
C-AMTE: A Location Mechanism for Flexible Cache

Management in Chip Multiprocessors

Mohammad Hammoud, Sangyeun Cho, and Rami Melhem

Department of Computer Science

University of Pittsburgh

Abstract

This paper describes Constrained Associative-Mapping-of-Tracking-Entries
(C-AMTE), a scalable mechanism to facilitate flexible and efficient distributed
cache management in large-scale chip multiprocessors (CMPs). C-AMTE
enables fast locating of cache blocks in CMP cache schemes that employ
one-to-one or one-to-many associative mappings. C-AMTE stores in per-
core data structures tracking entries to avoid on-chip interconnect traffic
outburst or long distance directory lookups. Simulation results using a full
system simulator demonstrate that C-AMTE achieves improvement in cache
access latency by up to 34.4%, close to that of a perfect location strategy.

Key words:

CMP, Shared Scheme, Private Scheme, Associative Mapping, Fixed
Mapping, Tracking Entries.

1. Introduction

Crossing the billion-transistor per chip barrier has had a profound influence
on the emergence of chip multiprocessors (CMPs) as a mainstream archi-
tecture of choice. As CMPs’ realm is continuously expanding, they must
provide high and scalable performance. One of the key challenges to ob-
taining high performance from CMPs is the management of the limited on-
chip cache resources (typically the L2 cache) shared by multiple executing
threads/processes.

Economic, manufacturing, and physical design considerations suggest
tiled CMP architectures (e.g., Tilera’s Tile64 and Intel’s Teraflops Research

Preprint submitted to Journal of Parallel and Distributed Computing November 13, 2010

R

Core

T
a
g

L2$

L1I$ L1D$

To Memory

R

Core

L2$

R

Core

D
ir

T
a
g

L2$

L1I$ L1D$

D
ir

T
a
g

L2$

L1I$ L1D$

To Memory

R

Core

T
a
g

L2$

L1I$ L1D$

D
ir

D
ir

(a) Shared L2 Design (b) Private L2 Design

Figure 1: Two traditional cache organizations. (a) The shared L2 design backs
up all the L1 caches. (b) The private L2 design backs up only the private L1
cache on each tile. (Dir stands for directory and R for router).

Chip) that co-locate distributed cores with distributed cache banks in tiles
communicating via a network on-chip (NoC) [13]. A tile typically includes a
core, private L1 caches (I/D), and an L2 cache bank. A traditional practice,
referred to as the shared scheme, logically shares the physically distributed L2
banks. On-chip access latencies differ depending on the distances between
requester cores and target banks creating a Non Uniform Cache Architec-
ture (NUCA) [16]. As an example, the Intel CoreTM i7 processor introduces
NUCA into its platform [25]. Another conventional practice referred to as
the private scheme, associates each L2 bank to a single core and provides
no capacity sharing among cores. Fig. 1 demonstrates the two designs. For
simplicity we show only a dual-core tiled CMP architecture. In addition, we
assume a distributed directory protocol.

The private scheme replicates cache blocks at the L2 banks of the request-
ing cores. Hence, an effective cache associativity which equates the aggregate
associativity of the L2 cache banks is provided [6]. That is, a cache block can
map to any of the private L2 banks, and if shared amongst cores, can reside
in multiple L2 banks. A high bandwidth on-chip directory protocol can be
employed to keep the multiple L2 banks coherent. The directory can be held
as a duplicate set of L2 tags distributed across tiles by set index [2, 32]. We
generally refer to a mapping process that exploits the aggregate associativ-
ity of the L2 cache banks as an associative mapping strategy. In particular,
we designate the mapping strategy of the private scheme as one-to-many

associative mapping because a single block can be mapped to multiple L2
banks.

In contrast to the private design, the shared scheme maintains the exclu-

2

siveness of cache blocks at the L2 level. A core maps and locates a cache
block, B, to and from a target L2 bank at a tile referred to as the static home

tile (SHT) of B. The SHT of B is determined by a subset of bits denoted as
home select bits (or HS bits) from B’s physical address. As such, the shared
strategy requires maintaining coherence only at the L1 level. The SHT of B
can store B itself and a bit vector indicating which cores had cached copies
of B in their L1 private caches. This on-chip coherence practice is referred
to as an in-cache coherence protocol [5, 12, 32]. In this work we refer to an
entry that tracks copies (either at L1 or L2) of a certain cache block as a
tracking entry. We, furthermore, identify a mapping process that maps an
entry (block or tracking) to a fixed tile as a fixed mapping strategy (e.g., the
shared design employs fixed mapping).

Recent research work on CMP cache management has recognized the
importance of the shared scheme [27, 12, 11, 14, 29, 15]. Besides, many of
today’s multi-core processors, the Intel CoreTM2 Duo processor family [22],
Sun Niagara [17], and IBM Power5 [26], have featured shared caches. A
shared design, however, suffers from a growing on-chip delay problem. Access
latencies to L2 banks are non-uniform and proportional to the distances
between requester cores and target banks. This drawback is referred to as
the NUCA problem.

To mitigate the NUCA problem, many proposals have extended the nom-
inal basic shared design to allow associative mapping (i.e., leveraging the
aggregate associativity of the L2 cache banks). For instance, block migra-
tion [3, 11, 14, 15, 31] exploits associative mapping by moving frequently
accessed blocks closer to requesting cores. We denote such a strategy as one-

to-one associative mapping due to the fact that the exclusiveness of cache
blocks at the L2 level is still preserved (only a single copy of a block is pro-
moted along identical sets over different banks). In contrast to migration,
replication duplicates cache blocks at different L2 banks [8, 6, 32]. Accord-
ingly, a replication scheme is said to adopt one-to-many associative mapping.

A major shortcoming of using associative mapping for blocks in any CMP
cache management scheme is the location process. For example, a migration
scheme that promotes a cache block B to a tile different than its home tile,
denoted as the current host of B, can’t use anymore the HS bits of B’s phys-
ical address to locate B. Consequently, different strategies for the location
process need to be considered. A tracking entry can always be retained at
a centralized directory or at B’s home tile (if the underlying directory pro-
tocol is distributed) to enable tracking B after promotion. Hence, if a core

3

requests B, the repository of the tracking entries is reached first then the
query is forwarded to B’s host tile to satisfy the request. The disadvantage
of this option is the arousal of 3-way cache-to-cache transfers which can de-
grade the average L2 access latency. An alternative location strategy could
be to broadcast queries to all the tiles assuming no tracking entry for B is
kept at a specific repository. Such a strategy can, however, burden the NoC
and potentially degrade the overall system performance.

This paper proposes Constrained Associative-Mapping-of-Tracking-Entries
(C-AMTE), a mechanism that flexibly accelerates cache management in
CMPs. In particular, C-AMTE presents constrained associative mapping

that combines the effectiveness of both, the associative and fixed mapping
strategies and applies that to tracking entries to resolve the challenge of
locating cache blocks without broadcasting and with minimal 3-way commu-
nications.

To summarize, the contributions of C-AMTE are as follows:

• It enables fast location of cache blocks without swamping the NoC.

• It can be applied whenever associative mapping is used for cache blocks,
either in case of one-to-one (i.e, migration) or one-to-many (i.e, repli-
cation).

• It can be generally applied to cache organizations that extend the con-
ventional private or shared schemes. Furthermore, it opens opportu-
nities for architects to propose more creative cache management de-
signs with no necessity to stick to either private or shared traditional
paradigms.

The rest of the paper is organized as follows. Section 2 presents some
recent CMP cache management schemes. C-AMTE mechanism is detailed in
Section 3. In Section 4 we evaluate C-AMTE, and we conclude in Section 5.

2. Related Work

Much work has been done to effectively manage CMP caches. Many propos-
als advocate CMP cache management at either fine (block) or coarse (page)
granularities and base their work on either the nominal shared or private
schemes. We briefly discuss below some of the prior work and describe the
location process that each proposal employs. We note that C-AMTE is not

an independent CMP scheme that can be run by itself, but yet a location

4

mechanism that can be applied to CMP designs that employ one-to-one or

one-to-many associative mapping.
Beckmann and Wood [3] and Huh et al. [14] studied generational promo-

tion and suggested Dynamic NUCA (DNUCA) that migrates blocks towards
banks close to requesting processors. To locate migratory blocks, [14] adopts
sending concurrent queries to L2 banks. To reduce the number of queries
sent over the NoC, [3] staggers the location process by searching L2 banks
sequentially in an increasing order of their distances from the requester cores.

Guz et al. [11] presented a new architecture that utilizes migration to
divert only shared data to cache banks at the center of the chip close to all
the cores. To locate migratory blocks, sequential, hybrid (between sequential
and broadcast), and sequential with predictor policies have been scrutinized.
Kandemir et al. [15] proposed a mechanism that determines a suitable lo-
cation for a data block, B, within the shared L2 space at any given point
during execution and then migrates B to that suitable place. To locate B, a
multistep checking scheme was employed.

Zhang and Asanović [31] examined direct promotion (upon first touch)
and proposed Victim Migration that migrates a cache block, B, from its home
tile to the initial requester tile. A victim migration (VM) table per each tile
was suggested to keep track of the locations of migratory blocks. Specifically,
a migration tag for B is kept in the VM table at B’s home tile to point to the
current host of B. Later if a sharer core S reaches the home tile of B and fails
to find a matching tag in the regular L2 tag array but hits in the associated
VM table, the current host of B, pointed out by the matched migration tag,
satisfies the request using a 3-way cache-to-cache transfer. Clearly, Victim
Migration fails to exploit distance locality. That is, the request of a sharer
core S might incur significant latency to locate B (due to approaching B’s
home tile), though B might reside in close proximity to S.

Marty and Hill [19] proposed imposing a two-level virtual coherence hier-
archy on a physically flat CMP that harmonizes with virtual machines (VMs)
assignments. A key challenge for an intra-VM protocol is to find the home
tile of a requested block. For an intra-VM, the home tile is a function of two
properties: which tiles belong to a VM and how many tiles belong to a VM.
Awkwardly, a dynamic VM reassignment can change both. As such, they
suggest co-locating caches with tables within tiles. A table must be looked
up before a miss leaves a tile. Each table includes 64 six-bit entries indexed
by the six least-significant bits of the block number. Tables would be set by
a hypervisor (or OS) at a VM (or process) reassignment.

5

Hammoud et al. [12] proposed an adaptive controlled migration (ACM)
scheme that relies on prediction to collect accessibility information regard-
ing cores that accessed a block B in the past, and then assuming that each
of these cores will access B again in the future, dynamically migrates B to
a bank that minimizes the overall network hops needed. To locate cache
blocks, the cache-the-cache-tag (CTCT) location policy has been suggested.
CTCT is a specific version of the C-AMTE mechanism and had been pre-
sented in [12] specifically to perform blocks’ locations for ACM. This paper
generalizes CTCT (now C-AMTE) to enable fast locating of cache blocks in
CMP cache schemes that adopt one-to-one (i.e., migration) or one-to-many
(i.e., replication) associative mappings.

Cho and Jin [9] proposed an OS-based page allocation algorithm appli-
cable to NUCA architectures. Cache blocks are mapped and located to L2
banks using interleaving on page frame numbers. Chaudhuri [7] suggested
PageNUCA which employs data migration at page granularity. Hardvellas
et al. [13] presented R-NUCA that relies on OS to classify cache accesses
into either private, shared, or instructions and then places and locates each
differently at the L2 cache space. Both, PageNUCA and R-NUCA adopt
direct location strategies similar to C-AMTE. In Section 3.5 we detail the
two schemes and compare and contrast them versus C-AMTE.

Lastly, many researchers explored data replication instead of migration
to mitigate the NUCA latency problem. Zhang and Asanović [32] proposed
victim replication (VR) scheme based on the nominal shared design. VR
keeps replicas of local primary cache victims within only the local L2 cache
banks. As such, the location process becomes straightforward: local L2
banks are looked up (seeking for replica hits) before potentially checking
with blocks’ home tiles. However, many other cache schemes don’t limit
themselves to replicating blocks at only local L2 banks. Chang and Sohi [6]
proposed cooperative caching based on the private scheme, and created a
globally managed shared aggregate on-chip cache. Chisti et al. [8] proposed
CMP-NuRAPID that controls replication based on usage patterns. Both, [6]
and [8] utilize 3-way cache-to-cache transfers to satisfy L2 requests upon
misses at local L2 banks.

6

3. The Proposed Mechanism

3.1. Description of the Mechanism

Constrained Associative-Mapping-of-Tracking-Entries (C-AMTE) is not an
autonomous CMP cache organization that can run by itself but rather a
mechanism that can be applied to CMP cache designs that employ one-to-
one (i.e., migration) or one-to-many (i.e., replication) associative mappings.
A shared NUCA architecture maps and locates a cache block, B, to and from
a home tile determined by a subset of bits (home select or HS bits) from B’s
physical address. Accordingly, B might be mapped to a bank far away from
the requester core, causing the core significant latency to locate B. Such
a problem is referred to as the NUCA problem. Migration and replication
have been suggested as techniques to alleviate the NUCA problem. To save
latency on subsequent requests to B, migration and replication relocate and
replicate, respectively B at a tile different than its home tile, denoted as
the host tile of B, closer to requesting cores. Consequently, B can have, in
addition to the home tile, one or more host tiles. To locate B at a host tile,
the HS bits of B’s physical address can’t be used anymore. C-AMTE offers
a robust and versatile location strategy to locate B at host tiles.

Assuming a distributed directory protocol, C-AMTE supports storing one
tracking entry corresponding to a block B at the home tile of B. We refer
to this tracking entry as the principal tracking entry. The principal tracking
entry points to B and can always be checked by any requester core to locate
B at its current host. The principal tracking entry is stored using a fixed
mapping strategy because the home tile of B is designated by the HS bits of
B’s physical address. C-AMTE also supports storing another type of tracking
entries for B at requester tiles. We refer to this type of tracking entries as
replicated tracking entries. A replicated tracking entry at a requester tile also
points to the current host of B but can be rapidly checked by a requester
core to directly locate B (instead of checking with B’s home tile to achieve
that). The idea of replicating tracking entries at requester tiles capitalizes
on the one-to-many associative mapping strategy traditionally applied for
cache blocks. C-AMTE combines associative and fixed mapping strategies
and apply that to tracking entries in order to efficiently solve the location
problem. Table 1 illustrates the hybrid approach adopted by the C-AMTE
mechanism. We refer to such a hybrid mapping process as a constrained

associative mapping strategy.

7

Block Mapping Tracking Entries Mapping

Private Scheme (P) Associative (at requesting tiles) Fixed (at home tiles)

Shared Scheme (S) Fixed (at home tiles) Fixed (at home tiles)

Scheme With C-AMTE
Associative (one-to-one or one-to-many Constrained=Fixed (at home tiles)

depending on the underlying cache scheme) + Associative (at requesting tiles)

Table 1: Mapping strategies of private and shared CMP caches and the hybrid
mapping approach of C-AMTE.

Based on the above discussion, per each tile, T, a principal tracking
entry is kept for each cache block B whose home tile is T but had been
mapped/promoted to another tile. Besides, replicated tracking entries are
retained at T to track the locations of other corresponding cache blocks that
have been recently accessed by T but whose home tile is not T. Though
both, principal and tracking entries essentially act as pointers to the current
hosts of cache blocks, we differentiate between them for consistency and re-
placement purposes (more on this shortly). We can add two distinct data
structures per each tile to store the two types of the tracking entries. A data
structure, referred to as the principal tracking entries (PTR) table, can hold
principal tracking entries, and a data structure, referred to as the replicated
tracking entries (RTR) table, can hold replicated ones. Alternatively, a single
table, could be referred to as the tracking entries (TR) table, can be added
to hold both classes of tracking entries pertaining that a hardware extension
(i.e., an indicative bit) is engaged to distinguish between the two entries.

Assume a CMP organization with PTR and RTR tables. Whenever a core
issues a request to a block B, its RTR table is checked first for a matching
replicated tracking entry. C-AMTE then proceeds as follows:

• On a miss at the RTR table, the home tile of B is reached and its PTR
table is looked up.

– If a miss occurs at the PTR table, B is fetched from the main
memory and mapped to a tile T specified by the underlying cache
scheme protocol. If T is not B’s home tile, principal and replicated
tracking entries are stored at the PTR table of B’s home tile and
the RTR table of the requester core, respectively. If, in contrary,
T is B’s home tile, no tracking entries are kept at either PTR or
RTR tables (B can be located directly using the HS bits of B’s
physical address).

– If, on the other hand, a hit occurs at the PTR table, B is located
at its current host tile and a replicated tracking entry is stored at

8

Figure 2: A first example on locating a migratory block B using the C-AMTE
mechanism.

the requester’s RTR table.

• On a hit at the RTR table, B is located directly at its current host
designated by the matched replicated tracking entry.

Therefore, upon a hit to the requester’s RTR table, a 3-way cache-to-cache
transfer, which would have been incurred if we had to approach B’s home
tile to locate B, is avoided. Similar logic applies if C-AMTE assumes a single
TR table instead of two distinct PTR and RTR ones.

3.2. Illustrative Examples

Fig. 2 demonstrates an example of the C-AMTE mechanism on a tiled CMP
platform, assuming an underlying shared scheme and a migration policy that
promotes cache blocks towards requesting cores. Fig. 2(a) shows a request
made by core 3 to a cache block, B. Core 3 looks up it local RTR table. We
assume a miss occurs and the request is subsequently forwarded to B’s home
tile, T12. The PTR table and the regular L2 bank at T12 are looked up con-
currently. We assume misses occur at both. Consequently, B is fetched from
the main memory and mapped to B’s home tile, T12 (following the mapping
strategy of the nominal shared scheme). As such, no tracking entries are
retained at either PTR or RTR tables. Fig. 2(b) shows a subsequent request
made by core 3 to B. B is located at its home tile, T12. Assume after that
hit, B is migrated to T11 (closer to T3). Thus, corresponding principal and

9

Figure 3: A second example on locating a block B using the C-AMTE mecha-
nism.

replicated tracking entries are stored at T12 and T3, respectively. If at any
later time core 3 requests B again, a hit will occur at its RTR table (as long as
the entry has not been replaced yet) and B can be located straightforwardly
at T11 avoiding thereby 3-way cache-to-cache transfers. Lastly, note that if
any other core requests B, T12 can always indirectly satisfy the request and
a corresponding tracking entry can be stored at the new requester’s RTR
table.

Fig. 3 demonstrates C-AMTE in operation assuming a cache scheme that
might map cache blocks to tiles different than their home tiles. Fig. 3(a)
shows a request made by core 3 to a cache block B. Core 3 looks up it local
RTR table. We assume a miss occurs and the request is subsequently for-
warded to B’s home tile, T12. The PTR table and the regular L2 bank at T12
are looked up concurrently and misses are then incurred. Consequently, B is
fetched from the main memory and mapped to T15 (determined by the map-
ping strategy of the cache scheme). As such, principal and replicated tracking
entries are kept at T12 and T3, respectively. Fig. 3(b) shows a request made
again by core 3 to B. A hit occurs at T3’s RTR table. Consequently, B is
directly located at T15. Clearly, the two examples shown in Figures 2 and
3 reveal the efficiency and versatility of C-AMTE as a strategy that exploits
distance locality. C-AMTE, in fact, opens opportunities for architects to
propose creative block migration, replication, and placement CMP strategies
with the required location process being on-hand.

10

3.3. Maintenance and Coherence of the Tracking Entries

The principal and replicated tracking entries need to be kept coherent. We
accomplish this by embedding a bit vector with each principal tracking entry
at the PTR tables to indicate which cores had cached related replicated
tracking entries at their RTR tables (much similar to the in-cache coherence
protocol in [5]). For instance, given the example depicted in Fig. 2, each time
B is migrated to a different tile, the principal and the replicated tracking
entries that correspond to B are updated to point to the new host of B.
Besides, C-AMTE can easily preclude potential false misses that can occur
when L2 requests fail to hit on cache blocks because they are in transit
between L2 banks. When migration is to be performed, a copy, B’, of the
cache block B is kept at the current bank so as if an L2 request arrives
while B is in transit, the request is immediately satisfied without incurring
any delay. When B reaches the new host, an acknowledgement message is
sent back to the old host to discard B’. The old host keeps track of any tile
that accesses B’, and when receiving the acknowledgment message, sends an
update message to the new host to indicate the new sharers that requested
B while it was in transit. The directory state entry of B is consecutively
updated. Clearly, enforcing coherence among tracking entries and precluding
false misses impose traffic overhead on the network on-chip. Section 4.2
demonstrates the increase in message hops per 1K instructions incurred by
the C-AMTE mechanism.

Finally, PTR and RTR tables can employ the LRU replacement policy.
However, in case of a single TR table, it is wise to never evict a principal
tracking entry in favor of a replicated one (this is the reason of why we
suggested distinguishing between the two entries). An eviction of a principal
tracking entry causes evictions to the corresponding cache block and all the
related replicated tracking entries. Therefore, the TR replacement policy
should replace the following three classes of entries in an ascending order:
(1) an invalid entry, (2) an LRU replicated tracking entry, (3) and an LRU
principal tracking entry. Besides, upon storing a replicated tracking entry,
only the first two classes are considered for replacement. If no entry belonging
to one of these two classes is detected, a replicated tracking entry is not
retained.

3.4. Hardware Cost and Scalability

The storage overhead incurred by C-AMTE pertains to the usage of principal
and replicated tracking entries. As described earlier, C-AMTE incurs at least

11

!"

#!"

$!!"

$#!"

%!!"

%#!"

$&" '%" &(" $%)" %#&" #$%" $!%("*
"+,

-.
/0
1/
"2
3"
4
,
56
7
89
"6
0-
7
/"

6
09

0-
8:
;"

<=>?/."23"@8A/1"

65BC@DEF=AAG" 65BC@DE62>9(G" 65BC@DE62>9)G"

Figure 4: Storage requirements of C-AMTE with a full-map bit vec-
tor (C-AMTE(Full)), a compact vector with 1 bit for every 4 cores (C-
AMTE(Comp4)), and a compact vector with 1 bit for every 8 cores (C-
AMTE(Comp8)).

one principal and one replicated tracking entries per each cache block, B,
when placed at a tile different than its static home tile. On the other hand,
C-AMTE incurs at most N − 1 tracking entries (one principal and the rest
are replicated) per B with N being the number of tiles on the CMP platform.
The worst case scenario occurs only when B exhibits a sharing degree of N .
Assuming split tracking entries tables, each principal tracking entry would
include: (1) the tag of B (typically 22 bits), (2) a bit vector that acts as a
directory to keep the principal and the replicated tracking entries coherent
(e.g., 16 bits for a 16-tile CMP model), and (3) an ID that points to the
tile that is currently hosting B (e.g., 4 bits for a 16-tile CMP model). On
the other hand, a replicated tracking entry includes only B’s tag and the ID
to B’s current host tile. In contrast, in case of a single TR table, both the
principal and the replicated tracking entries would each encompass a tag, a
bit vector, an ID, and an indicative bit to distinguish between the two types
of entries (required for replacement purposes). Clearly, the bit vector added
to each replicated entry becomes in this case redundant. Thus, splitting TR
table into RTR and PTR might be preferable for reducing storage overhead.

Assuming a 16-tile CMP where each tile encompasses 32KB I/D L1 caches
and a 512KB L2 cache bank and assume PTR and RTR tables each with
8K entries per tile, C-AMTE demonstrates a 12% increase of on-chip cache
capacity. To illustrate how the area overhead of C-AMTE scales, Fig. 4 shows

12

the storage requirements of C-AMTE under 16-tile, 32-tile, 64-tile, 128-tile,
256-tile, 512-tile, and 1024-tile platforms. The figure shows that C-AMTE
with full-map bit vector (one bit for every core) per each principal tracking
entry (C-AMTE(Full)) scales poorly especially after involving more than 64
cores on a single chip. Clearly, what makes C-AMTE non-scalable to a
large number of tiles is the bit vector associated with each principal tracking
entry. C-AMTE, however, needs not incorporate full-map vectors. Similar
to sparse directories [10] and SGI Origin style design [18], C-AMTE can
involve more compact (coarse) vectors to improve upon the poor scalability
at a moderate bandwidth increase. For instance, a bit vector can contain
one bit for every four cores (C-AMTE(Comp4)), or one bit for every eight
cores (PDA(Comp8)) and rely on a broadcast or multicast protocol to track
replicated tracking entries.

3.5. Qualitative Comparison with Closely Related Designs

Two of the closely related location strategies are those proposed and utilized
by PageNUCA [7] and R-NUCA [13]. Chaudhuri [7] suggested PageNUCA
which employs data migration at page granularity. Access patterns of cores
are dynamically monitored and pages are migrated to banks that minimize
the access time for the sharing cores. To locate the migratory pages at the
L2 space, each core maintains at the L1 level two tables (organized exactly as
TLBs) that map the original physical frame number of an instruction or data
page to the migrated frame number. These tables are referred to as iL1Map
and dL1Map, respectively. Upon each L2 request, the appropriate table is
looked up before routing the request to the correct L2 bank. An entry in
the appropriate L1Map is loaded from another unified map table (L2Map)
maintained at the L2 level when the corresponding page table entry is loaded
in the TLB at the time of a TLB miss. On a migration, the new physical
frame number of a page is sent to the sharing cores (with the help of a sharing
vector maintained at a table referred to as PACT) so that they can update
their L1Map tables appropriately.

Hardavellas et al. [13] proposed R-NUCA that also relies on OS. R-NUCA
classifies cache accesses to either private, shared, or instructions. Private
pages are placed at the local L2 banks of the requesting cores, shared at fixed
address-interleaved on-chip locations, and instructions at non-overlapping
fixed-center clusters of L2 banks. R-NUCA extends page table and TLB
entries to distinguish between private and shared pages. A request to L2
after a miss at the L1-I cache is immediately classified as an instruction and

13

a direct location is simply performed assuming a fixed-center cluster centered
at the requesting core. On the other hand, a request to L2 after a miss at
an L1-D cache is resolved during the virtual-to-physical translation. The
corresponding TLB (or page table in case of a TLB miss) entry is examined
to decide upon whether the requested page is private or shared. Subsequently,
the request is routed to either the local (if the page is private) or home (if
the page is shared) L2 bank.

Clearly, both R-NUCA and PageNUCA employ direct location strategies
similar to C-AMTE. However, two main things differentiate C-AMTE from
them. First, R-NUCA and PageNUCA are page-granular schemes that in-
volve OS while C-AMTE is a block-granular strategy that is fully transparent
and doesn’t involve OS. Second, R-NUCA and PageNUCA are not pure lo-
cation strategies but rather placement and migration designs, respectively.
R-NUCA changes the original mappings of blocks and PageNUCA migrates
blocks from their original home banks. As such, they both require ways to
locate the L2 cache blocks that don’t reside anymore at their home banks.
Their suggested location strategies are specific to their proposed mechanisms.
In contrast, C-AMTE is a pure location strategy that is general (i.e., not spe-
cific to any cache scheme). C-AMTE enables any block-granular placement
and migration schemes.

4. Quantitative Evaluation

In this work we assume a baseline block-interleaved shared CMP cache orga-
nization. We study C-AMTE with an implementation of the DNUCA scheme
[14, 3]. We employ DNUCA on our tiled CMP architecture via allowing mi-
gration in vertical and horizontal directions seeking to reduce hit latencies.
Each cache block is augmented by four 2-bit saturation counters in corre-
spondence to the four plausible ways: north, south, west, and east. Once a
counter saturates, its value is cleared and the block is migrated towards the
indicated direction (i.e., promoted up, down, left, or right one tile upon the
saturation of the north, south, west, or east counter, respectively). To locate
cache blocks after migration, C-AMTE is utilized. We refer to this DNUCA
implementation with C-AMTE being incorporated as DNUCA(C-AMTE).

To demonstrate the potential performance gain from C-AMTE we com-
pare DNUCA(C-AMTE) against the baseline shared (S) scheme and three
other DNUCA implementations that are only different in their location pro-
cesses. First, we consider DNUCA with a broadcast location strategy. That

14

Component Parameter

Cache Line Size 64 B

L1 I/D-Cache Size/Associativity 16KB each/2way
L1 Read Penalty (on hit per tile) 1 cycle

L1 Replacement Policy LRU

L2 Cache Size/Associativity 512KB per L2 bank or 8MB aggregate/16way
L2 Bank Access Penalty 12 cycles
L2 Replacement Policy LRU

Latency Per NoC Hop 3 cycles
Memory Latency 300 cycles

Table 2: System parameters

Name Input

SPECJbb Java HotSpot (TM) server VM v 1.5, 4 warehouses
Ocean 514×514 grid (16 threads)
Barnes 32K particles (16 threads)

Lu 2048×2048 matrix (16 threads)
Radix 3M integers (16 threads)

Bodytrack 4 frames and 1K particles (16 threads)
Fluidanimate 5 frames and 300K particles (16 threads)

Swaptions 64 swaptions and 20K simulations (16 threads)

MIX1 Hmmer (reference) (16 copies)
MIX2 Sphinx (reference) (16 copies)

MIX3
Barnes, Ocean, Radix, Lu, Milc (ref), Mcf (ref),
Bzip2 (ref), and Hmmer (2 threads/copies each)

MIX4 Barnes, FFT (4M complex numbers), Lu, and Radix (4 threads each)

Table 3: Benchmark programs

is, queries to all tiles are sent upon every L2 request to locate the required
block. We denote this implementation as DNUCA(B). Second, a 3-way cache-
to-cache transfer strategy is employed similar to the one in [31]. This imple-
mentation is designated as DNUCA(3W). Lastly, we consider DNUCA with
an ideal location strategy to set an upper bound for C-AMTE and see how
close it draws to a perfect approach. The ideal strategy assumes that cores
have oracle knowledge about the on-chip residences of blocks. Hence, every
L2 request is routed directly to the correct L2 bank. We refer to such an
implementation as DNUCA(Ideal).

15

4.1. Methodology

We present our results based on a detailed full system simulation using Vir-
tutech’s Simics 3.0.29 [1]. We use our own CMP cache modules fully de-
veloped in-house. We implement the XY-routing algorithm and accurately
model congestion for all types of messages. A tiled CMP architecture com-
prised of 16 UltraSPARC-III Cu processors is simulated running with Solaris
10 OS. Each processor uses an in-order core model. The tiles are organized
as a 4×4 grid connected by a 2D mesh network on-chip (NoC). A 3-cycle
latency (in addition to the NoC congestion delay) per hop is incurred when
a datum traverses through the mesh network [32, 31]. Each tile encompasses
a switch, an aggregate 32KB I/D L1 cache, a 512KB L2 cache bank, and a
tracking table (TR) with 16K entries. The latency to lookup a TR table is
hidden under the delay to enqueue the request in the port scheduler of the
local switch [7]. Lastly, for coherence enforcement at the L1 cache level, a dis-
tributed in-cache MESI-based directory protocol is employed (fully verified
and tested). Table 2 details our configuration’s experimental parameters.

We use a mixture of multithreaded and multiprogramming workloads to
study the five designs, S, DNUCA(B), DNUCA(3W), DNUCA(C-AMTE),
and DNUCA(Ideal). For multithreaded workloads we use the commercial
benchmark SpecJBB [28], five shared memory programs from the SPLASH-2
suite [30] (Ocean, Barnes, Lu, Radix, and FFT), and three applications from
the PARSEC suite [4] (Bodytrack, Fluidanimate, and Swaptions). We com-
posed multiprogramming workloads using the above considered SPLASH-
2 benchmarks and five other applications from SPEC2006 [28] (Hmmer,
Sphinx, Milc, Mcf, and Bzip2). Table 3 shows the data sets and other im-
portant features of the simulated workloads. Lastly, the programs are fast
forwarded to get past of their initialization phases. After various warm-up
periods, each SPLASH-2 and PARSEC benchmark is run until the comple-
tion of its main loop, and each of SpecJBB, MIX1, MIX2, MIX3, and MIX4
is run for 20 billion user instructions.

4.2. Results

Fig. 5 demonstrates the average L2 access latency (AAL) of S, DNUCA(B),
DNUCA(3W), DNUCA(C-AMTE), and DNUCA(Ideal) schemes normalized
to S. The incurred latency per L2 access is defined depending on three sce-
narios. First, it can involve only the L2 access time. This happens when a hit
occurs to a local L2 bank from a requesting core. Second, it can incorporate
distance latency (computed in terms of the number of hops traversed between

16

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(#%"

)*+,-.." /,+01" .021+)" 20345" 67")89:;<=>" .<?@AB9CD" EFGH?9=HI9AJ" K45(" K45$" K45L" K45%" 0MN#"

0
M
J
B9
N
J
"6
$
"0
C
C
J
>
>
"6
9
AJ
=
C
@
"

.J=COI9BD>"

)" 317,0P.Q" 317,0PLRQ" 317,0P,S0KT+Q" 317,0P43+06Q"

Figure 5: Average L2 access latency of the baseline shared scheme (S),
DNUCA(B), DNUCA(3W), DNUCA(C-AMTE), and DNUCA(Ideal) normal-
ized to S (B= Broadcast, 3W = 3 Way).

S DNUCA(B) DNUCA(3W) DNUCA(C-AMTE) DNUCA(Ideal)

SPECjbb 5.3 87.5 5.7 4.8 2.4
Ocean 2.5 35.8 3 3.1 2.4
Barnes 3.6 55.1 4.4 4 2.9
Radix 6.9 136.4 9.8 13.5 9.4

Lu 70 905.4 78.3 76 70.5
Swaptions 4.8 64.3 6.6 7.2 3.2

Bodytrack 5.2 95 8.5 11.3 4.9
Fluidanimate 11.3 174.9 11.88 11.82 10.3

MIX1 35.5 573.8 37.3 37.6 27.4
MIX2 22.1 370.2 32.6 47 19
MIX3 11.6 168 16.4 14.9 10.3
MIX4 50.8 691.7 54.8 80 26

Table 4: Message-Hops per 1K insructions

the requester and the target tiles and the observed NoC congestion delay)
and the L2 access time. This occurs upon a hit to a remote L2 bank. Third,
it can involve memory latency because of a miss on L2. DUNCA(C-AMTE)
achieves AAL improvement over S by an average of 18.4%, and by as much
as 34.4% for Radix. This makes DNUCA(C-AMTE) significantly close to
DNUCA(Ideal) which accomplishes, in contrast, an average AAL improve-
ment of 23%. DNUCA(C-AMTE) doesn’t draw nearer to DNUCA(Ideal)
because of two main reasons: (1) misses to TR tables by requester cores and
(2) overhead to keep the principal and the replicated tracking entries coher-
ent after blocks’ migrations. Consequently, DNUCA(C-AMTE) generates a
higher NoC traffic which causes more NoC delay and, subsequently, inferior

17

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)*+,-.." /,+01" .021+)" 20345" 67")89:;<=>" .<?@AB9CD" EFGH?9=HI9AJ" K45(" K45$" K45L" K45%" 0MN#"

+
O
J
C
G
;
<
=
"P
HI

J
"

.J=CQI9BD>"

)" 317,0R.S" 317,0RLTS" 317,0R,U0KP+S" 317,0R4?J9FS"

Figure 6: Execution times of the baseline shared scheme (S), DNUCA(B),
DNUCA(3W), DNUCA(C-AMTE), and DNUCA(Ideal) normalized to S (B=
Broadcast, 3W = 3 Way).

AAL accomplishment. Table 4 shows the number of message-hops per 1K
instructions experienced by all the studied schemes for the examined bench-
mark programs. A message-hop is defined as one message travelling one hop
on a router in the 2D mesh NoC.

As shown in Fig. 5, DNUCA(B) and DNUCA(3W) provide AAL im-
provements over S by averages of 9.4% and 3.6%, respectively. DNUCA(B)
is similar to DNUCA(Ideal) in that it offers a direct locations for cache
blocks. However, DNUCA(B) profoundly outbursts the NoC with superflu-
ous queries. This causes more NoC delay which translates to a lower AAL
improvement. Two factors determine the eligibility of an application to ac-
complish a higher or a lower AAL under DUNCA(B): (1) the gain, G, out
of direct locations to cache blocks and (2) the loss, L, from congestion delay.
When L is offset by G, DNUCA(B) improves AAL (e.g., SpecJBB), other-
wise, a degradation over S is observed (e.g., Ocean). DNUCA(3W), on the
other hand, fails to exploit distance locality and is expected, accordingly,
not to surpass S. Nonetheless, most of the applications experience AAL im-
provement under DNUCA(3W) (SpecJBB, Barnes, Radix, Lu, Fluidanimate,
MIX1, MIX3, MIX4). This improvement comes, in fact, from the fewer off-
chip accesses attained by DNUCA. Computer programs exhibit large asym-
metry in cache sets’ usages [23, 20]. DNUCA inadvertently equalizes the
non-uniformity across cache sets via the employment of the one-to-one asso-
ciative mapping.

18

To that end, Fig. 6 presents the execution times of S, DNUCA(B),
DNUCA(3W), DNUCA(C-AMTE), and DNUCA(Ideal) normalized to S.
Across all benchmarks, DNUCA(B), DNUCA(3W), DNUCA(C-AMTE), and
DNUCA(Ideal) outperform S by averages of 1.4%, 2.6%, 6.7%, and 8%, re-
spectively. Though DNUCA(B) accomplished 9% and 9.2% AAL reductions
over S for Barnes and Radix respectively, this didn’t effectively translate to
an improvement in the overall system performance.

5. Concluding Remarks and Remaining Work

Cache management in CMP is crucial to fuel its performance growth. This
paper proposes C-AMTE, a mechanism that effectively simplifies the process
of locating cache blocks in CMP caching schemes that employ either one-to-
one or one-to-many associative mappings. C-AMTE stores tracking entries
that correspond to cache blocks at per-core data structures for direct loca-
tions at subsequent accesses. We demonstrated the effectiveness of C-AMTE
by applying it to the DNUCA [3, 14] migration scheme (i.e., a scheme that
adopts one-to-one associative mapping). A performance improvement of up
to 25.2% has been achieved, close to that of a perfect location strategy.

Lastly, having established the effectiveness of C-AMTE, optimizations to
reduce hardware cost, a sensitivity study to different RT table sizes (or al-
ternatively RTR and PTR tables), alternatives on evicting principal tracking
entries, protocols on replacing blocks, and applying C-AMTE to more CMP
caching schemes, specifically to schemes that incorporate one-to-many as-
sociative mapping (e.g., replication schemes), are among the obvious future
directions.

References

[1] Virtutech AB. Simics Full System Simulator “http://www.simics.com/”

[2] L. Barroso et al. “Piranha: A Scalable Architecture Based on Single-Chip Multiprocessing,” ISCA,
May 2000.

[3] B. M. Beckmann and D. A. Wood. “Managing Wire Delay in Large Chip-Multiprocessor Caches,”
MICRO, Dec. 2004.

[4] C. M. Bienia, S. Kumar, J. P. Singh, and K. Li. “The PARSEC Benchmark Suite: Characterization
and Architectural Implications,” PACT, Oct. 2008.

[5] L. Censier and P. Feautrier. “A New Solution to Coherence Problems in Multicache Systems,”
IEEE Trans. Comput. C-27 (12): 1112- 1118, Dec. 1978.

[6] J. Chang and G. S. Sohi. “Cooperative Caching for Chip Multiprocessors,” ISCA, June 2006.

[7] M. Chaudhuri. “PageNUCA: Selected Policies for Page-grain Locality Management in Large Shared
Chip-multiprocessor Caches,” HPCA, pp. 227-238, Feb. 2009.

19

[8] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. “Optimizing Replication, Communication, and
Capacity Allocation in CMPs,” ISCA, June 2005.

[9] S. Cho and L. Jin “Managing Distributed Shared L2 Caches through OS-Level Page Allocation,”
MICRO, Dec 2006.

[10] A. Gupta, W. D. Weber, and T. Mowry. “Reducing Memory and Traffic Requirements for Scalable
Directory-Based Cache Coherence Schemes,” Int’l Conference on Parallel Processing, August 1990.

[11] Z. Guz, I. Keidar, A. Kolodny, U. C. Weiser. “Utilizing Shared Data in Chip Multiprocessors. with
the Nahalal Architecture,” SPAA, June 2008.

[12] M. Hammoud, S. Cho, and R. Melhem. “ACM: An Efficient Approach for Managing Shared Caches
in Chip Multiprocessors ,” HiPEAC, pp. 319–330, Jan. 2009.

[13] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. “Reactive NUCA: Near-Optimal Block
Placement and Replication in Distributed Caches,” ISCA, June 2009.

[14] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler. “A NUCA Substrate for Flexible
CMP Cache Sharing,” ICS, June 2005.

[15] M. Kandemir, F. Li, M. J. Irwin, and S. W. Son. “A Novel Migration-Based NUCA Design for
Chip Multiprocessors,” SC, Nov. 2008.

[16] C. Kim, D. Burger, and S. W. Keckler. “An Adaptive, Non-Uniform Cache Structure for Wire-Delay
Dominated On-Chip Caches,” ASPLOS, pp. 211–222, Oct. 2002.

[17] P. Kongetira, K. Aingaran, and K. Olukotun. “Niagara: A 32-Way MultithreadedSparc Processor,”
IEEE Micro, 25(2): 21–29, March-April 2005.

[18] J. Laudon and D. Lenoski. “The SGI Origin: A ccNUMA Highly Scalable Server,” ISCA, June
1997.

[19] M. R. Marty and M. D. Hill. “Virtual Hierarchies to Support Server Consolidation,” ISCA, June
2007.

[20] M. K. Qureshi, D. Thompson, and Y. N. Patt. “The V-WAY Cache: Demand-Based Associativity
via Global Replacement,” ISCA, pp. 544–555, June 2005.

[21] N. Rafique, W. Lim, M. Thottethodi. “Architectural Support for Operating System-Driven CMP
Cache Management ,” PACT, Sep. 2006.

[22] Research at Intel. “Introducing the 45nm Next-Generation Intel CoreTM Microarchitecture,” White
Paper.

[23] D. Rolán, B. B. Fraguela, and R. Doallo “Adaptive line placement with the set balancing cache,”
MICRO, pp. 529–540, Dec. 2009.

[24] A. Ros, M. E. Acacio, and J. M. Garćıa “Scalable Directory Organization for Tiled CMP Architec-
tures,” CDES, July 2008.

[25] K. Strandberg. “Which OS? Considerations for Performance-asymmetric, Multi-core Platforms,”
Research at Intel, White Paper.

[26] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B. Joyner. “POWER5 System
Microarchitecture,” IBM J. Res. & Dev., 49(1):–25, July. 2005.

[27] S. Srikantaiah, M. Kandemir, and M. J. Irwin. “Adaptive Set Pinning: Managing Shared Caches
in Chip Multiprocessors,” ASPLOS, pp. 135-144, March 2008.

[28] Standard Performance Evaluation Corporation. http://www.specbench.org.

[29] D. Tam, R. Azimi, L. Soares, and M. Stumm. “Managing Shared L2 Caches on Multicore Systems
in Software,” WIOSCA, 2007.

[30] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. “The SPLASH-2 Programs: Charac-
terization and Methodological Considerations,” ISCA, pp. 24–36, July 1995.

[31] M. Zhang and K. Asanović. “Victim Migration: Dynamically Adapting Between Private and Shared
CMP Caches,” TR-2005-064, MIT, Oct. 2005.

[32] M. Zhang and K. Asanović. “Victim Replication: Maximizing Capacity while Hiding Wire Delay
in Tiled Chip Multiprocessors,” ISCA, June 2005.

20

