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Abstract

This paper proposes a specialized memory structure
called CA-RAM (Content Addressable Random Access
Memory) to accelerate search operations present in many
important real-world applications. Search operations can
occupy a significant portion of total execution time and
energy consumption, while posing a difficult performance
problem to tackle using traditional memory hierarchy con-
cepts. In essence, CA-RAM is a direct hardware imple-
mentation of the well-known hashing technique. Searchable
records are stored in CA-RAM at a location determined by a
hash function, defined on their search key. After a database
has been built, looking up a record in CA-RAM typically
involves a single memory access followed by a parallel key
matching operation. Compared with a conventional CAM
(Content Addressable Memory) solution, CA-RAM capital-
izes on dense SRAM and DRAM designs, and achieves com-
parable search performance while occupying much smaller
area and consuming significantly less power. This paper
presents detailed design aspects of CA-RAM, to be inte-
grated in future general-purpose and application-specific
processors and systems. To further motivate and justify our
approach, we present two real examples of using CA-RAM
to build a high-performance search accelerator targeting:
IP address lookup in core routers and trigram lookup in a
large speech recognition system.

1 Introduction

High-performance general-purpose and embedded pro-
cessor architectures have been continuously reshaped by
both technology advances and ever-changing application re-
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quirements [8]. Unprecedented technology advances have
enabled billion-transistor chip implementations [4], while
presenting new design challenges such as elevated power
density and a delay scaling discrepancy between transistors
and global wires. At the same time, the computational and
power consumption requirements become more stringent as
complex and large applications, such as RMS (Recognition,
Mining and Synthesis) and other high-performance embed-
ded applications keep gaining momentum [6].

To effectively tackle the performance-power require-
ments of important applications, integrating specialized
hardware on chip has become a clear design trend. For
example, special-purpose hardware for graphics processing
and network packet processing has already been integrated
in a processor chip [2]. Hardware functions for speech
recognition, natural language processing, and advanced im-
age processing are seriously being considered for inclusion
in future processor chips. There is a clear advantage of im-
plementing a specific task in custom hardware; it is often
two to three orders of magnitude more power-efficient than
a general-purpose processor [3]. Given the critical benefit
of specialized hardware and the ample transistor budget pro-
vided by an advanced process technology, this design trend
will continue and attain more importance.

This paper presents a specialized, yet generic memory
structure called CA-RAM (Content Addressable Random
Access Memory) to accelerate search operations. Search-
ing is a fundamental computer operation used in many non-
trivial applications [14], often occupying a large portion of
the total program execution time. Network packet filter-
ing and routing applications, for example, require constant,
high-bandwidth searching over a large number of IP ad-
dresses. Speech recognition applications spend over 24% of
their CPU cycles dedicated to searching [9]. Traditionally,
searching has been done through software algorithms such
as list/tree traversal and hashing [14] or hardware schemes
such as CAM (Content Addressable Memory) [15].



The basic idea of CA-RAM is simple; it implements
the well-known hashing technique in hardware. CA-RAM
uses a conventional high-density memory (i.e., SRAM or
DRAM) and a number of match logic blocks to provide
parallel search capability. Records are pre-classified and
stored in the memory so that given a search key, access can
be made accurately on the memory row having the target
record. Each match logic block then extracts a record key
from the fetched memory row, usually holding multiple can-
didate keys, and determines if the record key in considera-
tion is matched with the given search key.

CA-RAM achieves lower latency and higher search
bandwidth compared with software techniques, while elim-
inating undesirable architectural artifacts such as cache pol-
lution. A conventional search operation typically involves
multiple memory accesses following a pointer-chasing pat-
tern, which is difficult to fully optimize [12]. CA-RAM pro-
vides a similar search capability compared to CAM; how-
ever, its decoupled match logic can be easily extended to
implement more advanced functionality such as massive
data evaluation and modification. More importantly, the
bit-density of CA-RAM is much higher than that of CAM,
nearly five times if DRAM is used in the CA-RAM imple-
mentation. Furthermore, from the viewpoint of system de-
sign, CA-RAM can be easily plugged into the memory hi-
erarchy as a regular address-based random access memory.

Due to parallel matching, a CA-RAM slice and a set-
associative cache bear similarity in their hardware struc-
ture. However, the required and supported operations for
CA-RAM and for caches are different. CA-RAM has ex-
plicit operations for data management based on possibly
non-trivial hashing functions and can support massive data
evaluation and update, while a cache supports only regular
memory operations such as loads and stores. The goal of
a CA-RAM design is to achieve full content addressability
on a large database without the cost of exhaustively imple-
menting hardware match logic for each memory element
(as in CAM), by utilizing the general idea of hashing and a
limited hardware support for parallel matching.

Our work described in this paper makes several impor-
tant contributions in the area of associative memory design
and its application. First, we introduce the notion of com-
pletely decoupling memory array and match logic, which
promotes using best conventional memory designs and in-
corporating powerful data processing features. Second, we
present a prototype CA-RAM design based on a standard
design flow using a high-level hardware description lan-
guage, identifying further design issues. Third, we give two
detailed application studies using real-world data sets as an
example use of CA-RAM showing the efficacy and feasibil-
ity of the proposed approach.

The rest of this paper is organized as follows. As a
background, Section 2 presents a brief discussion on the

Figure 1. Mapping of data items to table entries
using a hash function h(·) [15].

software-based hashing and the hardware-based CAM tech-
niques. Section 3 gives a detailed description of the CA-
RAM structure. Basic design considerations, system in-
terface issues, and performance/cost/power issues are dis-
cussed in detail. Two real applications are studied in Sec-
tion 4, namely, IP address lookup in Internet core routers
and trigram lookup in a speech recognition system. Other
related works are summarized in Section 5. Finally, con-
cluding remarks are given in Section 6.

2 Background

2.1 Software-based hashing technique

Although there are many software-based searching tech-
niques, such as linear searching, binary tree searching and
ordered table searching [14], we focus in this subsection
on the hashing technique because it often offers higher per-
formance than other techniques, especially when a large
database is used [15]. In addition, the use of hashing di-
rectly forms the foundation for our CA-RAM approach.

Searchable data items (or records) contain two fields:
key and data. In general, the goal of searching is to find
a record associated with a key K in the database. Hash-
ing achieves fast searching by providing a simple arithmetic
function h(·) (hash function) on K so that the location of
the associated record in memory is directly determined, as
shown in Figure 1. The memory containing the database
can be considered a two-dimensional table (hash table) of
M entries. Each table entry, also called a bucket, often holds
multiple records, arranged in an array or chained in a linked
list. If each bucket holds up to S records, the total size of
the hash table in bytes is (M × S ×R), where R is the size
of a record in bytes. If the database has N records, clearly,
(M × S) should be equal to or preferably larger than N .

Given M buckets, the hash function gives at most M
different values, with 0 ≤ h(K) < M , for all keys K.
It is possible that two distinct keys Ki �= Kj hash to the
same value h(Ki) = h(Kj). Such an occurrence is called
collision (or conflict). When there are too many (> S) con-



flicting records for an S-entry bucket, some records must
be placed somewhere other than the bucket that the records
hash into, called overflow area. Overflow occasions are
usually handled by reserving some place for spilled entries
which is directly derivable from the place of collision. For
example, locations with consecutive hash addresses (i.e.,
buckets following the overflowing bucket) may be tried un-
til a bucket with an empty record slot is found. Instead of
this linear probing method, one can apply a second, alter-
native hash function to find a bucket with empty space. To
obtain best performance out of the given hash table capac-
ity, it is obvious that one must find a hash function which
minimizes the probability of collision.

Given a database of N records and an M -bucket hash
table, the average number of hash table accesses to find a
record is heavily affected by the choice of h(·), S (the num-
ber of slots per bucket), and the load factor α, defined as
N/(M × S). With a smaller α, the number of average hash
table accesses can be made smaller, however at the expense
of more unused memory space. α poses an important de-
sign trade-off for any hash-based searching scheme: area
(i.e., cost) versus search latency (i.e., performance). It is
further noted that when (M × S) is fixed, one can poten-
tially reduce the number of collisions by increasing S (and
decreasing M ).

The steps of hash-based searching are: (1) generating
hash address using h(·) given a search key K, (2) retriev-
ing record(s) in the bucket at the generated hash address
h(K), (3) comparing K with the retrieved records’ key to
find a match, and (4) accessing alternative memory loca-
tions if the original bucket is full and the matching record
has been placed in an overflow area. A proper implementa-
tion of each step yields the average search time O(S).

2.2 Content-Addressable Memory (CAM)

CAM is a specialized memory used in high-speed search
applications [15, 25]. Unlike traditional random-access
memory (RAM) where the user provides an address and the
RAM returns the data (content) stored at the address, CAM
returns the location (i.e., address) of a data when the data
is presented by the user as an input. CAM searches its en-
tire memory to match the input data (“search key”) with the
set of stored data (“stored keys”). When there are multi-
ple entries that match the search key, a priority encoder will
choose the highest-priority entry. Often, the returned search
result is used to access a separate RAM which holds the data
items associated with the stored keys.

To search the entire memory quickly, CAM employs sep-
arate match logic per each memory row, as is depicted in
Figure 2. When a search key is presented by the user, each
search key bit will become visible to all the match logic
cells in a column at the same time. Each row of match

Figure 2. A simplified view of a 4×4 CAM.

logic cells will then perform a bit-by-bit comparison be-
tween the provided search key and the stored key in the as-
sociated memory row. Comparison results will be reduced
to a binary value (e.g., 1 for match and 0 for mismatch) and
are fed into a priority encoder, which finally produces the
search result. Since comparisons for all the memory rows
are performed in parallel, CAM achieves high-bandwidth,
constant-time search performance.

TCAM (Ternary CAM) has become a popular memory
device with the booming Internet proliferation because of
its ability to allow don’t care bits in a search [7, 29, 32].
A typical TCAM storage cell comprises two bits to encode
three symbols, zero (“0”), one (“1”), and don’t care (“X”),
adding flexibility to the search. For example, a stored key of
“110XX” will match any of the four search keys “11000”,
“11001”, “11010”, and “11011”. The TCAM’s ability to
perform this ternary search is especially useful for imple-
menting IP address lookup, since search mask bits are often
associated with each IP prefix.

Despite its desirable behavior, there are two critical dis-
advantages inherent in the CAM approach: cost and power
consumption. Since match logic is contained in each mem-
ory row, the maximum achievable cell density of CAM is
much lower than that of a conventional RAM. More than
an order of magnitude lower storage cell density has been
reported [20,24]. Moreover, since all the match logics oper-
ate in parallel on a search, required circuit activities grow in
proportion to the number of CAM entries, resulting in high
power consumption.

3 Content-Addressable Random Access
Memory (CA-RAM)

The three main design goals for CA-RAM are: (1) search
performance (i.e., bandwidth and average latency) equiva-
lent to that of conventional CAM; (2) area and power char-
acteristics similar to those of conventional RAM; and (3)



Figure 3. A CA-RAM slice.

straightforward and efficient processor/system integration.
This section presents a detailed description of CA-RAM
and discusses how the design goals can be achieved.

3.1 Baseline CA-RAM architecture

A CA-RAM slice takes as an input a search key and out-
puts the result of a lookup. Its main components include an
index generator, a memory array (either SRAM or DRAM),
and P match processors, as shown in Figure 3. For the clar-
ity of presentation, we will for now assume that the CA-
RAM memory array contains only the key portion of stored
records, as in a conventional CAM. That is, the data por-
tions are assumed to be in a separate (data) memory array.

Given that the search key is N bits long, each C-bit row
(i.e., bucket) can store up to �C

N � keys. If the number of
rows equals to 2R, an R-bit index is needed to select a row
to access. The size of the memory array is 2R × C bits.
Optionally, each row can be augmented with an auxiliary
field, which is to provide information on the status of the
associated bucket. For example, if the bucket had overflows
and accordingly some records have been spilled to subse-
quent buckets, this field can keep a number indicating how
far the extended search effort should reach. The location of
an available key slot in the bucket can be also stored in the
auxiliary field to aid proper record insert/delete operations.

The task of the index generator is to create an R-bit index
from an N -bit key input (R ≤ N ). The actual function of
the index generator will highly depend on the target applica-
tion. In many applications, index generation is as simple as
bit selection, incurring very little additional logic or delay.
In other cases, simple arithmetic functions, such as addition
or subtraction, may be necessary. Depending on the appli-
cation requirements, a small degree of programmability in
index generation can be employed.

Figure 4. (a) An N -bit match logic. (b) A single-
bit match logic element, extended with two “don’t
care” or mask inputs, Mi and TMi.

Once the index is generated from the input key, the mem-
ory array is accessed and �C

N � candidate keys are fetched
simultaneously. The match processors then compare the
candidate keys with the search key in parallel, resulting in
constant-time matching. It is desirable that P = �C

N �; how-
ever, if N is a flexible parameter to make CA-RAM dynam-
ically adjustable for keys of different sizes, it is possible that
P �= �C

N
�. When �C

N
� ≤ P , matching of all the keys can

be done in one step. Otherwise, necessary matching actions
can be divided into a few pipelined actions.

Each match processor performs comparison quickly us-
ing an N -bit hardware comparator, as depicted in Fig-
ure 4(a). In essence, the N -bit comparator reduces the result
of N single-bit comparators. By extending each single-bit
comparator with two “don’t care” conditions, CA-RAM can
efficiently support both search key bit masking (i.e., search
with don’t care bits in search key) and record key bit mask-
ing (i.e., search with don’t care bits in individual record key,
also known as ternary search). To support searching with
don’t care bits, the N -bit input key can be extended with an
N -bit mask, which is passed along to the match processors.
To support ternary search, each key in the memory array
can be associated with an N -bit mask to denote which bits
in the stored key are don’t care bits. As such, the number
of records that can fit in a given CA-RAM will be halved
when the ternary search capability is enabled, since each
single symbol in the stored key (one of {0, 1, X}) requires
two bits to encode. Figure 4(b) shows how a single-bit com-
parator is extended to enable matching with don’t care bits.

A large area saving in CA-RAM comes from decoupling
memory cells and match logic. Unlike conventional CAM
where each individual row in memory array is coupled with
its own match logic, CA-RAM separates dense memory ar-
ray and common match logic (i.e., match processors) com-
pletely. Since the match processors are simple and light-
weight, the overall area cost of CA-RAM will be close to
that of the memory array used. At the same time, by per-
forming a number of candidate key matching operations



Figure 5. A CA-RAM-based memory subsystem.

in parallel, low-latency, constant-time search performance
is achieved. We will further examine the related area and
power issues in the following subsections.

3.2 Constructing a memory subsystem using CA-RAM

Based on the CA-RAM slice, a high-performance mem-
ory subsystem comprising multiple CA-RAM slices can be
constructed, as in Figure 5. A CA-RAM memory subsys-
tem provides two distinct views or modes to applications.
First, it can be viewed as addressable random access mem-
ory (“RAM” mode). Second, it can be viewed as searchable,
content addressable memory (“CAM” mode).

The RAM mode serves several different purposes. First,
the main processor can construct and store a database in
CA-RAM using this mode. For each record in the database,
the processor will need to compute the location in CA-RAM
where the key should be stored, using the same hash func-
tion to be used by the CA-RAM index generator. If the
“hashed” database already exists at other memory location
or in hard disk, the construction of a CA-RAM database can
be done via a series of memory copy operations or using
an existing DMA mechanism. Second, the available mem-
ory capacity in CA-RAM can be treated as on-chip memory
space for various general uses. It can be utilized as non-
cacheable, paged memory space under OS management,
or alternatively, as a scratch-pad memory without address
translation. This way, applications which do not utilize the
lookup capability of CA-RAM can still benefit from hav-
ing fast on-chip memory space. Lastly, various hardware-
and software-based memory tests will be performed on CA-
RAM using this RAM mode.

There are three main operations defined for the CAM
mode: (1) search, (2) insert, and (3) delete. Search looks up
the database in CA-RAM with the given search key. When
a search request is submitted through the request port of the
CA-RAM memory subsystem, it is forwarded by the input
controller to a relevant CA-RAM slice. The selected CA-

RAM slice then looks up in its memory array and returns
the search result. Multiple lookup actions can be simul-
taneously in progress in different CA-RAM slices, leading
to high search bandwidth. Requests and results are both
queued for achieving maximum bandwidth without inter-
ruptions. Insert and delete operations are used to construct
and maintain a database. The auxiliary bits in each memory
row are consulted and updated by these operations.

The CA-RAM slices in the subsystem can each serve a
different database. The set of CA-RAM slices can be par-
titioned into multiple groups depending on the application
requirements, each of which can form a separate database
search engine. Certain CA-RAM slices can be used to
implement an overflow area to store spilled records. If
implemented, such a CA-RAM slice can be accessed to-
gether with other slices that keep regular records in order
to achieve lower average latency, similar to the popular vic-
tim cache technique [11]. Furthermore, a database can be
implemented with multiple CA-RAM slices, arranged ver-
tically (i.e., more rows), horizontally (i.e., wider buckets),
or in a mixed way. For example, five slices can be allocated
together with four slices used to extend the number of rows
and the remaining one set aside for storing spilled records.
Another very attractive design option is storing data along
with its key in CA-RAM, which can effectively eliminate
the data access step typically following a lookup. Such an
optimization is not practical in CAM due to its capacity and
structural constraints. The necessary configuration infor-
mation is stored in the configuration storage and is used to
guide handling requests.

To integrate the CA-RAM memory subsystem effi-
ciently, a processor may implement special instructions to
submit requests and fetch results. Alternatively, request and
result ports can be assigned a memory address, similar to
memory-mapped I/O ports, so that ordinary load and store
instructions can be used to access CA-RAM. For example,
to submit a request, an application will issue a store instruc-
tion at the port address, passing the search key as the store
data. Request and result ports can be extended by allocating
multiple addresses to them, where a few address bits pro-
vide additional hints to the CA-RAM input controller. For
example, each port address can be tied to a “virtual port”
mapped to a specific database. In this case, the input con-
troller can quickly determine which CA-RAM slice the re-
quest should be forwarded to, using the address bits. Also,
if needed, request and result queues can be (physically) split
into multiple queues for even higher bandwidth.

When writing programs that utilize CA-RAM, it is desir-
able to hide and encapsulate CA-RAM hardware details in
a program construct similar to a C++/Java object which can
be accessed only through its access functions. For ease of
programming, CA-RAM-related operations can be best pro-
vided as a class library. Such operations include initializing



an empty database, allocating/deallocating CA-RAM space
(similar to malloc()/free()), defining slice member-
ship and role (e.g., use a slice as an overflow area), defining
the hash function, declaring a record type and its format,
enabling ternary searching, defining exception conditions,
selecting operating modes, and setting power management
policies. We note that the interface issues are important,
but are beyond the scope of this paper. We leave them as a
future work.

3.3 Preliminary implementation

To validate our CA-RAM ideas and identify further de-
sign and interface issues, a prototype CA-RAM slice was
implemented. A standard-cell based design flow using the
Verilog HDL and standard EDA tools, such as Synopsys
Design Compiler, were adopted. As we used existing mem-
ory cores (e.g., from a memory compiler), our design focus
was on the processor interface, index generator, and espe-
cially, match processors.

Our design allows a configurable number of keys per
bucket to increase the flexibility of use. This way, we can
easily experiment with multiple applications requiring dif-
ferent key sizes without modifying the design. For sim-
plicity, though, we limited the key size to be 1, 2, 3, 4,
6, 8, 12, and 16 bytes. Our design supports search with
don’t care bits in the search key or in the stored keys as
discussed in Section 3.1. The implementation is similar to
Figure 4(b). Also, data can be stored together with keys
within CA-RAM. A lookup result is either a matched ad-
dress or a matched data item. Control registers are provided
in the form of memory-mapped peripheral registers to pro-
gram various configuration options in our design.

The functionality of the match processor can be broken
down into four steps: (1) expand search key; (2) calculate
match vector; (3) decode match vector; and (4) extract result
(i.e., data). The first step is a consequence of the variable
record sizes that the match processor can receive. Given that
a bucket is C bits and depending on the stored key width, a
C-bit expanded search key vector is generated having mul-
tiple search key appearances, each aligned to the stored key
locations. This search key expansion step can be overlapped
with memory access and thus its latency can be hidden.

In the second step, actual match actions are taken, com-
paring the search key with each stored key. A match vector
is generated as a result, where each bit in the vector tells
if the corresponding comparison resulted in a match. Since
there can be multiple matches, we need to resolve this case
using a priority encoder, which is done in the third step.
Conditions where multiple matching records or no match-
ing records are present are identified. As a result of the third
step, a unique match location is known, if any. The matched
data (not the key) is extracted in the last step. This step also

Step # cells Area, µm2 Delay, ns

Expand search key 3,804 66,228 (0.89)
Calculate match vector 5,252 10,591 0.95
Decode match vector 899 1,970 1.91

Extract result 6,037 21,775 1.99

Total 15,992 100,564 4.85

Table 1. Cell count, area, and delay for each stage
of match processing.

takes into account the variable record size, which increases
the design complexity. Note that in an application-specific
CA-RAM design (i.e., key length is fixed), much of this
complexity will be removed.

Table 1 reports our synthesis result of the match proces-
sor using a 0.16µm standard cell library. For the synthesis,
we assume C is 1,600. We did not pipeline our prelim-
inary design; still, we achieve a latency that will fit in a
single cycle at over 200MHz. The match vector computa-
tion, including the expansion of the search key, requires the
most cells. This is however a low delay stage as all the bit-
by-bit operations are done in parallel. The decoding of the
match vector and the multiplexing of the output results form
the critical path as all of it’s operations are serial in nature.
Synopsys reported a worst-case dynamic power consump-
tion of 60.8mW at VDD =1.8V, switching activity = 0.5,
and Tclk = 6ns.

3.4 Performance, area, and power issues

Performance. The CA-RAM search latency, TCA-RAM ,
is bounded by the access time of the memory, Tmem, and
the time for key matching and result extraction, Tmatch.
The CAM search latency, TCAM , is determined by how
quickly individual matchlines are precharged, pulled down,
and sensed (Tmatchline) and how quickly the priority en-
coder produces the match address [25]. When DRAM is
used to implement CA-RAM and CAM, Tmem will be usu-
ally larger than TCAM as it takes multiple cycles to access
DRAM. If the latency for data access following a lookup
is taken into account, however, TCA-RAM will be compa-
rable to or even shorter than TCAM , since the time to ac-
cess data (Tmem) is fully exposed in CAM while it is effec-
tively hidden in CA-RAM. Moreover, many recent CAM
devices require multiple cycles to finish a lookup to save
energy [7,24,25], making Tmatchline a multiple of the oper-
ating clock of CAM and rendering the actual CAM latency
even longer.

The CA-RAM search bandwidth using a conservative,
non-pipelined memory will be given as follows:

BCA-RAM =
Nslice

nmem
× fclk



Figure 6. (a) Cell size of different schemes. (b) Power consumption of different schemes.

where Nslice is the number of CA-RAM slices indepen-
dently accessible, nmem is the minimum number of cycles
needed between two back-to-back memory accesses, and
fclk is the clock frequency. Here, we assume that at least
the match step is pipelined with memory access, dropping
Tmatch in the calculation. The CAM search bandwidth is
simply given as:

BCAM = fCAM clk

Usually, fclk is much higher than fCAM clk using the same
technology and design expertise (e.g., over twice faster
fclk reported in [20, 24]), and increasing Nslice is straight-
forward in CA-RAM, which is in fact preferred for im-
proved power control and aspect ratio fitting. CA-RAM
is performance-competitive with CAM, in terms of both
search latency and bandwidth.
Area. By decoupling memory array and match logic,
CA-RAM achieves a smaller area than traditional CAM
schemes. To validate this, we compare the cell size of com-
peting schemes, including a 16T SRAM-based TCAM [23],
an 8T dynamic TCAM [23], a 6T dynamic TCAM [24], and
a DRAM-based ternary CA-RAM.

We use only actual product-grade implementation results
published by a single research and development organiza-
tion using the same advanced 130nm process technology
to allow a fair comparison [23, 24]. To calculate the CA-
RAM cell size, we use the result of an embedded DRAM
implementation by the same research group [20] and con-
sider the impact of adding match processors, derived from
our prototype design. Since most of the existing works are
on TCAM, we use two bits per cell in the case of CA-RAM,
not to favor our own approach. We further assume that 16
CA-RAM slices are used (one slice for 64K cells), again
not to underestimate the added overhead of the CA-RAM
approach. We removed unnecessary features in the match
logic prototype and scaled its size to the 130nm technology
used. As a result, we determined a ∼7% overhead due to

the addition of match processors.

The comparison result presented in Figure 6(a) clearly
demonstrates the advantage of CA-RAM. The CA-RAM
cell size is over 12× smaller than a 16T SRAM-based
TCAM cell, and 4.8× smaller than a state-of-the-art 6T dy-
namic TCAM cell.

Power. CA-RAM has a power figure that is dependent on
three factors: the size and dimension of memory (w rows×
n bits), the number of bits in each bucket that must be com-
pared against the search key to determine if a match exists,
and the operating frequency. CAM cells see much bigger
loading capacitance since they are tapped by longer bit-
lines as well as additional matchlines, due to their larger
sizes. More importantly, while CA-RAM typically accesses
memory once per search followed by a match operation
(O(n)), the CAM structure (in Figure 2) requires that all
the searchlines and matchlines be activated at the same time
(O(w + n)), and all the match transistors operate on each
search (O(w · n)). Their power consumption can be ex-
pressed as follows:

PCA-RAM search = Phash + Pmem (w, n) +
Pmatch (n) +
Pencoder (w)

PCAM search = Psearchline (w, n) +
Pmatchline (w, n) +
Pencoder (w) .

Using the same conditions as our area comparison, we
compare the power consumption of different schemes in
Figure 6(b). The result shows that CA-RAM is over
26 times more power-efficient than the 16T SRAM-based
TCAM, and over 7 times improved over the 6T dynamic
TCAM.



4 Application Study

The previous section demonstrated the potential of CA-
RAM as a high-performance, low-cost, and low-power
memory substrate for search-intensive applications. How-
ever, there may be limitations in using CA-RAM in certain
cases. First of all, the performance of CA-RAM depends on
the actual record distribution and how records are accessed.
If many records have been placed in an overflow area due
to collision, a lookup may not finish until many buckets are
examined. Another limitation of CA-RAM is found when
stored keys contain don’t care bits in the bit positions used
for hashing. To maintain the semantics of don’t care bits,
such keys must be duplicated in multiple buckets, leading
to an increased capacity requirement. On the other hand, if
the search key contains don’t care bits which are taken by
the hash function, multiple buckets must be accessed.

Collision is a unique problem in CA-RAM while not
in a conventional CAM. There are several solutions to the
problem. First, a more effective hash function reduces
collisions. Second, allocating more capacity will also re-
duce collisions. Third, one can employ a CAM (alterna-
tively a CA-RAM) to keep spilled records, similar to victim
caching [11]. These solutions all pose interesting design
trade-offs between performance, power, and area.

The goal of our application study in this section is
twofold. First, the study aims to understand the impact of
CA-RAM’s possible limitations in real-world applications
and how they affect the overall design trade-offs. Second,
as a result, how CA-RAM compares with CAM (or TCAM)
will be examined.

4.1 IP routing table lookup

Problem description. An IP router acts as a junction be-
tween two or more TCP/IP networks to transfer data pack-
ets among them. When an IP router receives a packet,
it performs a series of operations such as checking the
packet checksum and decreasing the time-to-live value of
the packet. Usually, its performance bottleneck lies in the
IP address lookup; the destination address of every incom-
ing packet should be matched against a large forwarding
table (routing table) to determine the packet’s next hop on
its way to the final destination. An entry in the forwarding
table is called a prefix, a binary string of a certain length
(also called prefix length), followed by a number of don’t
care bits. The adoption of classless inter-domain routing
(CIDR) since 1993 resulted in the need for longest prefix
match (LPM) [26].

There are two broad types of schemes to speed up
IP address lookup: software-based and hardware-based.
Software-based approaches usually require at least 4 to 6
memory accesses for forwarding one packet, and cannot

keep up with the increasing throughput requirement im-
posed by modern networks, due to the relatively high la-
tency and the limited bandwidth of current memory archi-
tectures [18]. Therefore, hardware-based solutions are pre-
ferred in order to scale performance to gigabit rates and be-
yond. TCAM is a current preferred solution because: (1)
TCAM devices are available in commodities; (2) a single
TCAM access is sufficient for an IP address lookup; (3)
the don’t care symbol in TCAM is suitable for represent-
ing don’t care bits in a prefix; and (4) the priority encoder
in TCAM can be used to perform LPM when prefixes in
TCAM are sorted on prefix length [29].

Unfortunately, there are two serious impediments in us-
ing TCAM: its high cost and power consumption. Accord-
ing to the RIPE’s routing information service project [27],
the number of prefixes in the routing table of a core router
has exceeded 200K, and is still growing. The size of a rout-
ing table will even quadruple as we adopt IPv6. Despite
the current large TCAM development efforts [25], the sheer
amount of required associative storage capacity remains a
serious challenge. Moreover, the high power consumption
of current TCAM devices is a pressing burden in large, re-
liable, and cost-effective system design [32]. New inno-
vative memory design approach is needed to tackle these
problems.
CA-RAM data mapping. For data mapping, we use the
BGP (Border Gateway Protocol) routing tables of Internet
core routers, obtained from the routing information service
project [27]. We chose the routing table in the autonomous
system AS1103 at the rrc00.ripe.net site for presen-
tation. Results for other tables are similar. The prefix count
in the table is 186,760.

First, we need to determine the hash function. Our hash
function is based on the bit selection scheme by Zane et
al. [32], which simply uses a selected set of bits (or hash
bits) from IP addresses. According to Huston [10], also con-
firmed by our experiments, over 98% of the prefixes in the
studied routing table are at least 16 bits long. Therefore, we
restrict the choice of the hash bits to be from the first 16 bits
of an IP address. When the number of rows of CA-RAM is
2R, we apply the algorithm in [32] to find the best set of R
bits which distributes the prefixes most evenly to buckets.
After experiments, we determined that choosing the last R
bits in the first 16 bits results in the best outcome. Note that
if a prefix has n don’t care bits in the hash bit positions, it
must be duplicated and placed in 2n buckets.

Next, we explore the design space by considering the
key design parameters: C , R, and N , as described in Sec-
tion 3.1. Because a prefix consists of 32 ternary bits, the
length of the key (N ) is 64. R can take any value from 1 to
16 and C is either 32×N or 64×N . C is set to be compara-
ble to the row width of recent DRAM bank designs [19,20].
We use a simple linear probing technique as described in



R C # of Arrangement Load Overflowing Spilled AMALu AMALs
Slices Factor (α) Buckets (%) Records (%)

A 11 32×64 6 horizontal 0.47 12.21% 15.82% 1.476 1.425
B 11 32×64 7 horizontal 0.40 5.42% 5.50% 1.147 1.125
C 11 32×64 8 horizontal 0.36 2.64% 1.35% 1.093 1.082
D 12 64×64 2 horizontal 0.36 6.67% 8.03% 1.159 1.126
E 12 64×64 3 horizontal 0.24 1.03% 0.72% 1.072 1.068
F 12 64×64 2 vertical 0.36 15.56% 29.63% 1.990 1.875

Table 2. Designs of CA-RAM for IP address lookup.

Section 2.1 to deal with bucket overflows. The main metric
used is the average number of memory accesses per lookup
(AMAL).
Evaluation. Table 2 shows 6 feasible CA-RAM designs.
For example, in design A, there are 6 CA-RAM slices
placed horizontally (to widen buckets). 12.21% of the to-
tal 211 buckets overflow and the load factor (α) is 0.47. The
AMAL metric for each design is also affected by the prefix
access frequencies. Since we do not have IP lookup traces
of core routers, we first assume a uniform access pattern
for all prefixes, and compute “AMALu”. Then we assume
a skewed access pattern [22], where some prefixes are ac-
cessed more frequently than others. In this case, we sort the
prefixes on their prefix length (for LPM) and access fre-
quency before placing in CA-RAM. The column labeled
“AMALs” shows the result. Although the skewed access
pattern we use is an artifact, it demonstrates that access pat-
terns can be taken into account in CA-RAM design to im-
prove the lookup latency.

The result shows that with the same hash function (de-
termined by R), investing more area (i.e., reducing α) re-
sults in lower AMAL. It is also shown that for the same area
(same α), the design with the hash function that distributes
the data more evenly wins. This is evident from designs D
and F. Design E, with the lowest load factor, achieves the
best AMAL.

The number of duplicated prefixes due to don’t care bits
in the hash bit positions is modest – a 6.4% increase (12,035
additional entries) regardless of the design. This is because
(1) the minimum length of the prefixes is 8 (i.e., the first 8
bits of all prefixes are never don’t care bits); and (2) the hash
bits always cover the lower 8 bits in the first 16-bit positions
(R > 8).

4.2 Trigram lookup in speech recognition

Problem description. A speech recognition system takes
an acoustic language input and translates it into a corre-
sponding textual representation. The three most important
system design issues are: recognition accuracy, translation
speed, and memory requirements.

In a modern speech recognition system like CMU-
Sphinx [5], a sophisticated acoustic model based on the
Hidden Markov Model (HMM) is used to simplify and im-
prove the task of decoding. A language model is used to rec-
ognize and differentiate among the millions of human utter-
ances that make up a language. Sphinx uses a conventional
unigram, bigram, and trigram back-off model. The accu-
racy and speed of acoustic and language models rely heav-
ily on searching a large database. For example, in a system
with a ∼60,000-word vocabulary, the “N-gram memory”
for language modeling is over 240Mbytes [17]. Unfortu-
nately, the large amount of data to search against and the
random access patterns in searching result in poor memory
performance even with a large L2 cache in state-of-the-art
processors. An efficient mechanism for searching will not
only improve the speed of speech recognition, but also re-
duce the related power consumption, making it feasible to
employ speech recognition in more performance- and cost-
sensitive systems.

CA-RAM data mapping. We employ the trigram database
used in the CMU-Sphinx III system [5], which comprises
13,459,881 entries in total. Because of its large size, we
take a partitioned database approach and focus only on the
entries with 13–16 characters. The resulting data set has
5,385,231 entries, equivalent to 40% of all the entries in the
original database. Since each entry has up to 16 characters,
the length of a key (N ) is 16×8 = 128 bits. Ternary search-
ing is not required in this application. We choose to store
96 keys in each bucket, and accordingly, C is 96 × 128 =
12,288 bits. The total data to store in CA-RAM amounts to
86Mbytes.

We use a different hash function strategy for this ap-
plication. Instead of a simple bit selection method, we
use the DJB hash function, which is an efficient string
hash function [30]. The function looks like: hash(i) =
[hash(i−1) � 5]+hash(i−1)+str[i]. This method has
been also used in the software hashing technique in Sphinx.
When a bucket overflows, we use a simple linear probing
technique. The number of buckets of each slice is fixed to
214.

Evaluation. Four different designs are depicted in Table 3.



R C # of Arrangement Load Overflowing Spilled AMAL
Slices Factor (α) Buckets (%) Records (%)

A 14 128×96 4 vertical 0.86 5.99% 0.34% 1.003
B 14 128×96 5 vertical 0.68 0.02% 0.00% 1.000
C 14 128×96 4 horizontal 0.86 0.15% 0.00% 1.000
D 14 128×96 5 horizontal 0.68 0.00% 0.00% 1.000

Table 3. Designs of CA-RAM for trigram lookup in speech recognition.

Figure 7. The distribution of buckets having a dif-
ferent number of records for design A in the tri-
gram lookup application. The bucket size of 96
records will put a majority of buckets in the non-
overflowing region.

In design A, for example, four CA-RAM slices are placed
vertically to increase the number of buckets. At a relatively
high load factor of 0.86, only 5.99% of all the buckets have
overflows and consequently spilled records. Investing more
area, as in design B, results in a lower load factor but better
performance. Designs A and C or designs B and D show the
trade-off between horizontal vs. vertical slice arrangement.

4.3 Discussions

From the two application studies, we observe that there
is a trade-off between area (or α) and AMAL; the more area
is spent (i.e., the lower α is), the smaller AMAL gets. The
ratio of changes in these two values (∆AMAL/∆α) how-
ever depends on the application, the hash function, and the
value of α. For instance, the benefit of spending more area
is minimal in the trigram lookup application (e.g., design
A vs. B or design C vs. D). A smaller design having a
slightly worse AMAL may turn out to be more viable; la-
tency penalty can be easily compensated by employing a
commensurately faster clock.

Compared with the IP address lookup application, the
trigram lookup application achieves lower AMAL at much

higher α, due to the hash function it uses. Figure 7 shows
that the hash function of the trigram lookup application dis-
tributes the record very evenly, and as a result many buck-
ets have a similar number of records, centered around 81.
Choosing the bucket size of 96 resulted in only 0.34% of all
the records spilled to other buckets in this design. It is very
clear that the cost and performance of CA-RAM is contin-
gent upon the effectiveness of the hash function.

On the other hand, it is less straightforward to optimize
the IP address lookup application in terms of AMAL due
to the difficulty of finding a more effective hash function.
For this application, instead, we assessed the effect and cost
of employing a small TCAM as the common area to store
spilled entries. If this TCAM is accessed simultaneously
with the main CA-RAM, AMAL becomes 1. Designs C and
E require 1,829 and 1,163 entries be moved to the overflow
area. In comparison, designs A and F have over 6,000 and
21,000 entries spilled, placing more pressure on the over-
flow area capacity. Implementing a separate overflow area
should be carefully considered because it incurs power and
area overheads.

Finally, we compare the area and power consumption of
the TCAM (or CAM) design and the CA-RAM design for
the two applications studied in this section. Based on the
published implementation results, we estimate the cell area
and the operating power consumption of different schemes,
as we did in Section 3.4. Results are presented in Figure 8.

The TCAM estimate is derived from an optimistic scal-
ing of the result of Noda et al. [24]. We assumed a 143MHz
TCAM operation. The CA-RAM estimate is based on the
DRAM implementation result of Morishita et al. [20] and
an adaptation of the result in Section 3.3. We chose design
D in Table 2 and further sliced it to create eight vertical
banks, in order to obtain higher overall bandwidth, as dis-
cussed in Section 3.4. We take into account the load factor
for area calculation, and assume a more aggressive 200MHz
CA-RAM operation to make sure the CA-RAM design of-
fers competitive search bandwidth as TCAM, assuming that
the memory access latency is at least 6 cycles (DRAM).

For the result of the trigram lookup application, we re-
ferred to Yamagata et al. [31] to estimate the necessary cell
area of a dynamic CAM. Again, we performed an optimistic
area scaling. For CA-RAM, we chose design A in Table 3.



Figure 8. Area and power comparison of different
schemes; TCAM [24] vs. CA-RAM for the IP ad-
dress lookup application and CAM [31] vs. CA-
RAM for the trigram lookup application. Results
are scaled relative to TCAM or CAM.

We do not compare power consumption because the imple-
mentation in [31] does not have any advanced power reduc-
tion techniques, and accordingly a meaningful comparison
would not be possible. We could not find a better reference
because the most recent high-capacity development efforts
were focused on TCAM devices.

The results shown in Figure 8 confirm our previous anal-
ysis in Section 3.4. Even with a low load factor, CA-RAM
achieves a 45% area reduction compared with TCAM. Op-
erating power saving is even greater, that is, 70% over
TCAM. Compared with CAM, CA-RAM realizes a 5.9×
area reduction. CA-RAM performs well for large real-
world applications at much reduced power and area cost.

5 Related Works

5.1 Large capacity CAM organizations

Motomura et al. [21] presented a large-capacity CAM
design for dictionary lookup applications in natural lan-
guage processing. Their CAM array is divided into 16 cat-
egories, and matching actions are confined to a single cate-
gory given a search key. The target category is determined
by first looking up in a control-code CAM (C2CAM), which
stores indexes for the available categories. Their CAM
structure achieves higher capacity by time-sharing a com-
mon match logic among the 16 categories. The concepts in-
troduced by this work was later refined by Schultz and Gu-
lak [28] as “pre-classified CAM”. Since both the works still
bury match logic and match line inside the memory array,
the maximum achievable area efficiency is severely limited.

Another straightforward technique for improving the
density of CAM is to use dynamic memory cells rather than

static memory cells [23, 24]. Instead of a conventional 16T
SRAM-based TCAM cell implementation (∼9µm2), Noda
et al. [23] designed an 8T dynamic TCAM cell (4.79µm2)
using an advanced 130nm process technology. They fur-
ther developed a 6T dynamic TCAM cell (3.59µm2) [24].
It is noted, however, that an embedded DRAM cell imple-
mented by the same authors using the same process technol-
ogy (0.35µm2) is an order of magnitude smaller than their
smallest TCAM cell, and the resulting DRAM array can be
operated at over twice the clock rate of the TCAM [20].

Lastly, more sophisticated encoding schemes can re-
duce the number of necessary entries in TCAM. Hanzawa
et al. [7] proposed a new TCAM encoding scheme called
“one-hot-spot block code”, which reduces TCAM entry
count for an IP lookup application by 52%. Since each
TCAM symbol uses 2 bits to represent one of the 3 val-
ues {0, 1, X}, a two-symbol code (4 bits) has a redundancy
of 7 out of 16. Their scheme is in essence a dense encoding
scheme which fully utilizes this redundancy. We believe
that this encoding scheme can be combined together with
other high-capacity schemes, including CA-RAM.

5.2 Low power CAM techniques

The most common low-power CAM technique is to em-
ploy selectively accessible banks [13]. For example, Zane
et al. [32] uses a two-phase lookup scheme where the first
lookup is used to select a TCAM partition in the second,
main table lookup phase. This bank selection strategy re-
duces overall power consumption in proportion to the num-
ber of partitions. For example, employing four partitions
ideally reduces the power consumption by 75% compared to
a regular CAM. In CA-RAM, even better, a memory access
is made on a single row most of the time. The hash function
used in CA-RAM replaces the more expensive first-phase
lookup table in the banked CAM scheme.

Lin et al. [16] proposed a precomputation-based search
scheme capable of decreasing the search power in conven-
tional binary CAMs. This approach also uses a two-phase
lookup scheme, where the first lookup is to match the pre-
computed signature, such as the number of 1’s in the search
key. As a result of the initial lookup, the second search is
performed on a limited number of entries in the main table.
This scheme however is applicable to only binary CAMs.

There are other circuit-oriented low-power CAM tech-
niques, such as low-swing match line and selective
precharge schemes [25]. Since there are other comparable
circuit-level low-power techniques for SRAM and DRAM
designs, we do not further discuss these circuit techniques.



6 Conclusions

This paper presented CA-RAM, a high-performance
memory substrate to accelerate important search operations
present in applications, and analyzed its performance. The
basic idea of CA-RAM is surprisingly simple; nonetheless,
it is very powerful, and naturally opens up many opportu-
nities for optimization. Our study demonstrates that CA-
RAM achieves low-latency and high-bandwidth search per-
formance, large capacity, and low power consumption. Us-
ing two real-world applications, we validate our approach
and discuss important design trade-offs that are unique
to CA-RAM. Experimental results showing the area and
power savings of 50–80% corroborate the promise of the
CA-RAM approach. The design flexibility stemming from
completely decoupling memory array and match logic will
lead to more exciting applications, as well as making CA-
RAM suitable for integration in future general-purpose and
embedded processors and systems [2].

In our current and future works, we will refine and opti-
mize our prototype design. We will also uncover and study
more applications that can benefit from using CA-RAM. We
find cognitive applications especially interesting in this di-
rection [6]. For example, a large-scale system implement-
ing a cognitive model such as ACT-R [1], will benefit from
employing CA-RAM, as it requires much search and data
evaluation capabilities.
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