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ABSTRACT

This paper describes Cache Equalizer (CE), a novel dis-
tributed cache management scheme for large-scale chip mul-
tiprocessors (CMPs). Our work is motivated by large asym-
metry in cache sets’ usages. CE decouples the physical lo-
cations of cache blocks from their addresses for the sake of
reducing misses caused by destructive interferences. Tem-
poral pressure at the on-chip last-level cache is continuously
collected at a group (comprised of cache sets) granularity,
and periodically recorded at the memory controller to guide
the placement process. An incoming block is consequently
placed at a cache group that exhibits the minimum pressure.
Simulation results using a full-system simulator demonstrate
that CE achieves an average L2 miss rate reduction of 13.6%
over a shared NUCA scheme and by as much as 46.7% for
the benchmark programs we examined. Furthermore, eval-
uations showed that CE outperforms related cache designs.

Categories and Subject Descriptors

B.3.2 [Memory Structures]: Design Styles—cache mem-

ories

General Terms

Design, Performance, Management

Keywords

Chip Multiprocessors, Private Cache, Shared Cache, Pressure-
Aware Placement, Group-Based Placement

1. INTRODUCTION
Crossing the billion-transistor per chip barrier has had a
profound influence on the emergence of chip multiproces-
sors (CMPs) as a mainstream architecture of choice. As
CMPs’ realm is continuously expanding, they must provide
high and scalable performance. One of the key challenges
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to obtaining high performance from CMPs is the manage-
ment of the limited on-chip cache resources (typically the
L2 cache) shared by multiple executing threads/processes.

Tiled chip multiprocessor architectures have recently been
advocated as a scalable processor design approach. They
replicate identical building blocks (tiles) and connect them
with a switched network on-chip (NoC) [24]. A tile typically
incorporates private L1 caches and an L2 cache bank. L2
cache banks are accordingly physically distributed over the
processor chip. A conventional practice, referred to as the
shared scheme, logically shares these physically distributed
cache banks. On-chip access latencies differ depending on
the distances between requester cores and target banks cre-
ating a Non Uniform Cache Architecture (NUCA) [18]. Al-
ternatively, a traditional organization denoted as the private
scheme, assigns each bank to a single core. Private design
doesn’t provide capacity sharing between cores. Each core
attracts cache blocks to its associated L2 bank.

The private scheme offers two main advantages. First,
cache blocks are read quickly. Second, performance isola-
tion is inherently provided as an imperfectly behaving ap-
plication cannot hurt the performance of other co-scheduled
applications [22]. However, private caches increase aggre-
gate cache footprint through undesired replication of shared
cache lines. Nonetheless, even with low degrees of sharing,
the pressure induced on a per-core private L2 bank can sig-
nificantly increase as a consequence of an increasing work-
ing set size. This might lead to expensive off-chip accesses
that can tremendously degrade the system performance. Re-
cent proposals explored the deficiencies of the private design
and suggested providing capacity sharing for efficient oper-
ation [22, 5].

Shared caches, on the other hand, offer increased cache
space utilization via storing only a single copy of each cache
line at the last level cache. Recent research work on CMP
cache management has recognized the importance of the
shared scheme [27, 9, 14, 30, 17]. Besides, many of today’s
CMPs, the Intel CoreTM2 Duo processor family [23], Sun Ni-
agara [19], and IBM Power5 [26], have also featured shared
caches. Nevertheless, shared caches suffer from an interfer-
ence problem. A defectively behaving application can evict
useful L2 cache content belonging to other co-scheduled pro-
grams. Thus, a program that exposes temporal locality can
experience high cache misses caused by interferences.

To establish a key hypothesis that there are significant
destructive interferences between concurrently running
threads/processes, we present in Fig. 1 the distribution of
the L2 cache misses for 9 benchmarks executed on a 16-tile



!"

#!"

$!"

%!"

&!"

'!!"

'#!"

()*+,--" ./0123456" 789:04;:<42=" .43;=>" ?9" @AB'" @AB#" @ABC" @AB$"

D
:>
23
:-
9
E
/
;
"/
F"
?#
"+
4
5G
=
"@

:>
>=
>"

.=;5G<436>"

+/<H98>/31" A;24I)3/5=>>/3" A;2=3I)3/5=>>/3"

Figure 1: Distribution of L2 cache misses (compulsory,

intra-processor, and inter-processor).
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Figure 2: Number of misses per 1 million instructions

(MPMI) experienced by two local cache sets (the ones

that experience the max and the min misses) at differ-

ent aggregate sets for two benchmarks, Swaptions and

MIX3.

CMP platform employing a shared NUCA design1. Misses
in a CMP with a shared scheme can be classified into com-
pulsory (caused by the first reference to a datum), intra-
processor (a block being replaced at an earlier time by the
same processor), and inter-processor (a block being replaced
at an earlier time by a different processor) misses [27]. For
the simulated applications, on average, 3.7% of misses are
compulsory, 28.9% are intra-processor, and 67.2% are inter-
processor. Compulsory misses can be reduced by hiding
their latencies (i.e., data prefetching [28]). In this work we
focus on reducing inter-processor and intra-processor misses
in order to provide faster CMP NUCA architectures.

We primarily correlate destructive interferences problem
to the root of CMP cache management, the cache placement
algorithm. Fig. 2 demonstrates the number of misses per
1 million instructions experienced by cache sets across L2
cache banks (or aggregate sets) for two benchmarks, Swap-
tions (from the PARSEC suite [4]) and MIX3 (see Section 4.1
for details on this benchmark). We define an aggregate set

with index i as the union of sets with index i across L2
cache banks. More formally, an aggregate seti =

S

n

k=1
setki

where setki is the set with index i at bank k. We refer to
each setki as a local set. Again, we assume a 16-way tiled
CMP platform with physically distributed, logically shared
L2 banks. We only show results for two local sets that ex-
hibit the maximum and the minimum misses, in addition to
the average misses, per each aggregate set. Clearly, we can
see that memory accesses across aggregate sets are asymmet-
ric. A placement strategy aware of the current pressures at
banks can reduce the workload imbalance among aggregate
sets by preventing placing an incoming cache block at an ex-
ceedingly pressured local set. This can potentially minimize

1Section 3.1 describes the adopted CMP platform and Sec-
tion 4.1 details the experimental parameters and the bench-
mark programs.

interference misses and maximize system performance.
We identify two main requirements for enabling pressure-

aware block placement strategies. First, the physical loca-
tion of a cache block has to be decoupled from its address. A
block can thereby be placed at any location independent of
its address. This allows flexibility on the placement process
as it effectively transforms the cache associativity of the L2
cache to equate the aggregate associativity of the L2 cache
banks. For instance, 16 L2 banks with 8-way associativity
would offer 128-way set associativity and a requested cache
block can be placed at any of these 128-way entries. Second,
by having a pressure-aware placement algorithm, a location
strategy capable of rapidly locating cache blocks is required.

This paper explains the importance of incorporating pressure-
aware placement strategies to improve CMP system perfor-
mance. We propose cache equalizer (CE), a novel mecha-
nism that involves a low hardware overhead framework to
monitor the L2 cache at a group granularity (comprised of
local cache sets) and record pressure information at an array
embedded within the memory controller. The collected pres-
sure information is utilized to guide the placement process.
Upon fetching a block from the main memory, CE looks up
the pressure array at the memory controller, identifies the
group with minimum pressure, and places the block at that
group.

In this work we make the following contributions:

• We propose a practical pressure-aware group-based place-
ment mechanism that provides robust performance for
distributed shared caches.

• We evaluate our proposal using a full system simulator
and find that CE successfully reduces cache misses of
a shared CMP design by an average of 13.6% and by
as much as 46.7%.

• We compare CE to various related schemes. We find
that CE outperforms victim caching [16], cooperative
caching [5], and victim replication [36] by averages of
8%, 5.8% (5.2% when the cooperation throttling prob-
ability is set to 70%), and 8.7%, respectively.

The rest of the paper is organized as follows. A sum-
mary of prior work is given in Section 2. We detail the CE
mechanism in Section 3. CE and alternative mechanisms
are evaluated in Section 4. We conclude in Section 5.

2. RELATED WORK
Much work has been done to effectively manage CMP caches.
Many proposals advocate CMP cache management at either
fine (block) or coarse (page) granularities and base their
work on either the nominal shared or private schemes. Be-
sides, previous work examined reducing either miss rate or
latency in NUCA caches, or simply miss rate in a uniform
cache architecture (UCA) caches. We briefly discuss below
some of the prior related work and describe how our pro-
posed Cache Equalizer (CE) mechanism differs from them.

Reducing conflict misses in uniprocessor caches has been
a hot topic of research [16, 20, 31, 32, 35]. Summarily,
two main directions have been proven to reduce conflict
misses effectively: (1) higher set associativity and (2) victim
caching (VC) [16, 20]. In Section 4.5 we present a study on
reducing misses in shared CMPs through increasing associa-
tivity and cache size, and in Section 4.6 we compare against
VC.



In the context of chip multiprocessors, Hammoud et al. [10]
recently introduced the idea of using pressure-aware place-
ment in CMP caches. In this paper, we study a detailed im-
plementation of a scheme that adopts pressure-aware place-
ment, elaborate on aspects of such an implementation, and
describe several optimizations to reduce the incurred hard-
ware overhead. Sirkantaiah et al. [27] proposed adaptive set
pinning (ASP) to reduce intra-processor and inter-processor
misses. They associate processors to cache sets and solely
grant them permissions to evict blocks from their sets on
cache misses. As such, references that could potentially
cause inter-processor misses can’t interfere with each other
even if they index to the same set. Blocks that would lead
to inter-processor misses are redirected to small processor
owned private (POP) caches. While ASP reduces misses ef-
fectively, it is not directly applicable to large-scale CMPs
with multiple cache banks. ASP work is based on a UCA
architecture (but claimed to be easily extensible to NUCA
architectures). In contrast, our work focuses on large-scale
CMP NUCA architectures.

Chang and Sohi [5] proposed cooperative caching (CC)
based on the private scheme to create a globally managed
shared aggregate on-chip cache. CC employs spilling sin-
glet blocks (blocks that have no replicas at the L2 cache
space) to other random L2 banks seeking to reduce intra-
processor misses. CC is directly applicable to CMPs with
multi-banking architectures. CE shares the same objective
with CC but in addition to intra-processor misses, CE tar-
gets inter-processor ones. We compare CE and CC in Sec-
tion 4.6. With CC, each private cache can spill as well as
receive cache blocks. Hence, the cache requirement of each
core is not considered. A recent work by Qureshi [22] pro-
posed dynamic spill-receive (DSR) to improve upon CC by
allowing private caches to either spill or receive cache blocks,
but not both at the same time.

All of the above schemes attempt to reduce cache misses at
block granularity. Many other researchers examined reduc-
ing cache misses at coarser (page) granularity [25, 15, 8, 1].
Sherwood et al. [25] proposed reducing cache misses using
hardware and software page placement. Their software page
placement algorithm performs a coloring of virtual pages us-
ing profiles at compile time. The generated colored pages
can be used by the OS to guide their allocation of physical
pages. Cho and Jin [8] proposed an OS-based page allo-
cation algorithm applicable to NUCA architectures. Cache
blocks are mapped to the L2 cache space using a simple in-
terleaving on page frame numbers. Cho and Jin color pages
only upon first touch. As such, the optimal behaviors of
workloads running over many phases might not be effectively
reflected. Awasthi et al. [1] addressed this shortcoming and
attempted to re-color pages at runtime (via an elegant use
of shadow addresses to rename pages) moving them to the
center of gravity from all the requesting cores. Their pro-
posed mechanism relies on the OS to spread the working set
of a single program across many colors under high capac-
ity demands. In comparison to these schemes, CE performs
a block-grain placement without any OS involvement and
provides, accordingly, a transparent solution.

Lastly, many researchers have explored CMP cache man-
agement designs to reduce cache hit latency in CMP NUCA
caches. Zhang and Asanović [36] proposed victim repli-
cation (VR) based on the nominal shared NUCA scheme.
VR seeks to mitigate the average on-chip access latency via

keeping replicas of local primary cache victims within the
local L2 cache banks. Chishti et al. [7] proposed CMP-

NuRAPID that controls replication based on usage patterns.
Beckmann et al. [2] proposed adaptive selective replication

(ASR) that dynamically monitors workloads behaviors to
control replication on the private cache organization. Beck-
mann and Wood [3] examined block migration to alleviate
access latency in CMPs and suggested CMP-DNUCA. Guz
et al. [9] presented a new shared cache architecture and di-
verted only shared data to centered cache banks close to all
cores. Chaudhuri [6] also evaluates data migration but at
a coarser page granularity. Access patterns of cores are dy-
namically monitored and pages are migrated to banks that
minimize the access time for the sharing cores. Hardav-
ellas et al. [12] proposed R-NUCA that relies on the OS
to classify cache accesses into either private, shared, or in-
structions. R-NUCA then places private pages at the lo-
cal L2 cache banks of the requesting cores, the shared at
fixed address-interleaved on-chip locations, and instructions
at non-overlapping clusters of L2 cache banks. Huh et al. [14]
proposed a spectrum of degrees of sharing to manage NUCA
caches.

In summary, while we stand on the shoulders of many,
three main things differentiate our work from the above
listed proposals. First, we reveal the importance of pressure-
aware block placement strategies in CMPs. Second, we offer
a fully address-independent data placement process for dis-
tributed shared caches. Third, we present a simple novel
framework to monitor CMP caches at various group-based
granularities. Such a framework can, in fact, be generally ap-
plied to a variety of CMP cache schemes. For instance, it can
be adopted by migration mechanisms (e.g., [11]) to guide
promotions/demotions of blocks. Also, it can be utilized by
schemes that offer capacity sharing for private caching (e.g.,
[5]) to guide spillings of blocks.

3. CACHE EQUALIZER (CE)
Cache Equalizer (CE) alleviates destructive interferences in
shared NUCA designs by employing a pressure-aware group-
based placement strategy. We first provide a brief back-
ground on the baseline architecture and then detail CE.

3.1 Baseline Processor Architecture
Exponential increase in cache sizes, bandwidth requirements,
growing wire resistivity, power consumption, thermal cool-
ing, and reliability considerations have necessitated a de-
parture from traditional cache architectures. As such, large
monolithic cache designs, referred to as uniform cache ar-
chitectures (UCA) have been replaced by decomposed cache
architectures, referred to as non-uniform cache architectures
(NUCA). A cache is split into multiple banks and distributed
on a chip. Besides, economic, manufacturing, and phys-
ical design considerations suggest tiled architectures (e.g.,
Tilera’s Tile64 and Intel’s Teraflops Research Chip) that
co-locate distributed cores with distributed cache banks in
tiles communicating via a network on-chip (NoC) [12]. A
tile typically includes a core, private L1 caches (I/D), and
an L2 cache bank. Fig. 3 displays a typical 16-tile CMP
architecture with a magnified single tile to demonstrate the
incorporated components. In this paper we assume a 16-tile
CMP model with a 2D mesh NoC.

The distributed L2 cache banks can be either assigned one
bank per one core (private scheme), or one bank per many



Figure 3: Tiled CMP architecture.

cores (shared scheme). The private scheme replicates shared
cache blocks at the L1 and L2 caches. As such, an engine
is required to maintain coherence at both levels (typically
by using a distributed directory protocol. See Fig. 3. Dir
stands for directory). In contrast, the shared scheme re-
quires an engine to maintain coherence only at the L1 level
as no replication of shared cache blocks is allowed at the
L2 space. A core maps and locates a cache block, B, to
and from a target L2 bank at a tile referred to as the static

home tile (SHT) of B. The SHT of B stores B itself and
its coherence state. The SHT of B is determined by a sub-
set of bits (denoted as home select bits or HS bits) from
B’s physical address. The shared scheme, therefore, follows
an address-based placement strategy. This work assumes a
shared NUCA design and employs a distributed directory
protocol for coherence maintenance.

3.2 Pressure-Aware Placement
We propose a pressure-aware placement strategy that maps
cache blocks to the L2 cache space depending on the ob-
served pressures at the L2 cache banks (refined later to
groups of local cache sets). The pressure at each L2 bank
can be collected at run time, stored, and utilized to guide
the placement process. Specifically, a pressure array is main-
tained at the memory controller(s) of the CMP system. Each
slot on the array corresponds to an L2 bank and represents
the pressure on that bank. For instance, for 16 banks (as-
suming a 16-tile CMP) the pressure array would consist of
16 slots. On a miss to L2, the main memory is accessed and
the pressure array is probed. The bank that corresponds
to the slot that exhibits the minimum value (pressure) is se-
lected to host the fetched cache block. Fig. 4 demonstrates a
descriptive comparison between the placement strategies of
the nominal shared NUCA design and our proposed scheme.
As described earlier, by using the shared scheme’s placement
strategy, a subset of bits (the HS bits) from the physical ad-
dress of a requested block, B, is utilized to map B to its
SHT. Assuming the HS bits of B are 0100, B is accordingly
placed at tile T4. Alternatively, by using our pressure-aware
placement strategy, the pressure array at the memory con-
troller is inspected before B is mapped to L2. The pressure
array indicates that tile T11 has the minimum pressure, thus
selected.

Typically, the pressure at an L2 bank can be measured in
terms of cache misses or hits. However, it is not possible to
measure cache misses in a meaningful way at L2 banks when
a pressure-aware placement strategy is employed. Unlike an
address-based placement strategy, on an L1 miss to a block
B, there is no address that dictates the bank responsible
for caching B. Besides, B might map to any bank (versus
mapping only to the SHT on the nominal shared). As such, a
reported L2 miss can’t be correlated to any specific L2 bank

Figure 4: Address-based versus pressure-aware place-

ments. (a) Shared scheme strategy. (b) Pressure-aware

strategy. (f(.) denotes the placement function, HS is the

home select bits of block B, and P is the pressure array)

but rather to the whole L2 cache space. Hence, we don’t use
misses to collect pressures at L2 banks but rather hits. More
specifically, we quantify a pressure value as the number of
lines that yield cache hits during a time interval, referred to
as an epoch, and designate that as temporal pressure.

CE doesn’t rely on prior knowledge of the program but on
hardware counters. A saturating counter per bank (or group
of local sets as will be discussed shortly) can be installed at
each tile to count the number of successful accesses to that
bank (group) during an epoch. At the end of every epoch the
values of the counters are copied from the local tiles to the
pressure array at the memory controller(s). Besides, in order
to allow CE to adapt to phase changes of applications, at
the copy time we keep only 0.25 of the last epoch’s pressure
values (by shifting each value 2 bits to the right) and add to
them the newly collected ones.

Finally, by having a pressure-aware placement algorithm,
a location strategy capable of rapidly locating cache blocks
at the L2 cache space is required. In this case, many strate-
gies can be incorporated. First, a broadcast-based policy can
easily fulfill the objective but might heavily burden the NoC.
Second, a directory (either centralized or distributed) can be
maintained and pointers can be kept to point to the current
locations of blocks. This incurs, however, 3-way cache-to-
cache transfers. A third option resolves the problem without
broadcasting and with minimal 3-way communications and
is referred to as cache-the-cache-tag (CTCT) [11] location
policy.

CE adopts CTCT to achieve fast location of L2 cache
blocks. Upon placing a cache block, B, at an L2 bank using
CE, CTCT stores two corresponding tracking entries, repli-
cated and principal, in special tracking entries (TR) tables
at the requesting and the static home tiles of B, respec-
tively. Subsequently, when the requesting core requests B
and misses at L1, its TR table is looked up and if a hit is
obtained, B is located directly at the L2 bank designated
by the matched tracking entry at TR. Furthermore, if any
other sharer core requests B, the SHT of B can be always
approached and its TR table can be looked up to locate B at
its current L2 bank. If no matching entry is found in SHT’s
TR table, an L2 miss is reported and the request is satis-
fied from the main memory. CTCT suggests that a tracking
entry encompasses the tag of the related block (typically 22
bits), a bit vector to keep related tracking entries coherent
(16 bits for a 16-tile CMP model), and an ID that points
to the tile that is currently hosting the block (4 bits for 16
tiles).



Figure 5: Placing block K (with index = 1) using the

proposed pressure-aware group-based placement strat-

egy with various granularities. (a) 1-group. (b) 2-group.

(c) 4-group. (GN is the group number)

3.3 Group-Based Placement
Collecting pressures at a bank granularity might be rela-
tively imprecise. We can gather more detailed, and thus
more accurate, pressures from individual sets or groups of
sets. A cache bank can be divided into a number of groups.
We denote a group size as the number of local sets (sets
on the same bank) that a group can include. As such, the
upper bound on the number of groups per bank is equal to
the number of sets per bank (as a group can’t consist of less
than one set). The lower bound, conversely, is 1 (as a group
can include all the cache sets at an L2 bank). The dimen-
sion of the pressure array (rows vs. columns) at the memory
controller changes depending on the number of groups per
bank (n-group per bank) and the number of banks/tiles (p-
bank). With n-group and p-bank the pressure array would
consist of n rows and p columns. Therefore, a 1-group (i.e.,
bank) granularity indicates a linear pressure array and can
be probed straightforwardly (as described in the previous
subsection). With finer granularities, however, we need to
select the row first (denoting the group number of an incom-
ing cache block K) and then the column (denoting the bank
that exhibits the minimum pressure for the selected group).
The group number (GN) of a block, K, can be simply deter-
mined by dividing the index of K by the group size.

Fig. 5 demonstrates our pressure-aware group-based place-
ment strategy using different granularities. For intuitive pre-
sentation, we assume a simplified 2-tile (T0 and T1) CMP
with two logically shared, physically distributed L2 cache
banks and show only the L2 banks referred to by the names
of the tiles. Each bank is 2-way associative and has space
for 8 cache blocks thus encompassing 4 cache sets. Fig. 5(a)
illustrates our placement strategy operating at 1-group gran-
ularity. We start with a pressure array of zero values and
assume that each of the blocks on the banks has been suc-
cessfully accessed for only one time during the last epoch
(this describes the numbers displayed in the array). By in-
specting the pressure values stored at the array, bank T1
(the least pressured) is selected to host an incoming block

K. Assuming that the index of K is 01, K is mapped sub-
sequently to set1 of bank T1. As a consequence, a conflict
miss occurs. Had bank T0 (though exposing higher pressure
as indicated by the pressure array) been selected, no conflict
miss would have been incurred (because set1 of bank T0 has
a free space for an incoming block). This explains the ra-
tionale behind collecting pressures at finer granularities for
the sake of a more precise behavior.

Fig 5(b) demonstrates our proposed placement strategy
operating at a 2-group granularity. Given that the index
of the incoming block K is 01, GN of K is accordingly 0
(index/group size = 1/2). Hence, row 0 is investigated.
Group T00 at bank T0 exhibits the minimum pressure and
is, accordingly, selected to host K. Compared to a 1-group
operating pressure-aware placement strategy (illustrated in
Fig. 5(a)), no conflict miss is incurred. In Fig. 5(c) we refine
the granularity more, specifically to 4-group. GN of K is now
1, and row 1 is therefore explored. Again, group T00 at bank
T0 reveals the minimum pressure thus selected. Note that
the placement strategy with a 4-group and a 2-group gran-
ularities demonstrate a similar behavior for K. This hints to
the fact that we might not need hitting the upper bound in
refining the group granularity in order to attain the most
accurate behavior.

3.4 An Illustrative Example and Three Opti-
mizations

As described earlier, CE adopts the CTCT policy to achieve
fast location of L2 cache blocks. We demonstrate through an
example how CE combines CTCT and the proposed pressure-
aware group-based placement strategy to offer an efficient
cache management scheme for distributed shared caches.
Furthermore, we offer three optimizations to reduce the area
overhead required by CTCT. Fig. 6 shows CE in operation.
Fig. 6(a) demonstrates a request made by core 3 to a cache
block H. Core 3 looks up its local tracking entries (TR)
table. We assume a miss is incurred and the request is sub-
sequently forwarded to H’s SHT, T12 (assuming the HS bits
of H = 1100). The TR table at T12 is then looked up. We
assume no principal tracking entry corresponding to H is
found and an L2 miss is reported. Block H is then fetched
from the main memory and placed at tile T11 (dictated by
our employed placement strategy). Besides, principal and
replicated tracking entries are stored at H’s SHT, T12, and
at the requester tile, T3, respectively. Fig. 6(b) displays the
residences of H and each corresponding tracking entry h.
Fig. 6(b) further illustrates a scenario where core 3 requests
H again. Core 3 looks up its TR table and a hit on h occurs.
As such, the request is straightforwardly directed to T11.
Lastly, note that if any other core requests H, T12 can be
always approached to locate H.

On an L2 request to a tile, probing always the local L2
bank and the TR table in parallel has a number of effects:
(1) reducing latency as the requested block might be hosted
locally, (2) reducing space because as a consequence we need
not keep tracking entries (principal and replicated) for a
block that maps to its own SHT. Specifically, if H (see
Fig. 6(b)) is mapped to its SHT, T12, we need not keep
any corresponding tracking entry, h, at any tile. To explain
this, assume, to the contrary, that we do cache H, a corre-
sponding principal tracking entry h, and a replicated copy
h at tiles T12 (at the L2 bank), T12 (at the TR table), and
T3, respectively. Consequently, a hit on h at the requester



Figure 6: CE in operation. (a) A miss occurs at L2.

(b) A hit occurs at L2.

tile T3 would trigger an access to T12, the host of H. On
the other hand, a miss would trigger also an access to T12,
the SHT of H. Thus, having h at T3 becomes redundant
as T12 is anyway accessed. Besides, having the principal
tracking entry h at T12 becomes also redundant when H is
a resident of T12. In particular, upon accessing T12, if we
look up its L2 bank and TR table concurrently we would hit
at the L2 bank directly without any need for the principal
entry h. Therefore, a first optimization (O1) for CE
would be not to cache any tracking entry (principal
or replicated) for a cache block that is mapped to
its SHT and to always lookup concurrently the L2
bank and the TR table at the SHT.

Now assume that H is cached at the requester tile T3
instead of T12, the SHT of H. Assume moreover that a cor-
responding replicated tracking entry h is stored at T3. Upon
requesting H, if we look up T3’s local L2 bank concurrently
with its TR table we will satisfy the request directly from
the L2 bank without any need for the replicated entry h. As
such, h becomes superfluous. On the other hand, if H is re-
quested by a tile different than T3, H’s SHT (T12) needs to
be contacted to locate H. Hence, in this case we still need to
maintain a principal tracking entry for H at its SHT. There-
fore, a second optimization (O2) for CE would be
not to cache a replicated tracking entry for a block
that is mapped to the requester tile and to always
lookup concurrently the L2 bank and the TR table
at the requester tile.

Finally, and as a third optimization (O3), a cache
block that is placed at a tile different than its SHT
can be always promoted upon eviction back to its
SHT if the SHT tile has space for an incoming block.
By space at SHT we mean the presence of an invalid line
or otherwise a ripple effect would occur (i.e., an eviction
triggers another eviction). As an example, if we evict H
from T11 (see Fig. 6(b)), we investigate first H’s SHT, T12,
for an invalid block. If we succeed in finding one, we place
H at T12. As a result, we can subsequently apply O1. That
is, we can invalidate all H’s corresponding tracking entries
because H is residing now at its SHT. Clearly, the goal of
the proposed optimizations (O1, O2, and O3) is to reduce
the overall area required by the TR tables.

4. QUANTITATIVE EVALUATION

4.1 Methodology

Component Parameter

Cache Line Size 64 B
L1 I/D-Cache Size/Associativity 32KB/2way

L1 Hit Latency 1 cycle
L1 Replacement Policy LRU

L2 Cache Size/Associativity 512KB per L2 bank/16way
L2 Bank Access Penalty 12 cycles
L2 Replacement Policy LRU

Latency Per NoC Hop 3 cycles
Memory Latency 320 cycles

Table 1: System parameters

Name Input

SPECJbb Java HotSpot (TM) server VM v 1.5, 4 warehouses
Bodytrack 4 frames and 1K particles (16 threads)

Fluidanimate 5 frames and 300K particles (16 threads)
Barnes 64K particles (16 threads)

Lu 2048×2048 matrix (16 threads)

MIX1 Hmmer (reference) (16 copies)
MIX2 Sphinx (reference) (16 copies)

MIX3
Barnes, Ocean (1026×1026 grid), Radix (3M Int),

Lu, Milc (ref), Mcf (ref), Bzip2 (ref),
and Hmmer (2 threads/copies each)

MIX4
Barnes, FFT (4M complex numbers), Lu,

and Radix (4 threads each)

Table 2: Benchmark programs

We present our results based on detailed full-system simu-
lation using Virtutech’s Simics 3.0.29 [33]. We use our own
CMP cache modules fully developed in-house. We imple-
ment the XY-routing algorithm and accurately model con-
gestion for both coherence and data messages. A tiled CMP
architecture comprised of 16 UltraSPARC-III Cu processors
is simulated running with Solaris 10 OS. Each processor uses
an in-order core model with an issue width of 2 and a clock
frequency of 1.4 GHz. The tiles are organized as a 4×4
grid connected by a 2D mesh NoC. Each tile encompasses a
switch, 32KB I/D L1 caches, and a 512KB L2 cache bank. A
distributed MESI-based directory protocol is employed. We
adopt an epoch length of 20 million instructions for measur-
ing pressures at groups. Table 1 shows our configuration’s
experimental parameters.

We compare CE to the nominal shared (S) CMP design
and three related proposals; victim caching (VC) [16], coop-
erative caching (CC) [5], and victim replication (VR) [36].
All schemes are studied using a mixture of multithreaded
and multiprogramming workloads. For multithreaded work-
loads we use the commercial benchmark SPECJbb [29], five
shared memory programs from the SPLASH2 suite [34] (Ocean,
Barnes, Lu, Radix, and FFT), and two applications from
the PARSEC suite [4] (Bodytrack and Fluidanimate). Four
multiprogramming workloads have been also composed us-
ing the five listed SPLASH2 benchmarks and other five ap-
plications from SPEC2006 [29] (Hmmer, Sphinx, Milc, Mcf,
and Bzip2). Table 2 shows the data sets and other impor-
tant features of the simulated workloads. Lastly, the pro-
grams are fast forwarded to get past of their initialization
phases. After various warm-up periods, each SPLASH2 and
PARSEC benchmark is run until the completion of its main
loop, and each of SPECJbb, MIX1, MIX2, MIX3, and MIX4
is run for 8 billion user instructions.

4.2 Comparing with the Shared NUCA Design
Let us first compare CE against the baseline shared (S)
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Figure 7: L2 miss rates of CE(1), CE(32), and shared

(S) schemes (normalized to S).

scheme. In this section we consider a tracking entries (TR)
table with 16K entries. Each access to a TR table requires
1.35ns estimated using CACTI v5.3 [13]. Section 4.4 presents
a sensitivity study of CE to different TR table sizes. Fig. 7
shows the L2 miss rates of S, CE(1), and CE(32) normalized
to S. As discussed in Section 3.3, CE can run with different
granularities (varying from 1-group to 512-group given our
employed number of sets per L2 bank). CE(1) and CE(32)
correspond to CE running with 1-group and 32-group gran-
ularities. In Section 4.3 we prove that dividing a bank into
only 32 groups (i.e., a counter per each group of 16 sets)
provides close benefits to dividing it into 512 groups (i.e.,
a counter per each set). On average, CE(1) and CE(32)
achieve L2 miss rate reductions of 12.8% and 13.6% over
S, and by as much as 42.8% and 46.7% for the Bodytrack
program, respectively.

Three main factors affect the eligibility of applications for
cache miss reductions provided by CE: (1) gravity of destruc-
tive interferences, (2) accessibility patterns, and (3) work-
ing set sizes. For instance, Bodytrack’s shared and thread-
private data contend aggressively for a limited amount of
cache capacity [4]. The Bodytrack program experiences
51.9% and 28.3% intra-processor and inter-processor misses,
respectively. CE resourcefully alleviates caustic contention
and equalizes cache sets usages. CE(1) reduces the intra-
processor and inter-processor misses of Bodytrack by 57.8%
and 49.1% over S, respectively. CE(32), on the other hand,
reduces intra-processor and inter-processor misses by 58.7%
and 56.5%, respectively. Considering examples of homoge-
nous programs, MIX1 and MIX2 demonstrate uniform pres-
sure patterns over cache physical locations. Besides, MIX1
and MIX2 have large working set sizes. CE(1) accomplishes
L2 miss rate reductions for MIX1 and MIX2 over S by only
3.8% and 1.6%, respectively. In contrast, CE(32) offers L2
miss rate reductions of 4.1% and 1.7% for MIX1 and MIX2,
respectively.

To demonstrate CE’s potential in reducing interference
misses, Fig. 8 shows the number of references per 1K in-
structions that lead to intra-processor and inter-processor
misses for all the examined programs. On average, CE(1) ac-
complishes reductions of 12.7% and 11.3% in intra-processor
and inter-processor misses per 1K instructions (MPKI) over
S, respectively. On the other hand, CE(32) provides aver-
age intra-processor and inter-processor MPKI reductions of
5.3% and 15.8% over S, respectively. We note, however, that
for some benchmarks CE increases intra-processor (but de-
creases related inter-processor) misses (e.g., 5.3% for MIX2
under CE(1)). This occurs due to an increase in the number
of references from the same processor to cache groups that
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Figure 9: On-chip network traffic.

are eligible for data eviction.
The L2 miss rate reductions provided by CE come some-

times at a small expense of higher network on-chip (NoC)
traffic. Fig. 9 shows the number of flit-hops per 1K in-
structions experienced by S, CE(1), and CE(32). We de-
fine a flit-hop as one flit traveling one hop on a router in
the 2D mesh NoC. On average, CE(1) and CE(32) increase
the NoC traffic over S by 5.7% and 5.4%, respectively. For
some benchmarks CE improves upon S (e.g., MIX4) while
for some others CE degrades against S (e.g., MIX2). The
NoC traffic increase generated by CE correlates to the use
of the cache-the-cache-tag (CTCT) location policy. CTCT
introduces more coherence traffic on the NoC for maintain-
ing consistency among principal and replicated tracking en-
tries. To the contrary, NUCA designs suffer from what is
called, the NUCA latency problem. Specifically, a requested
block might be placed far away from the requester core,
thus causing the core significant latency (traffic) to locate
the block. CE can sometimes potentially place blocks closer
to requester cores thus reducing NoC traffic against S. If
the gain from mitigating the NUCA problem offsets the loss
from the incurred CTCT interconnect traffic, CE diminishes
NoC traffic over S, otherwise, CE degrades versus S.

To that end, Fig. 10 presents the execution times of S,
CE(1), and CE(32) normalized to S. Across all benchmarks,
CE(1) and CE(32) achieve superiority over S by averages
of 5.7% (by as much as 18.8% for SPECJbb) and 6.8% (by
as much as 18.2% for SPECJbb), respectively. We make
two observations: (1) although CE(32) achieves more miss
rate reduction than CE(1) for Barnes, CE(1) outperforms
CE(32) and (2) some benchmarks exhibit performance im-
provements that surpass the obtained miss rate reductions
(e.g., Lu). As described earlier, CE can potentially place
blocks closer (or further) to requester cores than S, and,
accordingly, reduce (or increase) the average L2 access la-
tency (AAL). For instance, Lu reveals a performance im-
provement of 13.3% with only 6.2% L2 miss rate reduction
under CE(32). We found that CE(32) achieves a 7.6% AAL
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Figure 10: Execution times of CE(1), CE(32), and

shared (S) schemes (normalized to S).
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Figure 11: The CE behavior with different granulari-

ties (varying from 1-group to 512-group).

improvement over S for Lu.

4.3 Sensitivity of CE to Different Group Gran-
ularities

We demonstrate CE’s behaviors with all possible group gran-
ularities. Fig. 11 plots the outcome. For each program
we show cycles per instruction (CPI). As explained in Sec-
tion 3.3, collecting pressures at a more refined granularity
makes CE performing better (e.g., MIX2) but not necessar-
ily until striking the upper bound (e.g., SPECJbb). Besides,
we note that some programs show irregularities in perfor-
mance (e.g., Fluidanimate) as we proceed in refining group
granularities. This is due to a skew in pressure values at
the array in the memory controller when compared to the
actual pressures at cache groups. Actual pressures might
deviate (e.g., as a consequence of phase changes or nonde-
terministic behaviors of programs) some time before the end
of an epoch (the time at which we update the array at the
memory controller) causing the array to be a little biased
in representing actual pressures at cache groups. Lastly, we
conclude that dividing a bank into only 32 groups provides
close benefits as compared to dividing it into 512 groups.

Additionally, we note that for all the examined programs,
CE always provides a robust performance versus S. That is,
none of the programs, running under any group granularity,
shows performance degradation against S. Fig. 12 demon-
strates the S-Curve2 of the CPI improvement provided by

2An S-Curve is plotted by sorting the data from lowest to
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S.

K Entries
K Bytes Per % Increase of On-Chip Access Time

Tile Cache Capacity (ns)

16 88 16% 1.35
8 44 8% 1.19
4 22 4% 1.12

Table 3: TR tables storage overhead and access

times.

CE for the 90 runs (9 workloads each with 10 group granu-
larities).

4.4 Sensitivity to Different TR Table Sizes
So far, we have been using 16K entries for a TR table per
tile. In this section we study CE with two more TR table
sizes. Specifically, we consider TR table sizes of 8K and
4K entries. Table 3 illustrates the 3 TR configurations with
the incurred area overhead and access times estimated us-
ing CACTI v5.3 [13]. Fig. 13 demonstrates the execution
times of S, CE(16K), CE(8K), and CE(4K) normalized to
S. CE(16K), CE(8K), and CE(4k) denote CE with 16K, 8K,
and 4K entries TR table sizes. We ran the 3 CE config-
urations with 1-group granularity. Across all benchmarks,
CE(16K), CE(8K), and CE(4K) outperform S by averages of
5.7% (by as much as 18.8% for SPECJbb), 4% (by as much
as 10.9% for SPECJbb), and 0.4% (by as much as 6.5%
for MIX2), respectively. As the TR table size is decreased,
the performance improvement over S also decreases. This
is because with smaller TR table sizes more principal track-
ing entries are replaced. When a principal tracking entry
is replaced, it requires evicting the corresponding replicated
tracking entries and the L2 line. Therefore, it becomes a
tradeoff between area overhead and performance. We, how-
ever, select a 16K entries TR table size as a default configu-
ration for CE and justify the incurred overhead in the next
subsection.

4.5 Impact of Increasing Cache Size and As-
sociativity

We can improve cache performance not only through effi-
cient cache management but also via increasing cache size
and associativity. To conduct a fair comparison and create
as a realistic match as possible, we add to each cache set of S
two more ways. Given our system parameters, each L2 bank
encompasses 512 sets and each cache line is 64 byte. There-
fore, each L2 bank is augmented by an additional 64KB
cache area. We refer to this configuration as S(2W). More-
over, we examine S’s performance by doubling the size of

highest. Each point on the graph represents one data-point
from this sorted list [22].
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Figure 14: L2 miss rates of shared (S), shared with

two more ways added (S(2W)), shared with double sized

cache (S(D)), and CE(32) (normalized to S).

each L2 bank (i.e., from 512KB to 1MB). We refer to the
latter configuration as S(D). Fig. 14 shows the L2 miss rates
of S, S(2W), S(D) and CE(32) normalized to S. In this and
the upcoming sections we consider only CE(32) as being an
appropriate representation of CE. S(2W), S(D), and CE(32)
achieve L2 miss rate reductions over S by averages of 3.4%,
11.2%, and 13.6%, respectively. We conclude that CE is
quite attractive as with small design and storage overhead
(i.e., 1.4MB increase in aggregate) it provides miss rate re-
duction benefits over S with twice its cache size (i.e., 8MB
increase in aggregate).

Lastly, we observe that although increasing L2 cache as-
sociativity and size reduces misses, the contribution of inter-
processor misses to the non-compulsory misses (as percent-
age of non-compulsory misses) changes very little. Fig. 15
shows that for some benchmarks, the contribution of inter-
processor misses increases (e.g., SPECJbb) while for some
others it either remains the same (e.g., Barnes) or negligibly
decreases (e.g., MIX4). We conclude that the motivation for
mitigating destructive interferences in shared NUCA designs
remains.

4.6 Comparing with Related Designs
In addition to comparing with the nominal shared scheme, S,
we compare CE(32) against victim caching (VC) [16], coop-
erative caching (CC)) [5], and victim replication (VR)) [36].
VC effectively extends the associativity of hot sets in the
cache and reduces conflict misses. For fair comparison, we
choose the size of an L2 victim cache per tile to approxi-
mately match the area increase in CE. Consequently, we set
the size and associativity of each victim cache per tile to
64KB and 16-way, respectively. The time to access a victim
cache is set to 4.3 ns (or 6 cycles) estimated using CACTI
v5.3 [13]. The CC design, on the other hand, attempts
to reduce intra-processor misses. The performance of CC
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Figure 16: Execution times of shared (S), victim

caching (VC), cooperative caching 100% (CC(100%)),

cooperative caching 70% ((CC(70%)), victim replication

(VR), and CE(32) schemes (normalized to S).

is highly dependent on the cooperation throttling probabil-
ity [22]. Accordingly, we evaluate two configurations of CC,
one with probability of 100% (CC(100%)) and another with
probability of 70% (CC(70%)).

Fig. 16 depicts the execution times of all the compared
schemes normalized to S. First, when multiple hot sets com-
pete for a victim cache space, the victim cache is flushed
quickly and fails subsequently to reduce capacity and con-
flict misses appreciably (e.g., MIX3). VC shows a perfor-
mance degradation over S by an average of 1.6%. Second,
CC spills cache blocks to neighboring L2 banks without
knowing if spilling helps or hurts cache performance [22]. As
such, CC sometimes degrades performance (e.g., SPECJbb)
while it some other times demonstrates improvement (e.g.,
Bodytrack). On average, CC(100%) and CC(70%) surpass
S by only 0.8% and 1.4%, respectively. Third, VR repli-
cates evicted L1 blocks uncontrollably at local L2 banks and
might, accordingly, increase the L2 miss rate significantly [2].
If VR fails to offset the lost latency (caused by the increased
L2 miss rate) from the saved latency (gained by replica hits),
performance degrades (e.g., MIX4). On average, VR shows
a performance degradation over S by 2.6%. As compared
to CE, CE(32) outperforms VC, CC(100%), CC(70%), and
VR by averages of 8%, 5.8%, 5.2%, and 8.7%, respectively.
Finally, we observe that while every related scheme degrades
the performance of at least one application, CE(32) improves
the performance of all the simulated benchmark programs.

5. CONCLUSIONS AND FUTURE DIREC-

TIONS
This paper investigates the interference problem inherent in
distributed shared CMP caches and proposes cache equal-



izer (CE), a novel strategy that mitigates intra-processor
and inter-processor misses. We indicate the significance of
applying a pressure-aware group-based placement strategy
on a shared CMP organization to achieve high system per-
formance. Temporal pressure information is collected at a
group granularity and recorded in an array at the memory
controller. On an incoming cache block, CE inspects the
pressure array, identifies the group with the minimum pres-
sure, and maps the block to that group. Simulation results
using a full system simulator demonstrate that CE reduces
the cache misses of a shared NUCA design by an average
of 13.6% and by as much as 46.7%. Furthermore, results
show that CE outperforms victim caching [16], cooperative
caching [5], and victim replication [36] by averages of 8%,
5.8% and 8.7%, respectively.

We set forth two main future directions. First, CE can
be studied with further kinds of pressures. For instance,
we can employ spatial (rather than temporal) pressure (how
many unique lines yield cache hits during a time interval)
and based on that explore CE’s behavior. Finally, we will in-
corporate more parameters (e.g., distance to reduce NUCA
latency) to CE’s placement algorithm.
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Directory Organization for Tiled CMP Architectures,”
ICCAD, July 2008.

[25] T. Sherwood, B. Calder, and J. Emer. “Reducing
CacheMisses Using Hardware and Software Page
Placement,” ICS, June 1999.

[26] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J.
Eickemeyer, and J. B. Joyner. “POWER5 System
Microarchitecture,” IBM J. Res. & Dev., July. 2005.

[27] S. Srikantaiah, M. Kandemir, and M. J. Irwin.
“Adaptive Set Pinning: Managing Shared Caches in
Chip Multiprocessors,” ASPLOS, March 2008.

[28] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt.
“Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware
Prefetchers,” HPCA, Feb. 2007.

[29] Standard Performance Evaluation Corporation.
http://www.specbench.org.

[30] D. Tam, R. Azimi, L. Soares, and M. Stumm.
“Managing Shared L2 Caches on Multicore Systems in
Software,” WIOSCA, 2007.

[31] N. Topham, A. Gonzalez, and J. Gonzalez. “ The
Design and Performance of a Conflict-Avoiding
Cache,” MICRO, 1997.

[32] H. Vandierendonck, P. Manet, and J.-D. Legat. “
Application-Specific Reconfigurable XOR-Indexing To
Eliminate Cache Conflict Misses,” DATE, 2006.

[33] Virtutech AB. Simics Full System Simulator
“http://www.simics.com/”

[34] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A.
Gupta. “The SPLASH-2 Programs: Characterization
and Methodological Considerations,” ISCA, July 1995.

[35] C. Zhang. “ Balanced Cache: Reducing Conflict Misses
of Direct-Mapped Caches,” ISCA, June 2006.

[36] M. Zhang and K. Asanović. “Victim Replication:
Maximizing Capacity while Hiding Wire Delay in
Tiled Chip Multiprocessors,” ISCA, June 2005.


