utilized set, a policy that I refer to

as many-from-one sharing. FSB incurs a little storage, area, and energy overheads. FSB

achieves an average miss rate reduction of 36.5% for the benchmark programs I examined.

This produces an average execution time improvement of 13%. Furthermore, evaluations

manifested the outperformance of FSB over some relevant designs including DSBC [55] and

V-WAY [53]. In summary, FSB has been shown to be general, extensible, and practical in

that it can be applied to single-core as well as multi-core architectures to reduce interference

misses.

As the best host L2 bank for a cache block can’t be known until runtime and in an attempt

to minimize the average L2 access latency, Adaptive Controlled Migration (ACM) has been

proposed in Chapter 6. ACM implements CC-FR’s data relocation component and addresses

mainly the growing non-uniform access latencies challenge. Migration in literature has been

shown to be less effective for CMP caches than for uniprocessors [7, 40]. The key problem in

the CMP domain is that migration in multiple directions can cause access conflicts between

sharing cores and may result in shared blocks ping-ponging between processors. ACM solves

this problem very effectively via moving cache blocks to the center of gravity from various

sharing cores. Specifically, access patterns of cores are dynamically monitored and blocks

are migrated to banks that minimize the access time for the sharing cores. However, by

relocating cache blocks from their static home tiles, a location strategy capable of rapidly

locating blocks on subsequent accesses is required. ACM utilizes C-AMTE to achieve fast

location of L2 cache blocks. In summary, unlike the previously studied migration strategies in

CMP literature, ACM revealed the usefulness of data migration in CMP cache management.

140

Simulation results demonstrate that ACM yields an average L2 access latency that is on

average 20.4% better than that of a shared NUCA scheme.

As the traditional private and shared designs are subject to a principal deficiency where

they both entail static partitioning of the available cache capacity and don’t tolerate the

variability among different working sets and phases of a working set, I promoted the Dynamic

Cache Clustering (DCC) scheme in Chapter 7. I sheded light on the irregularity of working

sets and described DCC as a strategy that can synergistically react to programs’ behaviors

and judiciously adapt to their different working sets and varying phases. DCC monitors

the behavior of a scheduled program, and based upon its runtime cache demand makes

related architecture-adaptive descions. The tension between higher or lower cache demands

is driven by optimizing the L2 miss rate versus the average L2 access latency. Each core is

initially started with a certain cache allocation (in terms of L2 cache banks), referred to as

its cache cluster. Subsequently, and after every re-clustering point on a time interval, the

cache cluster is contracted, expanded, or kept intact, depending on the cache demand. DCC

implements CC-FR’s data placement and relocation components. Simulation results show

that DCC improves the average L1 miss time by as much as 21.3% (10% execution time)

versus previous static designs. In summary, it has been shown that any single fixed scheme

(see Section 7.2.1 for definition of fixed schemes) always fails to adapt to the variability across

the working sets. DCC, in contrast, can always adapt to such irregularities and provides

performance comparable to the best static alternative.

Deciding upon the placement of a cache block from the first touch might be sub-optimal.

For instance, though PDA places blocks at underutilized L2 banks that are closest to re-

questing cores, I showed and discussed in Chapter 6 that multiple other sharing cores can

compete for the blocks after placed. As such, and to make PDA a more practical scheme

that saves latency not only for the initial requesters but also for all the sharers and to keep at

the same time the cache capacity under control, I proposed in Chapter 8 augmenting ACM

with PDA in one scheme and referred to that as the Dynamic Pressure and Distance Aware

Placement (DPDA) scheme. As a result of such a combination between the two schemes,

DPDA combines CC-FR’s data placement and relocation categories and addresses both in-

terference misses and growing non-uniform access latencies challenges. Simulation results

141

demonstrate that DPDA outperforms the nominal shared and PDA schemes.

To explore the case of implementing all CC-FR’s components and addressing all the

caching challenges presented in this thesis, I also suggested in Chapter 8 combining DCC

and FSB together in one scheme and referred to that as the Dynamic Cache Clustering and

Balancing (DCCB) scheme. Of course, FSB is an orthogonal design in that it can be applied

to any of the proposed schemes in this dissertation; however, the rationale behind such a

specific selection is to optimize the L2 miss rate experienced by DCC. DCC increases the

aggregate cache footprint via allowing replication of shared cache blocks at multiple clusters.

On the other hand, DCC already implements two of CC-FR’s components (data placement

and relocation) and requires only a retention strategy in order to fully apply all CC-FR’s

approaches. Nonetheless, it has been shown that FSB doesn’t show the same effectiveness

in reducing the L2 miss rate of DCC as with S. Under DCCB, system performance has been

improved over DCC by an average of only 1.1%. This can be correlated to the fact that

DCC already optimizes for the L2 miss rate in its algorithm though it entails replication at

the L2 cache space.

As a conclusion, implementing more components of CC-FR doesn’t neces-

sarily correlate to a monotonic improvement in system performance. In fact,

targeting only one CC-FR approach might provide more justifiable system performance (as is

the case with FSB, ACM, or PDA alone) than targeting all or many of the approaches (as is

the case with DCCB). In summary, implementing all or many of CC-FR’s components might

potentially incur a high hardware overhead which can be probably unjustifiable, especially

if the resulted performance improvement is very little.

Lastly, I note that the pressure model utilized by PDA and DPDA which collects cache

pressure at various group-based granularities can be employed not only by schemes that

implement CC-FR’s placement component, but further by strategies that apply the data

retention approach. For instance, FSB retains lines only within an L2 cache bank (intra-tile

pressure aware retention). However, when an L2 bank can’t absorb anymore the working

set of a scheduled program, the lines selected for replacements are simply discarded. In

fact, in the meantime there might be other L2 banks that are underutilized. As such, one

can promote retaining lines across L2 banks (inter-tile pressure aware retention), rather

142

than only within a single L2 bank. Nonetheless, inter-tile pressure aware retention can be

implemented not only under FSB but rather under many other caching strategies including,

but not limited to, the nominal shared and private designs. For instance, Chang and Sohi [12]

proposed cooperative caching (CC) based on the private design that spills (retains) singlet

blocks (blocks that have no replicas at the L2 cache space) upon evictions to (at) other

random L2 banks seeking to reduce the L2 miss rate. Qureshi [50] showed that such a

strategy might degrade system performance because it doesn’t consider the cache demands of

banks. Henceforth, Qureshi proposed dynamic spill-receive (DSR) that uses set dueling [51]

to specify of whether an L2 bank should act as a “spiller cache” or a “receiver cache” but

not both. Inter-tile pressure aware retention can, in fact, be straightforwardly applied to CC

and blocks evicted from highly pressured banks can be retained at underutilized ones.

143

BIBLIOGRAPHY

[1] A. Agarwal, J. Hennessy, and M. Horowitz. “Cache performance of operating systems
and multiprogramming,” In ACM Transactions on Computer Systems, 6, pp. 393–431,
Nov 1988.

[2] A. Agarwal and S. D. Pudar. “Column-associative Caches: A Technique For Reducing
The Miss Rate Of Direct-Mapped Caches,” Proc. Int’l Symp. Computer Architecture,
1993.

[3] M. Awasthi, K. Sudan, R. Balasubramonian, and J. Carter. “Dynamic Hardware-
Assisted Software-Controlled Page Placement to Manage Capacity Allocation and Shar-
ing within Large Caches,” Proc. Int’l Symp. High-Perf. Computer Arch, Feb. 2009.

[4] L. Barroso et al. “Piranha: A Scalable Architecture Based on Single-Chip Multipro-
cessing,” ISCA, May 2000.

[5] A. Basu, N. Kirman, M. Chaudhuri, and J. F. Mart́ınez. “Scavenger: A New Last Level
Cache Architecture with Global Block Priority,” MICRO, pp. 421–432, Dec. 2007.

[6] B. M. Beckmann, M. R. Marty, and D. A. Wood. “ASR: Adaptive Selective Replication
for CMP Caches,” Proc. Int’l Symp. Microarchitecture, Dec. 2006.

[7] B. M. Beckmann and D. A. Wood. “Managing Wire Delay in Large Chip-Multiprocessor
Caches,” Proc. Int’l Symp. Microarchitecture, pp. 319–330, Dec. 2004.

[8] C. M. Bienia, S. Kumar, J. P. Singh, and K. Li. “The PARSEC Benchmark Suite:
Characterization and Architectural Implications,” PACT, Oct. 2008.

[9] B. Calder, D. Grunwald, and J. S. Emer. “Predictive sequential associative cache,”
HPCA, pp. 244–253, Feb. 1996.

[10] L. Censier and P. Feautrier. “A New Solution to Coherence Problems in Multicache
Systems,” IEEE Trans. Comput. C-27 (12): 1112- 1118, Dec. 1978.

[11] J. Chang. “Cooperative Caching for Chip Multiprocessors,” PhD thesis, University of
Wisconsin-Madison, 2007.

144

[12] J. Chang and G. S. Sohi. “Cooperative Caching for Chip Multiprocessors,” Proc. Int’l
Symp. Computer Architecture, June 2006.

[13] M. Chaudhuri. “PageNUCA: Selected Policies for Page-grain Locality Management in
Large Shared Chip-multiprocessor Caches,” Proc. Int’l Symp. High-Perf. Computer
Arch, pp. 227-238, Feb. 2009.

[14] M. Chaudhuri. “Pseudo-LIFO: The Foundation of a New Family of Replacement Policies
for Last-level Caches,” MICRO, pp. 401-412, Dec. 2009.

[15] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. “Distance associativity for high-
performance energy-efficient non-uniform cache architectures,” MICRO, pp. 55–66,
2003.

[16] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. “Optimizing Replication, Communi-
cation, and Capacity Allocation in CMPs,” Proc. Int’l Symp. Computer Architecture,
pp. 357–368, June 2005.

[17] S. Cho and L. Jin “Managing Distributed Shared L2 Caches through OS-Level Page
Allocation,” Proc. Int’l Symp. Microarchitecture, Dec 2006.

[18] A. Chishti, M. D. Powell, and T. N. Vijaykumar. “Distance Associativity for High-
Performance Energy-Efficient Non-Uniform Cache Architectures,” Proc. Int’l Symp.
Microarchitecture, Dec. 2003.

[19] J. D. Collins and D. M. Tullsen. “ Runtime Identification of Cache Conflict Misses: The
Adaptive Miss Buffer,” ACM Trans. Comput. Syst., pp. 413439, 2001.

[20] H. Dybdahl and P. Stenstrom “An Adaptive Shared/Private NUCA Cache Partition-
ing Scheme for Chip Multiprocessors,” Proc. Int’l Symp. High-Performance Computer
Architecture, Feb. 2007.

[21] Digital Equipment Corporation, Hudson, MA. “Digital Semiconductor 21164 AlphaMi-
croprocessor Product Brief,” Technical Document EC-QP97D-TE, Mar. 1997.

[22] Z. Guz, I. Keidar, A. Kolodny, and U. C. Weiser. “Utilizing Shared Data in Chip
Multiprocessors with the Nahalal Architecture,” SPAA, June 2008.

[23] A. Gupta, W. D. Weber, and T. Mowry. “Reducing Memory and Traffic Requirements
for Scalable Directory-Based Cache Coherence Schemes,” Int’l Conference on Parallel
Processing, August 1990.

[24] E. G. Hallnor and S. K. Reinhardt. “A fully associative software managed cache design,”
ISCA, pp. 107–116, 2000.

[25] M. H. Hammoud, S. Cho, and R. Melhem. “ACM: An Efficient Approach for Managing
Shared Caches in Chip Multiprocessors ,” Int’l conf. on High-Performance Embedded
Architectures and Compilers, pp. 319–330, Jan. 2009.

145

[26] M. H. Hammoud, S. Cho, and R. Melhem. “Dynamic Cache Clustering for Chip Mul-
tiprocessors ,” Proceedings of the ACM Int’l Conference on Supercomputing , June.
2009.

[27] M. H. Hammoud, S. Cho, and R. Melhem. “Cache Equalizer: A Cache Pressure Aware
Block Placement Scheme for Large-Scale Chip Multiprocessors ,” Technical Report TR-
09-167, Department of Computer Science, University of Pittsburgh, July. 2009.

[28] M. H. Hammoud, S. Cho, and R. Melhem. “C-AMTE: A Location Mechanism for
Flexible Cache Management in Chip Multiprocessors ,” Technical Report TR-09-166,
Department of Computer Science, University of Pittsburgh, July. 2009.

[29] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. “Reactive NUCA: Near-
Optimal Block Placement and Replication in Distributed Caches,” Proc. Int’l Symp.
Computer Architecture, June 2009.

[30] S. Harris. “Synergistic Caching in Single-Chip Multiprocessors,” PhD thesis, Stanford
University, 2005.

[31] J. Held, J Bautista, and S. Koehl. “From a Few Cores to Many: A Tera-scale Computing
Research Overview,” White Paper. Research at Intel, Jan. 2006.

[32] HP Labs. “http://www.hpl.hp.com/research/cacti/”

[33] H. Huang, K. G. Shin, C. Lefurgy, and T. Keller. “Improving Energy Efficiency by
Making DRAM Less Randomly Accessed,” ISLPED, August 2005.

[34] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler. “A NUCA Substrate
for Flexible CMP Cache Sharing,” Proc. Int’l Conf. Supercomputing, pp. 31–40, June
2005.

[35] A. Jaleel, W. Hasenplaugh, M. K. Qureshi, J. Sebot, S. Steely Jr., and J. Emer. “Adap-
tive Insertion Policies for Managing Shared Caches,” PACT , pp. 208–219, Oct. 2008.

[36] L. Jin and S. Cho. “Taming Single-Thread Program Performance on Many Distributed
On-Chip L2 Caches,” Proc. Int’l Conference on Parallel Processing , pp. 487–494,
September 2008.

[37] N. P. Jouppi. “ Improving Direct-Mapped Cache Performance by the Addition of a
Small Fully-Associative Cache and Prefetch Buffers,” Proc. Int’l Symp. Computer Ar-
chitecture, 1990.

[38] T. Johnson and U. Nawathe. “An 8-core, 64-thread, 64-bit Power Efficient SPARC
SoC,” IEEE ISSCC, Feb. 2007.

[39] M. Kandemir, F. Li, M. J. Irwin, and S. W. Son. “A Novel Migration-Based NUCA
Design for Chip Multiprocessors,” Proc. Conference on High Performance Computing,
Nov. 2008.

146

[40] C. Kim, D. Burger, and S. W. Keckler. “An Adaptive, Non-Uniform Cache Structure
for Wire-Delay Dominated On-Chip Caches,” Proc. Int’l Conf. Architectural Support
for Prog. Languages and Operating Systems, pp. 211–222, Oct. 2002.

[41] P. Kongetira, K. Aingaran, and K. Olukotun. “Niagara: A 32-Way Multithreaded Sparc
Processor,” IEEE Micro, 25(2): 21–29, March-April 2005.

[42] J. Laudon and D. Lenoski. “The SGI Origin: A ccNUMA Highly Scalable Server,”
ISCA, June 1997.

[43] F. Li, M. Kandemir and M. J. Irwin. “Implementation and Evaluation of a Migration-
Based NUCA Design for Chip Multiprocessors,” ACM SIGMETRICS, June 2008.

[44] M. R. Marty and M. D. Hill. “Virtual Hierarchies to Support Server Consolidation,”
Proc. Int’l Symp. Computer Architecture, pp. 336–345, June 2007.

[45] G. Memik, G. Reinman, andW. H.Mangione-Smith. “ Reducing Energy and Delay Using
Efficient Victim Caches,” Proc. Int’l Symp. on Low Power Electronics and Design, 2003.

[46] R. Mullins, A. West, and S. Moore “Low-Latency Virtual-Channel Routers for On-chip
Networks,” Proc. Int’l Symp. Computer Architecture, June 2004.

[47] K. Olukotun, L. Hammond, and J. Laudon. “Chip Multiprocessor Architecture: Tech-
niques to Improve Throughput and Latency ,” Synthesis Lectures on Computer Archi-
tecture, 1st Ed., Morgan and Claypool, Dec. 2007.

[48] J. Peir, Y. Lee, and W. Hsu. “Capturing Dynamic Memory Reference Behavior with
Adaptive Cache Topology,” ASPLOS, pp. 240–250, 1998.

[49] W. Qiang, M. Margaret, W. C. Douglas, V. J. Reddi, C. Dan, W. Youfeng, L. Jin, and
B. David “A Dynamic Compilation Framework for Controlling Microprocessor Energy
and Performance,” Proc. Int’l Symp. Microarchitecture, pp. 271–282, 2005.

[50] M. K. Qureshi. “Adaptive Spill-Receive for Robust High-Performance Caching in
CMPs,” Proc. Int’l Symp. High-Perf. Computer Arch, pp. 45–54, Feb. 2009.

[51] M. K. Qureshi, A. Jaleel, Y. N. Patt, and S. C. Steely Jr.. “Adaptive Insertion Policies
for High Performance Caching,” ISCA, pp. 381–391, June 2007.

[52] M. K. Qureshi and Y. N. Patt. “Utility-Based Cache Partitioning: A Low-Overhead,
High-Performance,” MICRO, pp. 423–432, Dec. 2006.

[53] M. K. Qureshi, D. Thompson, and Y. N. Patt. “The V-WAY Cache: Demand-Based
Associativity via Global Replacement,” ISCA, pp. 544–555, June 2005.

[54] Research at Intel. “Introducing the 45nm Next-Generation Intel CoreTM Microarchitec-
ture,” White Paper.,

147

[55] D. Rolán, B. B. Fraguela, and R. Doallo “Adaptive line placement with the set balancing
cache,” MICRO, pp. 529–540, Dec. 2009.

[56] A. Ros, M. E. Acacio, and J. M. Garćıa “Scalable Directory Organization for Tiled
CMP Architectures,” Proc. Int’l Conference on Computer Design, July 2008.

[57] A. Seznec. “A case for two-way skewed-associative caches,” ISCA, pp. 169–178, May
1993.

[58] T. Sherwood, B. Calder, and J. Emer. “Reducing CacheMisses Using Hardware and
Software Page Placement,” Proc. Int’l Conf. Supercomputing, June 1999.

[59] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B. Joyner. “POWER5
System Microarchitecture,” IBM J. Res. & Dev., 49(1):–25, July. 2005.

[60] Y. Solihin. “Fundamentals of Prallel Computer Architecture,” Solihin Books, 1st Ed.,
2008.

[61] S. Srikantaiah, M. Kandemir, and M. J. Irwin. “Adaptive Set Pinning: Managing
Shared Caches in Chip Multiprocessors,” Proc. Int’l Conf. Architectural Support for
Programming Languages and Operating Systems, pp. 135-144, March 2008.

[62] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. “Feedback Directed Prefetching: Im-
proving the Performance and Bandwidth-Efficiency of Hardware Prefetchers,” Proc.
Int’l Symp. High-Perf. Computer Arch, pp. 63-74, Feb. 2007.

[63] Standard Performance Evaluation Corporation. http://www.specbench.org.

[64] D. Tam, R. Azimi, L. Soares, and M. Stumm. “Managing Shared L2 Caches on Multicore
Systems in Software,” In Workshop on the Interaction between Operating Systems and
Computer Architecture, 2007.

[65] N. Topham, A. Gonzalez, and J. Gonzalez. “ The Design and Performance of a Conflict-
Avoiding Cache,” Proc. Int’l Symp. Microarchitecture, pp. 71–80, 1997.

[66] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, P. Iyer, A.
Singh, T. Jacob, S. Jain, S. Venkataraman, Y. Hoskote, and N. Borkar. “An 80-Tile
1.28TFLOPS Network-on-Chip in 65nm CMOS,” ISSCC, Feb 2007.

[67] H. Vandierendonck, P. Manet, and J.-D. Legat. “ Application-Specific Reconfigurable
XOR-Indexing To Eliminate Cache Conflict Misses,” Proc. Conference on Design, Au-
tomation and Test, pp. 357–362, 2006.

[68] Virtutech AB. Simics Full System Simulator “http://www.simics.com/”

[69] D. Weiss, J. J. Wuu, and V. Chin. “The on-chip 3-mb subarray-based third-level cache
on an itanium microprocessor,” In IEEE journal of solid state circuits, pp. 1523–1529,
Nov. 2002.

148

[70] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. “The SPLASH-2 Programs:
Characterization and Methodological Considerations,” Proc. Int’l Symp. Computer Ar-
chitecture, pp. 24–36, July 1995.

[71] Y. Xie and G. H. Loh. “PIPP: Promotion/Insertion Pseudo-Partitioning of Multi-core
Shared Caches,” ISCA, pp. 174–183, June 2009.

[72] C. Zhang. “ Balanced Cache: Reducing Conflict Misses of Direct-Mapped Caches,”
Proc. Int’l Symp. Computer Architecture, June 2006.

[73] M. Zhang and K. Asanović “Victim Migration: Dynamically Adapting Between Pri-
vate and Shared CMP Caches,” Technical Report TR-2005-064, Computer Science and
Artificial Intelligence Labratory. MIT, pp. 211–222, Oct. 2005.

[74] M. Zhang and K. Asanović. “Victim Replication: Maximizing Capacity while Hiding
Wire Delay in Tiled Chip Multiprocessors,” Proc. Int’l Symp. Computer Architecture,
pp. 336–345, June 2005.

149

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. CC-FR's categories and challenges that each proposed scheme lies under and addresses.
	2. Taxonomy of some CMP related work (IM = Interference Misses, PMSG = Processor-Memory Speed Gap, DWG = Diverse Workload Characteristics).
	3. System parameters.
	4. Benchmark programs.
	5. Mapping strategies of private and shared CMP caches and the hybrid mapping approach of C-AMTE.
	6. Benchmark programs.
	7. Message-Hops per 1K insructions
	8. FSB storage overhead.
	9. Baseline and FSB required energy and area in a 512KB/16-way/64B/LRU L2 bank.
	10. Benchmark programs.
	11. Masking Bits (MB) for a 16-tile CMP Model.
	12. System parameters
	13. Benchmark programs

	LIST OF FIGURES
	1. Two traditional cache organizations. (a) The shared L2 design backs up all the L1 caches. (b) The private L2 design backs up only the private L1 cache on each tile. (Dir stands for directory and R for router).
	2. Distribution of L2 cache misses (compulsory, intra-processor, and inter-processor).
	3. Cache demands are irregular among different applications and within the same application.
	4. General CMP Caching Framework (CC-FR).
	5. Tiled CMP architecture (Figure not to scale).
	6. A first example on locating a migratory block B using the C-AMTE mechanism.
	7. A second example on locating a block B using the C-AMTE mechanism.
	8. Average L2 access latency of the baseline shared scheme (S), DNUCA(B), DNUCA(3W), DNUCA(C-AMTE), and DNUCA(Ideal) normalized to S (B= Broadcast, 3W = 3 Way).
	9. Execution times of the baseline shared scheme (S), DNUCA(B), DNUCA(3W), DNUCA(C-AMTE), and DNUCA(Ideal) normalized to S (B= Broadcast, 3W = 3 Way).
	10. Number of misses per 1 million instructions (MPMI) experienced by two local cache sets (the ones that experience the max and the min misses) at different sets across L2 banks for two benchmarks, Swaptions and MIX3.
	11. Address-based versus pressure and distance aware placements. (a) The nominal shared scheme placement strategy. (b) The PDA strategy. (T15 is the requesting core, f(.) denotes the placement function, HS is the home select bits of block B, and P is the pressure array)
	12. Placing block K (with index = 1) using PDA with various granularities. (a) 1-group. (b) 2-group. (c) 4-group. (GN is the group number)
	13. L2 miss rates of PDA and shared (S) schemes (normalized to S).
	14. Percentage of placements to local L2 banks under PDA.
	15. L2 hits breakdown. Moving from left to right, the 2 bars for each benchmark are for S and PDA schemes, respectively.
	16. Average L2 Access Latencies (AALs) of PDA and shared (S) schemes (normalized to S).
	17. On-chip network traffic.
	18. Execution times of PDA and shared (S) schemes (normalized to S).
	19. The PDA behavior with different granularities (varying from 1-group to 512-group).
	20. S-Curve for CPI improvement of PDA over S.
	21. S-Curve for CPI improvement of PDA over S.
	22. L2 miss rates of S, S with two more ways added (S(2W)), S with double sized cache (S(D)), and PDA (all normalized to S).
	23. Storage requirements of PDA with a full-map bit vector (PDA(Full)), a compact vector with 1 bit for every 4 cores (PDA(Comp4)), and a compact vector with 1 bit for every 8 cores (PDA(Comp8)).
	24. Execution times of shared (S), private (P), victim caching (VC), cooperative caching 100% (CC(100%)), cooperative caching 70% ((CC(70%)), and PDA schemes (normalized to S).
	25. Number of misses experienced by two cache sets at different L2 banks for two benchmarks, SPECJBB and MIX3 (MAX Set = the set that experiences the maximum misses and MIN Set = the set that experiences the minimum misses).
	26. DSBC in operation. (a) A maps originally to set 3. The program executes A's references in the order of A, A. DSBC is able to save much A's interference misses. (b) A and B map originally to sets 3 and 0, respectively. The program executes A's and B's references in the order of A, B, A, B. DSBC is incapable of adapting to the phase change in the program.
	27. DSBC in operation. (a) The program executes A's, B's, and C's references in the order of A, B, C, A, B, C. DSBC doesn't allow one-from-many sharing. (b) The program executes A's references twice. DSBC doesn't allow many-from-one sharing.
	28. My solution. (a) The program executes A's, and B's references in the order of A, B, A, B. I adapt to the phase change in the program. (b) The program executes A's, B's, and C's references in the order of A, B, C, A, B, C. I allow one-from-many sharing. (c) The program executes A's references twice. I allow many-from-one sharing.
	29. L2 miss rates and execution times of the baseline shared scheme (S), FSB-1, FSB-2, FSB-4, and FSB-8 (all normalized to S).
	30. The average number of L2 cache sets searched under FSB-1, FSB-2, FSB-4, and FSB-8.
	31. The percentage of hits on retained cache lines under FSB-1, FSB-2, FSB-4, and FSB-8.
	32. The number of L2 misses experienced by cache sets at different L2 banks for SpecJBB and MIX3 programs under the baseline shared scheme (S) and FSB-4. Only the sets that exhibit the maximum (MAX Set) and the minimum (Min Set) misses are shown.
	33. Average L2 miss rates and execution times of all the benchmark programs under the baseline shared scheme (S), FSB-1, FSB-2, FSB-4, and FSB-8 (all normalized to S) (F1, F2, and F3 are pressure functions that involve misses, hits, and spatial hits, respectively).
	34. Average L2 miss rates and execution times of all the benchmark programs under the baseline shared scheme (S), FSB-1, FSB-2, FSB-4, and FSB-8 (all normalized to S) (RL1, RL2, and RL3 are the Retention Limits- HPL and LPL- with = 0.1, = 0.2, and = 0.3, respectively).
	35. L2 miss rates of the baseline shared scheme (S), S with two more ways added (S(2W)), S with double sized cache (S(D)), and FSB-4 (all normalized to S).
	36. Execution times of the baseline shared scheme (S), victim cache (VC), and FSB-4 (all normalized to S).
	37. Distribution of L2 cache lines' reuses before evicted from L2 (Reuse Count = the number of L2 accesses to a cache line after its initial fill).
	38. L2 miss rates and execution times of the baseline shared scheme (S), variable-way set associative cache (V-WAY), dynamic set balancing cache (DSBC), and FSB-4 (all normalized to S).
	39. (a) The Original Shared CMP Scheme. (b) A Simple Migration Example.
	40. An Example of How ACM Works (S = Sharer, H = Host).
	41. An Automatic Data Attraction Case offered by ACM.
	42. Single-threaded and Multiprogramming Results (S = Shared, VR = Victim Replication).
	43. Average Memory Access Cycles Per 1K Instructions Results (S = Shared, VR = Victim Replication).
	44. Multithreaded Results (S = Shared, VR = Victim Replication).
	45. On-Chip Network Traffic Comparison. (a) Single-threaded Workloads (b) Multithreaded Workloads
	46. Results for CMP Systems with 16 and 32 Processors. (a) Average L2 Access Latencies (b) L2 Miss Rate
	47. Fixed Schemes (FS) with different sharing degrees (SD). (a) FS1 (b) FS2 (c) FS4 (d) FS8 (e) FS16
	48. A possible cache clustering configuration that the DCC scheme can select dynamically at runtime.
	49. An example of how the DCC mapping strategy works. Each case depicts a possible DHT of the requested cache block B with HS = 1111 upon varying the cache cluster dimension (CD) of the requester core 5 (ID = 0101).
	50. The dynamic cache clustering algorithm.
	51. An example of the DCC location strategy using equation (3). (a) Core 0 with current CD = 8 requesting and mapping a block B to DHT 7. (b) Core 0 missed B after contracting its CD from 8 to 4 banks.
	52. The average behavior of the DCC location strategy.
	53. A demonstration of an L2 request satisfied by a neighboring cache cluster. (a) Core 0 issued an L2 request to block B. (b) Core 3 satisfied the L2 request of Core 0 after re-transmitted to it by B's SHT (tile 15).
	54. Results for the simulated benchmarks. (a) Average L1 Miss Time (AMT) in cycles. (b) L2 Miss Rate.
	55. Memory access breakdown. Moving from left to right, the 6 bars for each benchmark are for FS16, FS8, FS4, FS2, FS1, and DCC schemes, respectively.
	56. On-Chip network traffic comparison.
	57. Execution time (Normalized to FS16).
	58. DCC sensitivity to different T, Tl, and Tg values.
	59. Time varying graph showing the activity of the DCC algorithm.
	60. Execution times of FS1, cooperative caching (CC), and DCC (normalized to FS1).
	61. The DPDA relocation algorithm to locate a better host for a cache block.
	62. Average L2 Access Latencies (AALs) of PDA, DPDA, and shared (S) schemes (normalized to S).
	63. L2 miss rates of PDA, DPDA, and shared (S) schemes (normalized to S).
	64. The percentage of migrations performed by DPDA.
	65. Execution times of PDA, DPDA, and shared (S) schemes (normalized to S).
	66. The DPDA behavior with different migration frequency levels (MFLs). DPDA(4), DPDA(6), and DPDA(8) stand for DPDA with MFL values of 4, 6, and 8, respectively.
	67. L2 miss rates of shared (S), DCC, and DCCB schemes (normalized to S).
	68. Average L2 access latencies (AALs) of shared (S), DCC, and DCCB schemes (normalized to S).
	69. Execution times of shared (S), DCC, and DCCB schemes (normalized to S).

	1.0 INTRODUCTION
	1.1 CONVENTIONAL CMP CACHING SCHEMES
	1.2 CMP Cache MANAGEMENT CHALLENGES
	1.2.1 Growing Non uniform Access latencies
	1.2.2 The Bandwidth Wall Problem and The Processor-Memory Speed Gap
	1.2.3 Interference Misses
	1.2.4 Diverse Workload Characteristics

	1.3 A GENERAL CMP CACHING FRAMEWORK (CC-FR)
	1.4 THESIS OVERVIEW
	1.5 CONTRIBUTIONS
	1.6 ROADMAP

	2.0 RELATED WORK AND EVALUATION METHODOLOGY
	2.1 BASELINE PROCESSOR ARCHITECTURE
	2.2 RELATED WORK
	2.2.1 Single-Core Caching Schemes
	2.2.2 CMP Page-Granular Caching Schemes
	2.2.3 CMP Block-Granular Caching Schemes

	2.3 EVALUATION METHODOLOGY

	3.0 CONSTRAINED ASSOCIATIVE-MAPPING OF TRACKING ENTRIES
	3.1 PROBLEM DEFINITION AND PROPOSED SOLUTION
	3.1.1 Problem Definition
	3.1.2 Proposed Solution

	3.2 THE CONSTRAINED ASSOCIATIVE-MAPPING-OF-TRACKING-ENTRIES (C-AMTE) MECHANISM
	3.3 QUANTITATIVE EVALUATION
	3.3.1 Results

	3.4 SUMMARY

	4.0 PRESSURE AND DISTANCE AWARE PLACEMENT
	4.1 MOTIVATION AND PROPOSED SOLUTION
	4.1.1 Motivation
	4.1.2 Proposed Solution

	4.2 THE PRESSURE AND DISTANCE AWARE PLACEMENT MECHANISM
	4.2.1 A Pressure Limit and Manhattan Distance
	4.2.2 Pressure and Distance Aware Placement
	4.2.3 Group-Based Pressure Collection

	4.3 QUANTITATIVE EVALUATION
	4.3.1 Comparing Against the Shared NUCA Design
	4.3.2 Sensitivity of PDA to Different Group Granularities
	4.3.3 Sensitivity of PDA to HPL
	4.3.4 Accounting for the Overhead of the Location Strategy
	4.3.5 Scalability
	4.3.6 Comparing with Related Designs

	4.4 SUMMARY

	5.0 FLEXIBLE SET BALANCING
	5.1 MOTIVATION AND PROPOSED SOLUTION
	5.1.1 Motivation
	5.1.2 Dynamic Set Balancing Cache and Inherent Shortcomings
	5.1.3 Proposed Solution

	5.2 FLEXIBLE SET BALANCING (FSB) MECHANISM
	5.2.1 Retention Limits
	5.2.2 Retention Policy
	5.2.3 Lookup Policy
	5.2.4 FSB Cost
	5.2.5 Scalability

	5.3 QUANTITATIVE EVALUATION
	5.3.1 Comparing FSB against Shared Baseline
	5.3.2 Sensitivity to Different Pressure Functions
	5.3.3 Sensitivity to LPL and HPL
	5.3.4 Impact of Increasing Cache Size and Associativity
	5.3.5 FSB versus Victim Caching
	5.3.6 FSB versus DSBC and V-WAY

	5.4 SUMMARY

	6.0 ADAPTIVE CONTROLLED MIGRATION
	6.1 MOTIVATION AND PROPOSED SOLUTION
	6.1.1 Motivation
	6.1.2 Proposed Solution

	6.2 THE ADAPTIVE CONTROLLED MIGRATION (ACM) MECHANISM
	6.2.1 Predicting Optimal Host Location
	6.2.2 Replacement Policy Upon Migration: Swapping the LRU Block with the Migratory One

	6.3 QUANTITATIVE EVALUATION
	6.3.1 Experimental Methodology
	6.3.2 Comparing Schemes, Single-threaded and Multiprogramming Workloads
	6.3.3 Comparing Schemes, Multithreaded Workloads
	6.3.4 On-Chip Network Traffic
	6.3.5 Scalability
	6.3.6 Sensitivity and Stability Studies

	6.4 SUMMARY

	7.0 DYNAMIC CACHE CLUSTERING
	7.1 MOTIVATION AND PROPOSED SOLUTION
	7.1.1 Motivation
	7.1.2 Proposed Solution

	7.2 BACKGROUND
	7.2.1 Fixed Cache Schemes
	7.2.2 Fixed Mapping and Location Strategies
	7.2.3 Coherence Maintenance

	7.3 THE DYNAMIC CACHE CLUSTERING(DCC) MECHANISM
	7.3.1 Average Memory Access Time (AMAT)
	7.3.2 The Proposed Scheme
	7.3.3 DCC Mapping Strategy
	7.3.4 DCC Algorithm
	7.3.5 DCC Location Strategy
	7.3.6 Scalability

	7.4 QUANTITATIVE EVALUATION
	7.4.1 Comparing With Fixed Schemes
	7.4.2 Sensitivity Study
	7.4.3 Comparing With Cooperative Caching

	7.5 SUMMARY

	8.0 COMBINED SCHEMES
	8.1 MOTIVATION AND PROPOSED SOLUTION
	8.1.1 Motivation
	8.1.1.1 PDA and ACM
	8.1.1.2 DCC and FSB

	8.1.2 Proposed Solution
	8.1.2.1 Dynamic Pressure and Distance Aware (DPDA)
	8.1.2.2 Dynamic Cache Clustering and Balancing (DCCB)

	8.2 THE COMBINED SCHEMES
	8.2.1 THE DYNAMIC PRESSURE AND DISTANCE AWARE (DPDA) PLACEMENT MECHANISM
	8.2.2 THE DYNAMIC CACHE CLUSTERING AND BALANCING (DCCB) MECHANISM

	8.3 QUANTITATIVE EVALUATION
	8.3.1 Comparing DPDA Against the Shared NUCA and the PDA Designs
	8.3.2 Sensitivity of DPDA to Different Migration Frequency Levels
	8.3.3 Comparing DCCB Against the Shared NUCA and the DCC Designs

	8.4 SUMMARY

	9.0 CONCLUSIONS
	9.1 SUMMARY AND CONCLUSIONS

	BIBLIOGRAPHY

