
A Dynamic Pressure-Aware Associative Placement
Strategy for Large Scale Chip Multiprocessors

Mohammad Hammoud, Sangyeun Cho, and Rami G. Melhem
Department of Computer Science, University of Pittsburgh

{mhh,cho,melhem}@cs.pitt.edu

Abstract—This paper describes dynamic pressure-aware associative placement (DPAP), a novel distributed cache management
scheme for large-scale chip multiprocessors. Our work is motivated by the large non-uniform distribution of memory accesses across
cache sets in different L2 banks. DPAP decouples the physical locations of cache blocks from their addresses for the sake of reducing
misses caused by destructive interferences. Temporal pressure at the on-chip last-level cache, is continuously collected at a group
(comprised of local cache sets) granularity, and periodically recorded at the memory controller(s) to guide the placement process. An
incoming block is consequently placed at a cache group that exhibits the minimum pressure. Simulation results using a full-system
simulator demonstrate that DPAP outperforms the baseline shared NUCA scheme by an average of 8.3% and by as much as 18.9%
for the benchmark programs we examined. Furthermore, evaluations showed that DPAP outperforms related cache designs.

Index Terms—Chip Multiprocessors, Associative Placement, Pressure-Aware Placement, Aggregate Cache Sets, Local Cache Sets.

✦

1 INTRODUCTION AND MOTIVATION

AS large uniprocessors are no longer scaling in performance, chip
multiprocessors (CMPs) have become the trend in computer

architecture. CMPs can easily spread multiple threads of execution
across various cores. Besides, CMPs scale across generations of
silicon process simply by stamping down copies of the hard-to-design
cores on successive chip generations [9]. One of the key challenges to
obtaining high performance from CMPs is organizing and managing
the limited on-chip cache resources (typically the L2 cache) shared
among co-scheduled threads/processes.
Tiled chip multiprocessor (CMP) architectures have recently been

advocated as a scalable processor design approach [4], [14]. They
replicate identical building blocks (tiles) and connect them with a
switched network on-chip (NoC) [14]. A tile typically incorporates
private L1 caches and an L2 cache bank. L2 cache banks are accord-
ingly physically distributed over the processor chip. A conventional
practice, referred to as the shared scheme, logically shares these
physically distributed cache banks. On-chip access latencies differ
depending on the distances between requester cores and target banks
creating a Non Uniform Cache Architecture (NUCA) [7].
Recent research work on CMP cache management has recognized

the importance of the NUCA shared design [3], [4]. Besides, many
of today’s multi-core processors, the Intel CoreTM2 Duo processor
family [12], Sun Niagara [8], and IBM Power5 [16], have featured
shared caches. A shared organization, however, suffers from an
interference problem. A defectively behaving application can evict
useful L2 cache content belonging to other co-scheduled programs.
As such, a program that exposes temporal locality can experience
frequent cache misses caused by interferences. We observe that 69.5%
of misses on a 16-way tiled shared CMP platform are inter-processor
(a line being replaced at an earlier time by a different processor).1

We primarily correlate destructive interferences problem to the
root of CMP cache management, the cache placement algorithm.

Manuscript submitted: 18-Apr-2010. Manuscript accepted: 14-May-2010.
Final manuscript received: 18-May-2010.
This work was supported in part by NSF grant CCF-0952273.
1. Section 4.1 describes the adopted CMP platform, the experimental

parameters, and the benchmark programs we examined.

��

�����

����

�����

����

�� �	�
�� ��
� ���� ���� �		� ���� �
� ���� ��� ��	�

�
�
�
��

���������������

���������

�������� �������� � ����

!�

��

��

"�

��

#�

�� ��
�

�"
�

$�
�

�#
�

�!
$�

��
��

��
��

�$
��

��
!�

��
��

�"
��

�#
"�

��
��

��
#�

"�
$�

""
��

"#
��

"�
��

�!
!�

��
��

��
��

�$
"�

��
��

#!
#�

�
��

��

�������	����	
�

�����

������	� ������	� �����

Fig. 1. Number of misses per 1million instructions (MPMI) experienced by
two local cache sets (the ones that experience the max and the min misses)
at different aggregate sets for two benchmarks, Swaptions and MIX2.

Fig. 1 demonstrates the number of misses per 1 million instructions
experienced by cache sets across L2 cache banks (or aggregate
sets) for two benchmarks, Swaptions and MIX2 (see Section 4.1 for
experimental details). We define an aggregate set with index i as the
union of sets with index i across L2 cache banks. More formally,
an aggregate seti =

⋃n
k=1 setki where setki is the set with index i

at bank k. We refer to each setki as a local set. We assume a 16-
way tiled CMP platform with physically distributed, logically shared
L2 banks. We only show results for two local sets that exhibit the
maximum and the minimum misses, in addition to the average misses,
per each aggregate set. Clearly, we can see that memory accesses
across aggregate sets are asymmetric. A placement strategy aware
of the current pressures at banks can reduce the workload imbalance
among aggregate sets by preventing placing an incoming cache block
at an exceedingly pressured local set. This can potentially minimize
interference misses and maximize system performance.
Traditionally, cache blocks are stored at cache locations solely

based on their physical addresses. This makes the placement process
unaware of the disparity in the hotness of the shared cache sets.
In this work, we explain the importance of incorporating pressure-
aware associative placement strategies to improve CMP system per-
formance. We propose dynamic pressure-aware associative placement
(DPAP), a novel mechanism that involves a low-hardware overhead
framework to monitor the L2 cache banks at a group (comprised
of local cache sets) granularity and record pressure information at an
array embedded within the memory controller. The collected pressure

Posted to the IEEE & CSDL on 5/25/2010
DOI 10.1109/L-CA.2010.7 1556-6056/10/$26.00 © 2010 Published by the IEEE Computer Society

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 9, NO. 1, JANUARY-JUNE 2010 29

information is utilized to guide the placement process. Upon fetching
a block, B, with index i from the main memory, DPAP looks up the
pressure array at the memory controller, identifies the bank with the
group that exhibits the minimum pressure, and places B at the set
with index i in that bank. As DPAP can place B at any local set
with index i in any of the L2 banks independent of B’s address, we
say that DPAP effectively provides a cache associativity that equates
the aggregate associativity of the L2 banks. We generally refer to a
placement process that exploits the aggregate associativity of the L2
cache banks as an associative placement strategy.
Major contributions of our work are as follows:
• We propose a practical pressure-aware associative placement
mechanism that provides robust performance for distributed
shared caches.

• We evaluate DPAP using a full system simulator and find that it
successfully reduces cache misses of a shared CMP design by
an average of 24.1%.

• We compare DPAP to various related schemes including vic-
tim caching (VC) [6], variable-way set associative cache (V-
WAY) [11], dynamic set balancing cache (DSBC) [13], and
cooperative caching (CC) [2].

The rest of the paper is organized as follows. Section 2 presents
some recent related work. DPAP mechanism is detailed in Section 3.
In Section 4 we evaluate DPAP. Conclusion and future directions are
given in Section 5.

2 RELATED WORK

Much work has been done to effectively minimize interference misses
in conventional cache designs. It is, in fact, quite impossible to do
justice to this large body of work in this short article. As such, we
briefly describe some of the most closely related prior work.
A recent study, namely Dynamic Set Balancing Cache

(DSBC) [13], suggests mitigating the large asymmetry in cache sets’
usages via associating every two cache sets in a single cache (i.e.,
local sets), making the capacity of an underutilized set available for
a pressured one. DSBC is suggested for single-core architectures.
However, DSBC is directly extensible to CMPs. Nonetheless, DSBC
alleviates the workload imbalance across only local cache sets.
In contrast, DPAP attempts to minimize interference misses via
reducing the uneven memory accesses across aggregate sets. In this
work we show the potential of aggregate versus local set balancing.
We compare DPAP and DSBC in Section 4.
Variable-Way Set Associative Cache (V-WAY) [11] increases the

number of tag-store entries relative to the number of data lines
to reduce interference misses. For the data-store, V-WAY promotes
a global frequency based replacement policy. V-WAY is directly
extensible to CMPs but is also essentially deemed as a local set
balancing scheme. Section 4 compares V-WAY against DPAP.
In the context of CMPs, Adaptive Set Pinning (ASP) [17] asso-

ciates processors to cache sets and solely grants them permissions to
evict blocks from their sets on cache misses. Cooperative Caching
(CC) [2] creates a globally managed shared aggregate on-chip cache
on a private cache organization to reduce misses. In Section 4 we
compare CC versus DPAP.
Both ASP and CC advocate CMP cache management at block

granularity. At page granularity, Sherwood et al. [15] proposed a
software page placement algorithm that performs coloring of virtual
pages using profiles at compile time. Hardavellas et al. [4] proposed
R-NUCA that relies on OS to classify cache accesses onto either
private, shared, or instructions. In comparison to these page granular
schemes, DPAP employs a block-grain placement strategy without
any OS involvement. Hence, DPAP provides a transparent solution.

Fig. 2. Address-based versus pressure-aware placements. (a) Shared
scheme strategy. (b) Pressure-aware associative strategy. (f(.) denotes the
placement function, HS is the home select bits of block B, and P is the
pressure array).

3 THE PROPOSED MECHANISM
We propose a dynamic pressure-aware associative placement (DPAP)
strategy that maps cache blocks to the L2 cache space depending on
the observed pressures at the L2 cache banks. DPAP suggests that
the pressure at each L2 bank is collected at run time, stored, and
utilized to guide the placement process. Specifically, a pressure array
is maintained at the memory controller(s) of the CMP system to
store the collected pressures. On a miss to L2, the main memory is
accessed and the pressure array is probed. The bank that exhibits the
minimum pressure is selected to host the fetched cache block.
We gather pressures from individual sets or groups of sets at L2

banks. A cache bank can be divided into a number of groups. We
denote a group size as the number of local sets (sets on the same
bank) that a group includes. The dimension of the pressure array
(rows vs. columns) at the memory controller(s) changes depending
on the number of groups (n-group) per bank and the number of banks
(p-bank). With n-group and p-bank the pressure array would consist
of n rows and p columns. Therefore, a 1-group (i.e., bank) granularity
indicates a linear pressure array and can be probed simply by using
the IDs of the tiles. However, with finer granularities we need to
select the row first (denoting the group number of an incoming cache
block K) and then the column (denoting the bank that exhibits the
minimum pressure for the selected group). The group number (GN)
of a block, K, can be simply determined by dividing the index of K
by the group size.
Fig. 2 demonstrates a descriptive comparison between the place-

ment strategies of the nominal shared NUCA design and our proposed
scheme. For simplicity we assume a linear pressure array. By using
the shared scheme’s placement strategy, a subset of bits, referred
to as the home select (HS) bits, from the physical address of a
requested block, B, is utilized to map B to its static home tile (SHT).
Assuming the HS bits of B are 0100, B is accordingly placed at tile
T4. Alternatively, by using our pressure-aware associative placement
strategy, the pressure array at the memory controller is inspected
before B is mapped to L2. The pressure array indicates that slot T11
has the minimum pressure, thus selected.
Typically, the pressure at an L2 bank can be measured in terms of

cache misses or hits. However, it is not possible to measure cache
misses in a meaningful way at L2 banks when a pressure-aware
associative placement strategy is employed. Unlike an address-based
placement strategy, on an L1 miss to a block B, there is no address
that dictates the bank responsible for caching B. Besides, B might
map to any bank (versus mapping only to the SHT on the nominal
shared). As such, a reported L2 miss can’t be correlated to any
specific L2 bank but rather to the whole L2 cache space. Hence,
we don’t use misses to represent pressures at L2 banks but rather
hits. More specifically, we quantify pressure as the number of lines
that yield cache hits during a time interval, referred to as an epoch,

30 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 9, NO. 1, JANUARY-JUNE 2010

TABLE 1
System parameters

COMPONENT PARAMETER
Cache Line Size 64 B

L1 I/D- Sizes/Ways/Latency 32KB/2-way/1 cycle
L1 Replacement Policy LRU

L2 Cache Size/Ways/Latency 512KB per L2 bank/16-way/12 cycles
L2 Replacement Policy LRU
Latency Per NoC Hop 3 cycles
Memory Latency 320 cycles

and designate that as temporal pressure.
DPAP doesn’t rely on prior knowledge of the program but on

hardware counters. A saturating counter per group can be installed
at each tile to count the number of successful accesses to that group
during an epoch. At the end of every epoch the values of the counters
are copied from the local tiles to the pressure array at the memory
controller(s). Besides, in order to allow DPAP to adapt to phase
changes of applications, at the copy time we keep only 0.25 of the
last epoch’s pressure values (by shifting each value 2 bits to the right)
and add to them the newly collected ones.
Finally, by having a pressure-aware associative placement algo-

rithm, a location strategy capable of rapidly locating cache blocks at
the L2 cache space is required. Clearly, the HS bits of a requested
block can’t be used anymore to locate the block. In this case, many
strategies can be incorporated. First, a broadcast-based policy can
easily fulfill the objective but might heavily burden the NoC. Second,
a directory (either centralized or distributed) can be maintained and
pointers can be kept to point to the current locations of blocks
(as in [21]). This incurs, however, 3-way cache-to-cache transfers.
A third option resolves the problem without broadcasting and with
minimal 3-way communications and is referred to as cache-the-cache-
tag (CTCT) [3] location policy.
DPAP adopts CTCT to achieve fast location of L2 cache blocks.

Upon placing a cache block, B, at an L2 bank using DPAP, CTCT
stores two corresponding tracking entries in special location tables
(LT) at the requesting and the static home tiles of B. Subsequently,
when the requesting core requests B and misses at L1, its LT table
is looked up and if a hit is obtained, B is located directly at the L2
bank designated by the matched tracking entry at LT. Furthermore,
if any other sharer core requests B, the SHT of B can be always
approached and its LT table can be looked up to locate B at its
current L2 bank. If no matching entry is found in SHT’s LT table,
an L2 miss is reported and the request is satisfied from the main
memory. CTCT suggests that a tracking entry encompasses the tag
of the related block (typically 22 bits), a bit vector to keep related
tracking entries coherent (16 bits for a 16-tile CMP model), and an
ID that points to the tile that is currently hosting the block (4 bits
for 16 tiles).

4 QUANTITATIVE EVALUATION
4.1 Methodology
We present our results based on detailed full-system simulation
using Virtutech’s Simics 3.0.29 [19]. We use our own CMP cache
modules fully developed in-house. We implement the XY-routing al-
gorithm and accurately model congestion for both coherence and data
messages. A tiled CMP architecture comprised of 16 UltraSPARC-
III Cu processors is simulated running with Solaris 10 OS. Each
processor uses an in-order core model with an issue width of 2 and
a clock frequency of 1.4 GHz. The tiles are organized as a 4×4
grid connected by a 2D mesh NoC. Each tile encompasses a switch,
32KB I/D L1 caches, and a 512KB L2 cache bank. A distributed

TABLE 2
Benchmark programs

NAME INPUT
SPECJbb Java HotSpot (TM) server VM v 1.5, 4 warehouses
Barnes 32K particles (16 threads)
Lu 2048×2048 matrix (16 threads)

Bodytrack 4 frames and 1K particles (16 threads)
Fluidanimate 5 frames and 300K particles (16 threads)
Swaptions 64 swaptions and 20K simulations (16 threads)
MIX1 Hmmer (reference) (16 copies)

MIX2
Barnes, Ocean (514×514 grid), Radix (3M int),

Lu, Milc (ref), Mcf (ref), Bzip2 (ref),
and Hmmer (2 threads/copies each)

MIX3 Barnes, FFT (4M complex numbers), Lu,
and Radix (3M int) (4 threads each)

%�

%&'�

%&(�

%&)�

%&*�

+�

+&'�

�������� �,�	
��� ���-������ ��.���������� ������ �.� ���+� ���'� ���/� �0�&�

�
��
�
��
�1
��

��
'�
�
�
�
��
��
�

���� �����

�� !���2+3� !���2)(3� !���24+'3�

Fig. 3. L2 miss rates of the baseline shared scheme (S) and DPAP
(normalized to S).

MESI-based directory protocol is employed. We adopt an epoch of
20 million instructions (see Section 3) and keep only 0.25 of the
pressure values after every epoch. Besides, we consider a location
table (LT) of 16K entries per tile required by the CTCT location
policy [3]. Each access to an LT table requires 1.35ns estimated using
CACTI v5.3 [5]. To justify the overhead incurred by CTCT we offer
a study in the next subsection where we increase the cache size and
associativity of the baseline shared CMP scheme. Table 1 shows our
configuration’s experimental parameters.
We use a mixture of multithreaded and multiprogramming work-

loads from SPLASH-2 [20], SPEC2006 [18], and PARSEC [1] suites.
Table 2 shows the data sets and other important features of the
simulated workloads. Lastly, the programs are fast forwarded to get
past of their initialization phases. After various warm-up periods, each
SPLASH-2 and PARSEC benchmark is run until the completion of
its main loop, and each of SpecJBB, MIX1, MIX2, and MIX3 is run
for 8 billion user instructions.

4.2 Results
Let us first compare DPAP against the baseline shared scheme (S).
DPAP offers a systematic solution to reduce interference misses in
distributed shared caches. Fig. 3 shows the L2 miss rates of S,
DPAP(1), DPAP(64), and DPAP(512) normalized to S. DPAP(1),
DPAP(64), and DPAP(512) correspond to DPAP running with 1-
group, 64-group, and 512-group granularities. We actually ran DPAP
with all possible group granularities but show only three configura-
tions. Dividing a bank into only 64 groups (i.e., a counter per each
group where each group encompasses 8 sets) provides close benefits
as compared to having 512 groups (i.e., a counter per each set). On
average, DPAP(1), DPAP(64), and DPAP(512) achieve L2 miss rate
reductions of 17.4%, 24.1%, and 27.9% over S, respectively.
We can improve cache performance not only by efficient cache

management but also via increasing cache size and associativity. To
compare against these varieties, we augment each cache set of S with
two more ways (i.e., 64KB of capacity) and double the L2 cache size
(i.e., 1MB instead of 512KB per each L2 bank). We refer to the first

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 9, NO. 1, JANUARY-JUNE 2010 31

"#$�

"#%�

"#5�

"#6�

"#7�

&�

&#&�

�������� �,�	
��� ���������� ��.���������� ������ �.� ����� ����� ��� � �0!"�#
��
�
��
�8
��

��
$�
�.

�

��
%�
�
��

����&�����

�� '���(�9� '���()*9� '���(+��9�

Fig. 4. Execution times of the baseline shared scheme (S), DPAP(1),
DPAP(64), and DPAP(512) (normalized to S).

':,�

':;�

':<�

':=�

':>�

�

:�

�������� ������	
� ��������� ������	������ ���	�
� ��� ����� ����� ����� �� :�!
��
�
��
�"
��

�#
$�
��

�
�	

�%
��

��

��	�&����
�

�� '(� ')*�+� ,��(� ((� ,-�-.;/0�

Fig. 5. Execution times of the baseline shared scheme (S), victim cache
(VC), variable-way set associative cache (V-WAY), dynamic set balancing
cache (DSBC), cooperative caching (CC), and DPAP(64) (all normalized to
S).

and latter configurations as S(2W) and S(D), respectively. We ran
S(2W) and S(D) and found that they accomplish average L2 miss
rate reductions of 4.3% and 11.9% over S, respectively. We conclude
that DPAP is quite attractive since with small design and storage
overhead, it provides average miss rate reduction benefits over S with
twice its cache size (i.e., S(D)).
To that end, Fig. 4 presents the execution times of S, DPAP(1),

DPAP(64), and DPAP(512) normalized to S. DPAP(1), DPAP(64),
and DPAP(512) outperform S by averages of 6.7%, 7%, and 8.3%,
respectively. DPAP can potentially place blocks closer (or further)
to requester cores than S and, accordingly, reduce (or increase) the
average L2 access latency (AAL). For instance, although DPAP(512)
achieves more miss rate reduction than DPAP(64) for SpecJBB,
DPAP(64) outperforms DPAP(512). As another example, Lu exhibits
a performance improvement of 13.5% with only 7.4% L2 miss rate
reduction under DPAP(64). We found that DPAP(64) achieves a 8.8%
AAL improvement over S for Lu.
Finally, we compare DPAP against victim caching (VC) [6], V-

WAY [11], DSBC [13], and CC [2]. Fig. 5 depicts the execution
times of all the compared schemes normalized to S. We consider
only DPAP(64) and set the cooperation throttling probability of CC
to 70%. Besides, we consider a fully associative 16KB VC per tile.
We optimistically assume only a 6 cycle access time to VC after each
miss on an L2 bank. VC extends the associativity of hot sets in the
cache. Nonetheless, when multiple host sets compete for a VC space,
VC is flushed quickly and fails subsequently to reduce capacity and
interference misses appreciably (e.g., Swaptions). For the simulated
benchmarks, DPAP(64) outperforms VC by an average of 0.5%.
The V-WAY cache centers around the use of global replacement

for line refills. However, the global replacement policy of V-WAY is
triggered only if an invalid tag entry is found upon a miss. Otherwise,
V-WAY bypasses the global policy and identifies a tag victim using
a local LRU policy. Besides, DSBC offers a very limited sharing
across local cache sets and allows only a unidirectional retention
between source and destination sets. V-WAY and DSBC reduce the

L2 miss rate of S by averages of 14.7% and 11.3%, respectively.
Lastly, CC spills cache blocks to neighboring L2 banks without
knowing if spilling helps or hurts the miss rate [10]. Hence, CC
might sometimes degrade the system performance (e.g., SpecJBB).
CC is based on the private CMP scheme. CC improves the L2 miss
rate of P by an average of 2.1% but degrades AAL by 2.5%. On
average, DPAP(64) outperforms V-WAY, DSBC, and CC by 1.8%,
2.3%, and 6.9%, respectively.

5 CONCLUSION AND FUTURE WORK
Crossing the billion-transistor per chip barrier has had a profound
influence on the emergence of chip multiprocessors (CMPs) as
a mainstream architecture of choice. This paper investigates the
interference misses problem in distributed shared CMP caches and
proposes dynamic pressure-aware associative placement (DPAP), a
novel strategy that reduces the non-uniform distribution of memory
accesses across aggregate cache sets. Temporal pressure information
(how many lines yield cache hits during a time interval) is collected
at a group (composing of local cache sets) granularity and recorded
in an array at the memory controller. On an incoming cache block,
DPAP inspects the pressure array, identifies the tile with the minimum
pressure, and places the block at that tile.
We set forth two main future directions. First, we will incorporate

more parameters to the placement process. Specifically, we will
target, in addition to the interference misses problem, the NUCA
latency problem. Finally, we will employ more accurate pressure
measurements. For instance, spatial pressure (how many unique lines
yield cache hits during a time interval), rather than only temporal,
can be involved with DPAP.

REFERENCES
[1] C. M. Bienia, S. Kumar, J. P. Singh, and K. Li. “The PARSEC Benchmark Suite:

Characterization and Architectural Implications,” PACT, 2008.
[2] J. Chang and G. S. Sohi. “Cooperative Caching for Chip Multiprocessors,” ISCA,

2006.
[3] M. H. Hammoud, S. Cho, and R. Melhem. “ACM: An Efficient Approach for

Managing Shared Caches in Chip Multiprocessors ,” HiPEAC, 2009.
[4] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. “Reactive NUCA: Near-

Optimal Block Placement and Replication in Distributed Caches,” ISCA, 2009.
[5] HP Labs. “http://www.hpl.hp.com/research/cacti/”
[6] N. P. Jouppi. “ Improving Direct-Mapped Cache Performance by the Addition of

a Small Fully-Associative Cache and Prefetch Buffers,” ISCA, 1990.
[7] C. Kim, D. Burger, and S. W. Keckler. “An Adaptive, Non-Uniform Cache

Structure for Wire-Delay Dominated On-Chip Caches,” ASPLOS, 2002.
[8] P. Kongetira, K. Aingaran, and K. Olukotun. “Niagara: A 32-Way Multithreaded

Sparc Processor,” IEEE MICRO, 2005.
[9] K. Olukotun, L. Hammond, and J. Laudon. “Chip Multiprocessor Architecture:

Techniques to Improve Throughput and Latency ,” Synthesis Lectures on Computer
Arch, 1st Ed., Morgan and Claypool, 2007.

[10] M. K. Qureshi. “Adaptive Spill-Receive for Robust High-Performance Caching in
CMPs,” HPCA, 2009.

[11] M. K. Qureshi, D. Thompson, and Y. N. Patt. “The V-WAY Cache: Demand-Based
Associativity via Global Replacement,” ISCA, 2005.

[12] Research at Intel. “Introducing the 45nm Next-Generation Intel CoreTM Microar-
chitecture,” White Paper.

[13] D. Rolán, B. B. Fraguela, and R. Doallo “Adaptive Line Placement With the Set
Balancing Cache,” MICRO, 2009.

[14] A. Ros, M. E. Acacio, and J. M. Garcı́a “Scalable Directory Organization for
Tiled CMP Architectures,” CDES, 2008.

[15] T. Sherwood, B. Calder, and J. Emer. “Reducing CacheMisses Using Hardware
and Software Page Placement,” ICS, 1999.

[16] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B. Joyner.
“POWER5 System Microarchitecture,” IBM J. Res. & Dev., 49(1):–25, 2005.

[17] S. Srikantaiah, M. Kandemir, and M. J. Irwin. “Adaptive Set Pinning: Managing
Shared Caches in Chip Multiprocessors,” ASPLOS, 2008.

[18] Standard Performance Eval. Corp. http://www.specbench.org.
[19] Virtutech AB. Simics Full System Simulator “http://www.simics.com/”
[20] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. “The SPLASH-2

Programs: Characterization and Methodological Considerations,” ISCA, 1995.
[21] M. Zhang and K. Asanović. “Victim Migration: Dynamically Adapting Between

Private and Shared CMP Caches,” TR-2005-064, MIT, 2005.

32 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 9, NO. 1, JANUARY-JUNE 2010

