
Finding the Best of Both Worlds: Faster and More Robust Top-k
Document Retrieval

Omar Khattab∗
Stanford University

okhattab@stanford.edu

Mohammad Hammoud
Carnegie Mellon University in Qatar

mhhamoud@cmu.edu

Tamer Elsayed
Qatar University

telsayed@qu.edu.qa

ABSTRACT
Many top-k document retrieval strategies have been proposed based
on the WAND and MaxScore heuristics and yet, from recent work,
it is surprisingly difficult to identify the “fastest” strategy. This
becomes even more challenging when considering various retrieval
criteria, like different ranking models and values of k . In this paper,
we conduct the first extensive comparison between ten effective
strategies, many ofwhichwere never compared before to our knowl-
edge, examining their efficiency under five representative ranking
models. Based on a careful analysis of the comparison, we propose
LazyBM, a remarkably simple retrieval strategy that bridges the gap
between the best performingWAND-based andMaxScore-based
approaches. Empirically, LazyBM considerably outperforms all of
the considered strategies across ranking models, values of k , and
index configurations under both mean and tail query latency.

KEYWORDS
Query Evaluation; Dynamic Pruning; Efficiency; Web Search

ACM Reference Format:
Omar Khattab, Mohammad Hammoud, and Tamer Elsayed. 2020. Finding
the Best of Both Worlds: Faster and More Robust Top-k Document Retrieval.
In Proceedings of the 43rd International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR ’20), July 25–30, 2020, Virtual
Event, China. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3397271.3401076

1 INTRODUCTION
Search engines typically employ a multi-stage ranking architecture
to answer user queries [25, 40, 42]. In the first stage, the search
engine retrieves the top-k candidate results based on a standard
ranking model (e.g., BM25 [32]). Subsequently, the top-k candidates
are re-ranked more holistically, using more expensive yet more
precise machine-learned models (e.g., based on neural networks
[18, 29]), before the final list is presented to the searcher.

To respect stringent latency constraints, the first-stage rank-
ing must be completed in just a matter of tens or hundreds of
milliseconds [19]. To this end, numerous retrieval strategies have

∗Work done while the first author was at Carnegie Mellon University in Qatar.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’20, July 25–30, 2020, Virtual Event, China
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8016-4/20/07.
https://doi.org/10.1145/3397271.3401076

been devised to efficiently obtain the top-k results from the in-
verted index without exhaustively scoring all possible candidates
[5, 6, 14, 15, 26, 35, 38]. Among those, safe strategies are ones that
retrieve the exact top-k results as exhaustive search. Most of these
follow a document-at-a-time (DAAT) paradigm and stem from the
classicWAND [5] or the canonicalMaxScore strategies [37, 38].

Despite the renewed attention this area has received over the
last few years, it is surprisingly difficult to identify a “best” retrieval
strategy or, perhaps, even to determine if significant progress has
occurred since the introduction of MaxScore in the 1990s. Ding
and Seul [15] found Block-MaxWAND (BMW) to be decisively bet-
ter than basicWAND, and Chakrabarti et al. [6] found Block-Max
MaxScore (BMM) to greatly outpace vanillaMaxScore. However,
recent work [9] suggests that BMW often provides little or no gain
overWAND and another [14] finds that vanilla BMM is barely com-
petitive withMaxScore. Recently, Mallia et al. [28] foundMaxScore
to outperform state-of-the-art VBMW [26] under many of their
settings. Interestingly, all of the mentioned studies evaluate effi-
ciency using the BM25 ranking model. Considering that related
work illuminates the dependence of pruning efficiency on the rank-
ing model deployed [30], it remains unclear how the majority of
these strategies fare under various models.

We begin by tackling precisely these issues. We conduct an
extensive comparison between ten representative query evaluation
strategies, controlling for indexing-related variables and exploring
the effects of the size of retrieved list k and the ranking model. We
find that the seemingly small differences between existing strategies
manifest themselves clearly in terms of performance, especially as
we consider various retrieval models.

Based on our analysis, we propose LazyBM, a remarkably simple
and efficient top-k retrieval strategy. In contrast to WAND’s pes-
simistic pruning and MaxScore’s eager evaluation, LazyBM adopts
a balanced pruning heuristic that judiciously layers both together
to swiftly and yet aggressively utilize local bounds for pruning.
As we show empirically, this enables LazyBM to considerably and
consistently outperform existing strategies across ranking models,
values of k , and index configurations.

Our contributions in this work are three-fold:
(1) We conduct an extensive comparison that brings together

ten effective dynamic pruning strategies and evaluates them
across five representative retrieval models in a first compre-
hensive kind of study (§3, 4, and 5).

(2) We propose a simple retrieval strategy (§6) that layers the
heuristics of WAND and MaxScore with little overhead. We
release our reference implementations as open source.1

(3) We thoroughly evaluate the proposed strategy (§7). Over
the fastest strategy, it speeds up mean latency by about 1.9×

1https://github.com/okhat/LazyBM

https://doi.org/10.1145/3397271.3401076
https://doi.org/10.1145/3397271.3401076
https://doi.org/10.1145/3397271.3401076
https://github.com/okhat/LazyBM


on average (up to 4.0×) and tail latency by about 2.2× on
average (up to 4.7×).

2 BACKGROUND & RELATEDWORK
Search engines typically employ an inverted index to represent
a document collection. The inverted index enumerates for every
unique term t its postings list, i.e., the list of IDs of documents
containing t . To answer a query Q , the search engine consults the
index to identify the best k matches, as scored by a ranking model
that assigns each documentd a score S(d,Q) estimating its relevance
to Q . In a multi-stage search pipeline, the first-stage ranking model
is generally expressed as a linear combination of per-term score
contributions s(t,d) [9, 26], andmay also involve a term-independent
component s(d), combined as follows:

S(d,Q) = s(d) +
∑

t ∈Q ∩d

wt · s(t,d) (1)

wherewt is the query-dependent weight of t . These top-k matches
can be subsequently re-ranked before the top few are finally pre-
sented to the searcher. Such re-ranking often considers the results
set more holistically, relying on tens or even hundreds of features
and deploying more sophisticated ranking algorithms (e.g., boosted
trees [22] or neural networks [18, 29]). Owing to the high cost of
feature extraction and score computation per document of such
re-rankers, they are only applied on a limited number of promising
candidate results.

Top-k Retrieval Strategies. Given a ranking model, search en-
gines deploy top-k retrieval strategies to process queries on top of
an inverted index. The strategies leverage dynamic pruning heuris-
tics to identify top-k matches for each query without exhaustively
scoring every candidate. The majority of recent safe query evalu-
ation strategies adopt a Document-At-A-Time (DAAT) processing
scheme [37]. Specifically, they process (or skip) every candidate
document before proceeding to consider the next. To identify the
top-k documents, DAAT-based strategies maintain the kth largest
document score seen so far as a threshold θ . Documents whose
scores exceed θ are inserted into a top-k heap, which stores the best
k candidates seen as the query is being processed.

Basic DAAT evaluation exhaustively scores every document that
contains at least one query term. To do so, it repeatedly identifies
the smallest unprocessed document ID, say d , across all query terms,
and accumulates the partial scores of d as indicated by Equation 1.
If d’s score exceeds θ , it is inserted into the heap. To avoid ex-
haustive evaluation, more advanced DAAT-based strategies, which
generally fall into the MaxScore and the WAND families [37], em-
ploy various heuristics for pruning unpromising results at query
time. In §4, we describe WAND and four of its variants BMW [15],
LBMW [35], DBMW [14], and VBMW [26], and conduct the first
extensive comparison between the members of this family. In §5,
we pursue the same for theMaxScore family, including the variants
BMM [14, 35], LBMM [35], IBMM [6], and DBMM [14]. While all
of these strategies are optimized and evaluated with BM25 (com-
bined with PageRank in [35]), our work sets itself apart in that we
consider a large variety of effective ranking models and explicitly
seek heuristics that robustly improve retrieval efficiency.

Evaluating Strategies Across Ranking Models. The litera-
ture includes little work that evaluates pruning heuristics across

ranking models. Petri et al. [30] compare WAND and BMW under
BM25 and LM [43]. Macdonald et al. [23, 24] consider the prob-
lem of computing approximate upper bounds for BM25, LM, and
DLH13 [1] models. They study the effect of their approximations
on the efficiency ofWAND, MaxScore, and BMW.

Accelerating DAAT Pruning Strategies. The literature also
includes work on augmenting DAAT-based strategies with auxil-
iary mechanisms for quickly eliminating unpromising candidate
documents. For example, Daoud et al. [10, 11] study index tiering
strategies, Dimopoulos et al. [13] study techniques for candidate
pre-filtering relying on SIMD vectorization and exploiting query
logs, and Petri et al. [31] consider initial threshold prediction. Yet
other mechanisms include treap-based conditional skips [4] on top
of a provided pruning strategy and efficiently parallelizing pruning
within shared memory [34] or distributed memory [33]. While we
study top-k retrieval strategies in this work, future work will need
to consider how the competitive algorithms in our study fare under
such higher-level optimizations.

Other Query Evaluation Paradigms. The majority of work
in the last decade focuses on DAAT mechanisms, which appears to
be in use by Google [12] and Bing [19]. However, there is also rich
literature on Term-At-A-Time (TAAT) [17, 38] and Score-At-A-Time
(SAAT) [20, 21]. TAAT approaches were popular in classic retrieval
systems at small scale, but the introduction of superior DAAT prun-
ing strategies overshadowed them, especially since TAAT is slower
on larger indexes [17]. SAAT approaches are popular primarily
for their anytime controllable relaxation of effectiveness to meet
deadlines [20]. We focus on DAAT, which is adopted by the most
efficient safe strategies [9].

3 EXPERIMENTAL SETUP
In §4, 5, and 7, we thoroughly evaluate five WAND-based top-k
evaluation strategies, five MaxScore-based strategies, and our pro-
posed strategy, respectively. This section outlines the experimental
setup that guides our subsequent comparisons and analyses.

Ranking Models. We model the computation of document
scores as formulated in Equation 1. To study the robustness of
various query evaluation strategies, we consider five diverse and
competitive ranking models, namely, BM25 [32], Language Model-
ing with Dirichlet Smoothing (LMDir) [43], PL2 [2], SPL [7], and
F2EXP [16]. While BM25 is a probabilistic retrieval model, LMDir,
PL2, SPL, and F2EXP are representatives of the language modeling,
divergence from randomness, information-based, and axiomatic
approaches to retrieval, respectively. Our choice is directly based
on recent work by Yang et al. [41], whose work focused on the
effectiveness of these models in the context of reproducibility.2

More broadly than these models, our goal is to identify pruning
heuristics that can effectively speed up query processing under a
wide variety of realistic settings. These choices allow us to scru-
tinize the robustness of all strategies while exploring a range of
computation costs and score distributions. For instance, exhaus-
tive DAAT evaluation with SPL ranking model is over 8× more
expensive than the cheapest models BM25 and F2EXP (see Figure 1)

2Since not all of these ranking models have recommended default parameters,
the parameters of each model were tuned on the TREC Web Track 2013 queries [8] in
terms of NDCG@20 in the same manner of Yang et al. [41].



due to SPL’s more expensive term–document weight computations.
Moreover, like Petri et al. [30] observed for BM25 and LMDir, we
see that the scores (in particular, the block bounds) for BM25 and
to a lesser extent F2EXP skew heavily towards their maximum
value per term—much more so than PL2, SPL, and LMDir. In effect,
this renders fine-grained pruning more crucial under PL2, SPL, and
LMDir. As we show in §7, these differences in cost and distributions
can be nearly hidden by effective top-k pruning heuristics that
swiftly bypass all but few of the score computations.

Implementation of Query Evaluation Strategies. Our code
is written inC++ and compiled withGCC (g++) v8 using the highest
optimization settings. It brings together two open-source reposito-
ries plus our own implementations in a common evaluation frame-
work. Our implementation ofWAND,MaxScore, BMW, and VBMW
is based on the code by Mallia et al. [26].3 Our implementation of
BMM, DBMW, and DBMM is based on the code by Dimopoulos et
al. [14].4 We implement LBMW, LBMM, and IBMM similarly.

For the postings-oriented Block-Max strategies (i.e., all but the
DocID-oriented DBMW, DBMM, and our proposed LazyBM), we
use blocks of size 64 postings, as in [14, 35]. With this, postings-
oriented strategies require 3.1GiBs to store the term and block
bounds (except for the LMDir model, where they use 4.4GiBs due
to the static document scores). For VBMW, whose variable block
sizes are controlled indirectly by a parameter λ, we apply binary
search over λ to obtain average block size of 64 ± 1 over the terms
of our query set.

For the DocID-oriented strategies, we apply quantization and
on-the-fly-generation under the “variable“ setting recommended by
Dimopoulos et al. [14], starting with blocks that span 128 document
IDs for terms with over 218 postings. Under this configuration,
DocID-oriented strategies require 3.9GiBs across ranking models
to store the upper bounds. This is largely possible due to on-the-fly-
generation, as a result of which they do not need to store bounds
for the vast majority of terms. In §7, we revisit the impact of the
block sizes on LazyBM and the fastest competitor.

Datasets & Evaluation Settings. We conduct our evaluation
using the ClueWeb12-B13 (Category B) Web collection, which con-
sists of 52M English Web pages. We use 1,000 queries sampled
randomly from the TREC Million Query Track (MQT) 2007–2009,5
a query set comprising 60K queries in total. Our sample reflects
the length distribution of the original query set: about 15%, 27%,
24%, 14%, and 7% contain one to five terms, respectively, and the
remaining 13% have six or more terms. We index the collection and
preprocess the queries using the recently-released PISA toolkit [27].
We use the default Porter2 stemmer and remove no stopwords.

Our index is compressed using the popular Elias-Fano (EF) en-
coding [39], using Facebook’s optimized folly implementation,6 and
retaining the default (crawl-based) order of documents. We run our
experiments on a VM with 8 CPUs and 64GB of RAM hosted on a
private research cloud. In addition, we test the impact of re-ordering
the documents using their URLs and of using a VarintG8IU [36]-
encoded index, employing the implementation from the FastPFor7

3https://github.com/rossanoventurini/Variable-BMW
4https://github.com/dimopoulosk/WSDM13
5https://trec.nist.gov/data/million.query.html
6https://github.com/facebook/folly
7https://github.com/lemire/FastPFor

BM25 F2EXP PL2 SPL LMDir
0

500
1000
1500
2000
2500
3000
3500

Q
ue

ry
 L

at
en

cy
 (

m
s)

360 358
758

3042

1371

Mean Latency (Exhaustive Computational Cost)

 Exhaustive DAAT

Figure 1: Cost of exhaustive DAAT across models.

and the ds2i8 libraries. We run these auxiliary experiments on an-
other VM that has 32GB of RAM but is otherwise identical in its
specifications.9 Similar to related work [14, 15, 26, 35], our index—
in particular, the postings lists corresponding to terms in our query
set—is entirely memory-resident.

Evaluation Metrics. We consider mean and tail query latency
(in particular, latency at the 95th percentile). We report results for
top-k retrieval with k = 10 and k = 1000.

4 EVALUATION OFWAND VARIANTS
In this section, we describe the WAND family of pruning strategies
and conduct an extensive comparison between five representative
WAND-based strategies from the literature. Specifically, this section
aims to answer RQ1 stated as follows:
RQ1: How do the WAND-based strategies compare under various
ranking models? In particular, which of their pruning heuristics
consistently enhance efficiency?

4.1 Strategies
To aid our analysis, we briefly describe the strategies below. For
the complete descriptions, refer to the original respective papers.

Weak AND (WAND). In 2003, Broder et al. [5] proposed the
Weak-AND (WAND) strategy. For every term t ,WAND maintains
an upper bound Ut := maxt ∈d s(t,d) over t ’s contributions to doc-
ument scores. As its name indicates, WAND attempts to narrow
the efficiency gap between disjunctive (OR) and conjunctive (AND)
query processing. It employs a pivot selection step to identify the
next document to be evaluated, potentially bypassing many un-
promising documents. During pivot selection, WAND sorts the
query terms in increasing order of each term’s smallest unprocessed
document ID. In this order, WAND computes a prefix sum of the
terms’ upper bounds, identifying the pivot term, that is, the first
term t for which the sum exceeds the top-k threshold θ (§2).WAND
takes t ’s smallest unprocessed document ID as the next candidate d ,
safely skipping any unprocessed documents with smaller IDs. Sub-
sequently, WAND employs a score computation step that computes
S(d,Q) and inserts d into the heap if its score exceeds θ .

Block-Max WAND (BMW). In 2011, Ding & Suel [15] intro-
duced the Block-Max index, which splits the postings of every
term t into equal-sized blocks (e.g., groups of 128 consecutive post-
ings). For each block b, it maintains a block upper bound Ut ,b :=
maxt ∈d∧(t ,d )∈b s(t,d) over the contributions corresponding to post-
ings within b. Intuitively, a block boundUt ,b is often much tighter
than the term boundUt used by WAND, enabling more aggressive

8https://github.com/ot/ds2i
9The results for the VarintG8IU index are very similar to the other configurations.

In the interest of space, we only include them for the best-performing strategies.

https://trec.nist.gov/data/million.query.html


BM25 F2EXP PL2 SPL LMDir
0

50

100

150

200

250

Q
ue

ry
 L

at
en

cy
 (

m
s)

47

84

21
9

32

60 59

91

20
6

39

70

48

65

14
8

13

31 35

58

15
9

20

46 40

74

17
0

67
9

10
49

k=10

 WAND
 BMW
 LBMW
 DBMW
 VBMW

BM25 F2EXP PL2 SPL LMDir
0

50
100
150
200
250
300
350
400

79

16
9

38
3

79

15
1

14
7

22
6

38
0

94

17
8

15
2

21
9

38
4

45

10
0

87

14
3

30
6

60

12
9

10
2

17
3

30
513

01

14
39

k=1000

Figure 2: Mean query latency (in milliseconds) of fiveWAND-based strategies across five ranking models. Latency is reported
for top-k queries for k = 10 and k = 1000.

pruning. On top ofWAND’s pivot selection, BMW skips any doc-
ument d whose block bound falls short of θ . When this occurs, it
bypasses all the documents that share the same block bound as d .

LocalBMW (LBMW). In 2012, Shan et al. [35] proposed LBMW,
which modifies the pivot selection stage of BMW. While BMW’s
pivot selection relies on the (global) term upper bounds (likeWAND),
LBMW exploits the (local) block bounds for this purpose. In select-
ing the pivot term, it computes a local upper bound for every term
t by considering the maximum of all block upper bounds for t up
to the last term’s smallest unprocessed document ID. This enables
LBMW to select fewer candidate documents for further evaluation,
at the cost of more sophisticated pivot selection mechanism. In
Shan et al.’s experiments, this gives LBMW substantial advantage
over BMWwhen the ranking model incorporates a static document
score (e.g., PageRank), that is, when s(d) in Equation 1 is non-zero.
In this section, this applies to the LMDir model.

DocID-orientedBMW (DBMW). In 2013, Dimopoulos et al. [14]
introduced a DocID-oriented Block-Max structure. In BMW and
LBMW, every block consists of a fixed number of consecutive
postings (e.g., 64). In DocID-oriented Block-Max, a postings list
is divided into equal-sized intervals of document IDs, and blocks
correspond to postings in one interval (e.g., document IDs 1024 to
2047 constitute a block, irrespective of how many postings therein).
DBMW is a straightforward adaptation of BMW to DocID-oriented
block boundaries. Notably, it enjoys simplified (and hence faster)
skip computations, since skipping over a block can be calculated
with bit-shifts instead of complex data-dependent computations.

Variable BMW (VBMW). More recently, in 2017, Mallia et
al. [26] suggested another mechanism for selecting block bound-
aries. In contrast to constant-sized postings-based blocks, they pro-
posed a dynamic programming algorithm for automatically selecting
the postings-based size of each individual block so as to minimize
the bound error (i.e., average difference between each block bound
and the corresponding individual scores) while maintaining the
average block sizes unchanged for more effective skipping.

4.2 Results
For each strategy, we run top-10 and top-1000 queries with the five
representative ranking models and report mean query latency in
Figure 2. Mean and tail (in particular, 95th percentile) latency across
the main and auxiliary index settings are also reported in Tables 1
& 2. Starting with the figure, we notice considerable variation in
performance in theWAND family, as we discuss below.

As the figure shows, BMW invariably outperforms WAND. Be-
sides only modest gains under BM25 (only with k = 10), BMW
demonstrates increasingly larger margins as we move to more ex-
pensive models. Refer to Figure 1 for the computational costs of
DAAT across the five models. To explain, the improved ability of
BMW in skipping score computations translates to larger gains
when the cost of such computations is increased. Under the hood,
we also see that BMW’s advantage in skipping (i.e., as measured
by the number of skipped documents and score computations) also
increases as we move from left to right, further widening the latency
gap between WAND and BMW (statistics not shown due to space).

Overall, these results reinforce the notion that BMW has a sub-
stantial edge over WAND, especially when considering robustness
to various ranking models. Nevertheless, under BM25, we con-
firm Crane et al. [9]’s recent observation that BMW’s advantage
is largely confined to short queries (i.e., up to 3–4 terms). This is
clear with k = 1000, where BMW delivers no speedup over WAND.
However, this trend is not evident for the rest of the models.

Shifting our attention to LBMW, we observe its great advantage
over BMW under LMDir with k = 10, which exhibits a non-zero
term-independent component s(d) responsible for penalizing long
documents. By design, the modified pivot selection mechanism
characterizing LBMW optimizes pruning for such models. Besides
LMDir with k = 10, the results show no clear winner among LBMW
and BMW. While LBMW reduces the number of pivot selections,
doing so imposes overheads that offset much of the potential la-
tency gains. Overall, the modified pivot selection of LBMW ap-
pears worthwhile only when the ranking model computations are
sufficiently expensive to warrant the added overheads and with
relatively small k where a larger threshold θ facilitates longer skips.

Next, we examine DBMW and VBMW, both of which essentially
employ BMW’s pruning on top of variable-sized blocks. VBMW
explicitly optimizes its choices of block boundaries to tighten their
corresponding upper bounds. DBMW adopts a simpler rule that
delimits blocks by intervals of document IDs. To our knowledge, the
literature contains no direct comparison between these approaches.
More often than not (i.e., in 8 out of 10 settings), we see thatDBMW
and VBMW are the two fastest strategies. Interestingly, DBMW is
faster in almost all of these cases, being the single fastest strategy
under all but two setting (i.e., LMDir with k = 10, where LBMW
is superior and LMDir with k = 1000, where DBMW and VBMW
show comparable latencies).



WAND BMW LBMW DBMW VBMW

BM25 47 (184) 32 (137) 39 (171) 13 (44) 20 (85)
F2EXP 84 (341) 60 (255) 70 (302) 31 (126) 46 (207)
PL2 219 (920) 59 (252) 48 (207) 35 (141) 40 (178)
SPL 679 (3341) 91 (430) 65 (293) 58 (245) 74 (333)
LMDir 1049 (5821) 206 (1018) 148 (721) 159 (746) 170 (836)

Table 1: Mean and tail top-10 query latency for results of
Figure 2. As in the figure, this experiment uses an EF index
with the default (crawl-based) document order.

WAND BMW LBMW DBMW VBMW

BM25 32 (134) 18 (77) 22 (94) 9 (31) 12 (45)
F2EXP 62 (249) 35 (155) 38 (164) 19 (79) 27 (120)
PL2 183 (810) 38 (166) 25 (108) 24 (96) 27 (121)
SPL 661 (3174) 61 (301) 34 (147) 40 (178) 51 (235)
LMDir 1003 (5530) 141 (687) 83 (412) 106 (491) 116 (534)

Table 2: Mean and tail top-10 query latency after URL-
ordering the documents in the EF index.

Upon digging deeper, we find that the heuristics suggested by
DBMW and VBMW are generally competitive with each other in
terms of pruning ability (i.e., document evaluations and score com-
putations), considerably improving upon BMW. However, DBMW
uniquely reaps the benefits of DocID-oriented blocks, particularly
faster access to the upper bounds and cheaper computation of the
skip limits (i.e., the position delimiting the current block). It is this
low overhead that allows DBMW to invariably surpass VBMW in
terms of query latency.

Tables 1 and 2 contrast mean and tail latency across crawl- and
URL-ordering, respectively. As the tables show, the fastest methods
in mean latency tends to be the fastest with tail latency as well, with
DBMW (and occasionally LBMW) outperforming all other WAND-
based strategies. We observed similar results with the VarintG8IU
index, omitted in the interest of space.

Lessons Learned. In summary, the results above allow us to
glean the following insights:

(1) Block-Max is crucial: Employing a Block-Max structure
contributes substantially to the efficiency and robustness of
WAND-based pruning.

(2) Low-overhead skipping is challenging: The manner in
which the Block-Max metadata is constructed and utilized
matters a great deal. Heuristics that enable low-overhead
skipping are particularly effective for consistently reducing
query latency (e.g., considering LBMW vs. the simpler BMW
and VBMW vs. the simpler DBMW).

(3) Local pivot selection is promising: Maximally utilizing
the Block-Max information for pivot selection, and not only
candidate filtering, is a promising feature that appears insuf-
ficiently tapped by existingWAND variants.

We next consider theMaxScore family. In contrast toWAND’s
rather pessimistic sort-based pivot selection,MaxScore centers on
a computationally cheap heuristic for filtering unpromising docu-
ments, a quality made particularly attractive by lesson (2) above.

5 EVALUATION OFMAXSCORE VARIANTS
In this section, we describe and evaluate five representative mem-
bers of theMaxScore family, examiningRQ2 andRQ3 stated below.
RQ2: How do theMaxScore-based strategies compare under various
ranking models? In particular, which of their pruning heuristics
consistently enhance efficiency?
RQ3: How do these strategies compare against DBMW, the fastest
among the WAND family?

5.1 Strategies
Below, we briefly describe the fiveMaxScore variants that we in-
vestigate in this section.

MaxScore. Described by Turtle and Flood [38] in 1995, the clas-
sicMaxScore precededWAND in utilizing term upper bounds for
pruning. During query evaluation,MaxScore uses θ to designate as
many query terms as possible as non-essential, i.e., terms whose sum
of upper bounds falls short of θ . Evidently, no document containing
only non-essential terms can join the top k . Accordingly,MaxScore
restricts its processing to documents appearing within the postings
lists of the remaining, essential, terms. For each such document d ,
MaxScore terminates its scoring as soon as the partial computed
score and the upper bounds of the unprocessed terms indicate that
d cannot join the top k .

Block-MaxMaxScore (BMM). Described by Shan et al. [35] in
2012, BMM is an enhancement of MaxScore that straightforwardly
integrates the Block-Max metadata for more fine-grained pruning.
The implementation, as described in detail in [14] and [37], evalu-
ates the same documents asMaxScore, but terminates the scoring
of the non-essential terms for a candidate document d as soon as
the block-based upper bound on the unprocessed terms indicates
that d cannot join the top k .10

Local BMM (LBMM). Shan et al. [35] also introduced the vari-
ant LBMM that more aggressively utilizes the Block-Max metadata.
On top of BMM, before evaluating a document d , LBMM first esti-
mates a local upper bound on the score of d by summing the terms’
block bounds. A document d is only evaluated if its local upper
bound exceeds the threshold θ—if this bound falls short of θ , it is
safe to skip all the documents delimited by the same bound.

Interval-based BMM (IBMM). The first Block-Max variant
of MaxScore was proposed by Chakrabarti et al. [6] in 2011. In
contrast to the other strategies, IBMM splits the processing into
two major stages. In the interval generation stage, this postings-
oriented partitions the domain of document IDs into consecutive
intervals using the boundaries of its blocks. As a result, it delimits
the documents in each interval with a tight block-based upper
bound. In the subsequent interval pruning stage, it iterates over
the intervals whose upper bounds exceed θ , and processes each
interval in a manner similar to MaxScore but replacing the term
bounds with block bounds.

DocID-basedBMM (DBMM).Themost recent Block-Max vari-
ant ofMaxScore was proposed by Dimopoulos et al. [14] in 2013.
Similar to DBMW from §4, DBMW relies on DocID-based blocks
for pruning. Similar to BMM and LBMM, DBMM selects its pivot

10To be consistent with the literature, we reserve the term BMM for this basic
variant of MaxScore. For disambiguation, we refer to Chakrabarti et al. [6]’s earlier
variant as Interval-based Block-MaxMaxScore (IBMM).



BM25 F2EXP PL2 SPL LMDir
0

50

100

150

200

250

Q
ue

ry
 L

at
en

cy
 (

m
s)

31

53

18
7

29

58

13
9

83

98 10
1

13
1 14

6

14

35 39

12
0

13

31 35

58

15
9

50
6

67
9

35
3

65
6

37
1

k=10

 MaxScore
 LBMM
 IBMM
 DBMM
 DBMW

BM25 F2EXP PL2 SPL LMDir
0

50
100
150
200
250
300
350
400

52

95

30
5

69

12
2

30
2

12
0 15

1 19
2

30
6

28
6

53

10
8

19
5

45

10
0

87

14
3

30
6

90
5

11
2081
8

12
0555
4

94
9

k=1000

Figure 3: Mean query latency (in milliseconds) of four MaxScore-based strategies (in addition to DBMW from §4) across five
ranking models. Latency is reported for top-k queries for k = 10 and k = 1000. BMM never outperforms MaxScore by more
than 1.1×, hence, its results are not shown to maintain clarity of the figure.

documents based on the (global) term partitioning of MaxScore.
Before evaluating a pivot document d , DBMM applies a series of
checks that filter out d if its block-based upper bound is below θ . If a
document d is filtered out because the sum of the block bounds falls
short of θ , DBMM applies an optimization, Next-Live-Block (NLB),
that bypasses over the current dead DocID-oriented block and any
subsequent blocks whose DocID-oriented upper bound is below
θ . While similar to IBMM’s skipping of unpromising intervals,
the NLB optimization of DBMM does not require a preprocessing
step for interval generation, owing to the natural alignment of the
DocID-oriented blocks.

5.2 Results
As we did for theWAND-based strategies, we report mean query
latency for running top-10 and top-1000 queries under the five
ranking models for each strategy. The results are shown in Figure 3;
further, mean and tail latency across two settings are in Tables 3 &
4. For reference, the figure and tables include DBMW, the fastest
WAND-based strategy from §4. In our results, BMM’s speedup
overMaxScore is negligible on average (with maximum speedup of
1.1×), thus we omit BMM from Figure 3 for clarity. Our findings for
BMM generalize the BM25-based results of Mallia et al. [28] and
Dimopoulos et al. [14]. To elucidate, BMM employsMaxScore’s par-
titioning of terms unmodified, selecting as many pivot documents
as MaxScore does. Although BMM can terminate the scoring of an
individual document earlier (i.e., by relying on the block bounds),
most queries contain just a few terms. This leaves little room for
gains due to early-termination while still burdening BMM with
additional overheads for its filtering logic.

In fact, if we restrict our attention to the BM25 model, we see
that LBMM and IBMM show little or no gains overMaxScore (and,
in fact, IBMM is significantly slower). For BM25, the simple logic
ofMaxScore lends itself naturally to low query latency, achieving
results comparable with BMW and LBMW from §4. In case of
IBMM, the strategy’s interval generation stage adds significant
overhead, while having little utility for BM25, whose computations
are fairly cheap. This bottleneck was observed under BM25 by
Dimopoulos et al. [14]. Similarly, LBMM contributes no gain under
BM25, since BM25 scores are term-bounded and the block bounds
are not much tighter than the term bounds in practice [30]. Notably,
DBMM delivers a sizable speedup (i.e., over 2×) under BM25 with
k = 10, due to its effective DocID-oriented NLB optimization. This

gain disappears with k = 1000, however, similarly to the other
MaxScore variants.

Besides BM25 (and F2EXP, which displays similar results), Fig-
ure 3 demonstrates large gains that LBMM, IBMM, andDBMM con-
sistently deliver over the MaxScore baseline. Interestingly, IBMM
and DBMM, which both leverage interval-based pruning, deliver
noticeable gains across various ranking models. For k = 10, the
gains of DBMM are clearly superior under PL2 and SPL, but not
LMDir. For k = 1000, the gap greatly narrows between IBMM and
DBMM. In fact, the pattern even reverses under SPL and LMDir.
Digging deeper to explain this, we see that IBMM and DBMM
differ in a crucial way. When DBMM scores a specific interval, it
uses MaxScore-based (global) term partitioning, which is based on
the term upper bounds. In contrast, IBMM pays the added cost of
per-interval partitioning, which pays off when larger savings are
possible (i.e., with k = 1000) or when per-interval static scores can
affect the essential terms (i.e., under LMDir).

We now shift our attention to DBMW, the fastest strategy from
§4. Despite the reliance of DBMM and DBMW on the same Block-
Max metadata, DBMW is clearly superior in efficiency and ro-
bustness. To explain, DBMM’s disadvantage can be thought of
as a product of insufficiently aggressive pruning and relatively
high overhead per pivot document. More precisely, we identify
the following three deficiencies in DBMM that prevent it from
realizing the potential of low-overheadMaxScore-based pruning
hypothesized in §4. First, besides dead blocks bypassed by its NLB
optimization, DBMM uses MaxScore’s term partitioning for pivot
selection. Second, whileDBMM uses block-based bounds to rule out
unpromising pivots, it does so at the granularity of a document, bear-
ing the cost of a series of filters for every pivot document selected.
That threshold θ is updated relatively infrequently renders these
repeated per-document filters rather redundant across documents
sharing the same block bounds. Lastly, while avoiding WAND’s
pessimistic pruning, DBMM suffers from MaxScore’s overly ea-
ger document evaluation. In particular, DBMM’s pre-evaluation
filters are postings-agnostic. That is, if a document d is marked for
evaluation, DBMM computes and accumulates individual term con-
tributions s(t,d) concurrently with its movement of the pointers in
the postings of query terms. As a result, within any DocID-oriented
block where the sum of block bounds exceeds θ , DBMM must com-
pute at least one score per document containing an essential term
before it can possibly rule out that candidate. Empirically, the first



MaxScore LBMM IBMM DBMM DBMW

BM25 31 (89) 29 (112) 83 (359) 14 (45) 13 (44)
F2EXP 53 (145) 58 (191) 98 (403) 35 (151) 31 (126)
PL2 187 (723) 139 (566) 101 (437) 39 (167) 35 (141)
SPL 506 (2156) 353 (1611) 131 (566) 120 (539) 58 (245)
LMDir 679 (3453) 656 (3482) 146 (627) 371 (2200) 159 (746)

Table 3: Mean and tail top-10 query latency for results of
Figure 3. As in the figure, this experiment uses an EF index
with the default document order.

deficiency manifests itself in terms of increased number of pivot
selections relative to DBMW, the second in terms of increased cost
per pivot document, and the third in terms of increased number of
score computations.

In addition to the main results in Figure 3, the Tables 3 and 4
report mean and tail latency for the MaxScore family and DBMW
under crawl and URL ordering, respectively. Similar to the WAND
family, the results show that the fastest method in terms of mean
latency is often the fastest (or very close to the fastest) at the tail.
Beyond this, the tables strongly confirm DBMW’s rather consistent
advantage over the best methods in theMaxScore family.

Lessons Learned. The results in this section confirm the im-
portance of block-based pruning and further highlight the difficulty
of their effective use. Additionally, we observe the following:

(1) Aggressive skipping is challenging: Owing to the eager
nature of MaxScore and its more coarse-grained pruning
paradigm, it appears more challenging to effectively use
Block-Max withinMaxScore-based strategies. For instance,
while BMW and LBMW considerably outperform WAND in
§4, the corresponding improvements of BMM and LBMM
(and even IBMM) over canonical MaxScore fade in compari-
son. While DBMM demonstrates good latency results, it is
not always competitive with DBMW.

(2) Local DocID-based pivot selection is promising: The re-
sults emphasize a tradeoff between DBMM’s low-overhead
pruning and IBMM’s more aggressive interval processing.
While the former excels under “cheap” models, the latter
fares better in more expensive scenarios. It is thus natural
to ask if we could capitalize on DBMM’s mutually aligned
blocks to bridge this gap.

Overall, our comparison of ten query evaluation strategies shows
that DBMW is the current state-of-the-art strategy, with remark-
able efficiency and robustness. Still, the findings of this section leave
something to desire. Despite the importance of low-overhead prun-
ing observed in §4, none of the five MaxScore variants considered
in this section delivers on the expectation that computationally-
simpler MaxScore equipped with Block-Max metadata should out-
perform the “pessimistic”WAND-based pruning. Next, we describe
LazyBM, a top-k retrieval strategy that precisely fulfills this promise.

6 BEST OF BOTHWORLDS: LAZYBM
We now describe LazyBM, a top-k retrieval strategy that leverages
the lessons learned in §4 and 5. In contrast to MaxScore’s eager
evaluation and WAND’s pessimistic pruning, our proposed scheme
is lazy: it does as little work as possible to find promising pivot

MaxScore LBMM IBMM DBMM DBMW

BM25 27 (90) 20 (82) 70 (328) 11 (30) 9 (31)
F2EXP 46 (143) 49 (195) 84 (363) 22 (81) 19 (79)
PL2 191 (750) 118 (523) 81 (360) 20 (68) 24 (96)
SPL 514 (2236) 303 (1310) 98 (419) 52 (192) 40 (178)
LMDir 678 (3325) 608 (3347) 114 (508) 203 (1070) 106 (491)

Table 4: Mean and tail top-10 query latency after URL-
ordering the documents in the EF index.

Algorithm 1 Per-Block LazyBM Processing
1: Input: Query Terms Q (ordered by decreasing df ), Current DocID-

based Block b , Block Bounds U , Heap topK
2: Output: Heap topK
3: P ← computePrefixSum(U )
4: Topt ← {t : P [t ] ≤ θ }; Tess ← Q −Topt
5: while d ← Tess .nextDocWithinBlock(b) :
6: ub ← s(d )
7: for t ∈ Tess : if t .docID() == d : ub +=U [t ]
8: for t ∈ Topt :
9: if ub > θ or ub + P [t ] ≤ θ : break
10: if t .docID() < d : t .skipTo(d )
11: if t .docID() == d : ub += t .blockUB()
12: if ub > θ :
13: score ← s(d )
14: for t ∈ Tess : if t .docID() == d : score += s(t , d )
15: for t ∈ Topt :
16: if ub + P [t ] ≤ θ : break
17: if t .docID() < d : t .skipTo(d )
18: if t .docID() == d : score += s(t , d )
19: if score > θ : topK .insert(d , score)

document (i.e., like MaxScore), yet once it identifies a pivot it tries
to avoid evaluating its score if at all possible (i.e., likeWAND).

Among the strategies described so far, LazyBM is most similar
to DBMM. In particular, like DBMM, LazyBM uses DocID-oriented
Block-Max and adopts a MaxScore-based control flow. For this
reason, it is useful to describe LazyBM’s pruning as a series of
three transformations that address the shortcomings of DBMM
highlighted in §5. These transformations aim to reduce the overhead
of pruning, specifically via lowering the cost of processing a selected
pivot and an evaluated document, while simultaneously increasing
the degree of skipping, specifically by exploiting the alignment of
the DocID-oriented bounds.

Amortized Pivot Filtering: To reduce the computational cost
per selected pivot, LazyBM amortizes the computation of the sum of
block-based upper bounds at the granularity of a DocID-oriented
block. Upon crossing a block boundary, LazyBM computes a prefix
sum of the term’s block bounds (with the terms sorted in decreasing
order of their document frequencies (df s)). Naturally, a block is
bypassed if the total bound falls short of θ . Otherwise, LazyBM
uses this prefix sum for lookup-based pruning when evaluating
individual documents. §7 refers to this simple optimization over
DBMM as LazyBM-A.

Balanced Pruning: To minimize the cost of score computa-
tions per evaluated document, LazyBM adopts an optimization that
enables it to swiftly yet aggressively utilize the block bounds for



pruning. In particular, LazyBM layers WAND’s relatively expen-
sive pruning heuristic on top of MaxScore’s cheaper but less strict
heuristic. That is, once LazyBM selects a pivot document d based
from the union of essential terms, it computes aWAND-inspired
postings-informed bound on d’s score prior to computing any term
contributions s(t,d) (also prior to decompressing any posting’s term
frequency). Document d is evaluated only if this relatively tight
upper bound exceeds θ . We refer to LazyBM with both amortized
pivot selection and balanced pruning as LazyBM-AB.

Local Term Partitioning: To cut down on the number of pivot
selections, LazyBM local-partitions the terms into essential and
non-essential with respect to each individual block. While IBMM
incorporates a similar optimization by runningMaxScore on top
of its runtime-generated interval metadata, this requires an ex-
pensive preprocessing step that offsets most of the potential gains
as observed in §5. In contrast, LazyBM capitalizes on the natural
alignment of the DocID-oriented blocks within DBMM to cheaply
incorporate local MaxScore-based pruning. §7 refers to the algo-
rithm implementing all three mentioned optimizations as LazyBM.

Algorithm 1 summarizes LazyBM’s processing of an individual
DocID-oriented block. For each block b, LazyBM is provided U ,
the block bounds for the query terms Q . The algorithm first lo-
cally partitions the terms into essential and optional with respect
to the current block (Lines 3 and 4). Through the essential terms,
it repeatedly identifies the next pivot document d within b apply-
ing theMaxScore locally to b (Line 5). For each pivot document d ,
LazyBM computes a postings-informed upper bound (Lines 6–11),
the tightest bound that can be obtained on d short of computing
term contributions. This filter is terminated once the outcome of
comparing the bound against θ is known (Line 9). If d passes both
theMaxScore-based (Line 5) andWAND-based filters (Line 12), it
proceeds to the main computation stage (Lines 13–18). This com-
putes d’s score precisely as in BMM, and if d’s score exceeds θ , it
is inserted to the top-k heap (Line 19).

7 EVALUATION OF LAZYBM
In this section, we experimentally evaluate LazyBM in detail against
DBMW, the best performing strategy from §4 and 5.11 In particular,
we address the following research question:
RQ4: How does LazyBM compare against state-of-the-art DBMW
across settings? If there are gains, what is their source?

Figures 4 compares LazyBM againstDBMW in terms ofmean and
tail query latency. At the tail, we show latency at the 95th percentile
of queries; we observe a similar pattern at each of the 90th and
99th percentiles. The figure demonstrates LazyBM’s superiority to
DBMW’s already-remarkable performance across both mean and
tail query latency with k = 10 and k = 1000. LazyBM’s advantage
can be seen across ranking models, with the gap widening under
the more expensive ones. Relative to DBMW, LazyBM delivers up
to 1.6×, 1.3×, 3.5×, 4.4×, and 4.7× speedup under BM25, F2EXP,
PL2, SPL, and LMDir, respectively. On average, LazyBM reduces
mean and tail latency by 1.9× and 2.2×, respectively.

Taking a closer look, we find that, while both strategies evaluate
essentially the same number of documents and apply a comparable

11In our experiments, we find DBMW to retain its advantage as the fastest strategy
across mean latency, tail latency, and latency across query lengths.

BM25

F2
EX

P
PL

2
SP

L
LM

Dir
0

20
40
60
80

100
120
140
160

Q
ue

ry
 L

at
en

cy
 (

m
s)

13
31 35

58

159

9
24

13 17

40

Mean Latency

 DBMW
 LazyBM

BM25

F2
EX

P
PL

2
SP

L
LM

Dir
0

100
200
300
400
500
600
700
800

44
126 141

245

746

28
97

40 56

160

Tail Latency
k=10

BM25

F2
EX

P
PL

2
SP

L
LM

Dir
0

50
100
150
200
250
300
350

Q
ue

ry
 L

at
en

cy
 (

m
s)

45

100 87

143

306

34

84
56

85

145

Mean Latency

 DBMW
 LazyBM

BM25

F2
EX

P
PL

2
SP

L
LM

Dir
0

200
400
600
800

1000
1200
1400
1600

181

434
339

641

1428

115

332
206

352

585

Tail Latency
k=1000

Figure 4: Mean and tail query latency for k = 10 (top) and
k = 1000 (bottom), comparingLazyBM againstDBMW across
five ranking models.

number of score computations on average, LazyBM consistently
excels in reducing the number of pivot documents selected and the
number of pointer movements. That is, while LazyBM and DBMW
both reap the benefit of aWAND-based reduction in the number
of documents evaluated, LazyBM sets itself apart by additionally
exploitingMaxScore-based pruning to quickly identify those doc-
uments that are sufficiently promising to apply the (rather more
expensive) WAND-based filter.

To better understand how the speedup is achieved, Figure 6
demonstrates the breakdown of gains in latency relative to DBMM
as we apply the three main optimizations of LazyBM. For reference,
the figure also shows the latency of DBMW. The latencies reported
are averaged across all five ranking models and both values of k .12

To begin with, we can see that LazyBM-A outperforms DBMM
by about 1.3× in terms of mean and tail latency. While LazyBM-A
cost reduction per selected pivot boosts efficiency across all ranking
models (detailed results not shown), we see that it contributes most
of the gains over DBMW under the cheap BM25 and F2EXP models
and only limited gains under PL2, SPL, and LMDir. Since PL2, SPL,
and LMDir exhibit expensive s(t,d) computations, LazyBM-AB’s
balanced pruning, particularly its WAND-based filter, considerably
reduces their query latency. As a result, LazyBM-AB results in
2.2× and 2.5× average speedup against DBMM in terms of mean
and tail query latency, respectively, and begins to outperform the
state-of-the-art strategy DBMW. When incorporating all three op-
timizations together, LazyBM gains further advantage over DBMM
and DBMW due to its low-overhead local utilization of the block

12To aggregate the (mean or tail) query latencies across models, we compute the
geometric mean of the individual latencies (similar to the TPC-D benchmark [3]).
Intuitively, this assigns equal weight to all settings and avoids skewing the averages
towards the more “expensive” settings (e.g., LMDir with k = 1000), wherein LazyBM’s
advantage is highest.



8
10
12
14
16
18
20

M
ea

n 
La

te
nc

y 
(m

s) BM25

20
25
30
35
40
45
50

F2EXP

10
15
20
25
30
35
40
45
50

PL2

10
20
30
40
50
60
70
80

SPL

20
40
60
80

100
120
140
160
180
200

LMDir

5 6 7 8 9
20
30
40
50
60
70
80

Ta
il 

La
te

nc
y

5 6 7 8 9
60
80

100
120
140
160
180
200
220

5 6 7 8 9
20
40
60
80

100
120
140
160
180
200

5 6 7 8 9
0

50
100
150
200
250
300
350

5 6 7 8 9
100
200
300
400
500
600
700
800
900

1000

LazyBM DBMW

Figure 5: Mean (top) and tail (bottom) query latency of LazyBM and DBMW as a function of the DocID-oriented block size
with k = 10. Results with k = 1000 demonstrate a similar pattern.

DBMM
LazyBM-A

LazyBM-ABLazyBM DBMW
0

20

40

60

80

100

120

Q
ue

ry
 L

at
en

cy
 (

m
s)

118

93

53

36

68

Mean Latency

DBMM
LazyBM-A

LazyBM-ABLazyBM DBMW
0

100

200

300

400

500

600
514

393

210

132

284

Tail Latency

Figure 6:Mean (left) and tail (right) query latency ofLazyBM
broken down by optimization against DBMM and DBMW.

bounds, which allows it to better leverage the MaxScore heuristic,
and accordingly reduce the number of pivot selections substantially.

1 2 3 4 5 6 7 8
Query Length

0

100

200

300

400

500

M
ea

n 
La

te
nc

y 
(m

s)

k=10

DBMM
LazyBM-A
DBMW
LazyBM-AB
LazyBM

1 2 3 4 5 6 7 8
Query Length

0

200

400

600

800

1000

1200

1400
k=1000

Figure 7: Mean query latency as a function of query
length for DBMM, LazyBM and its variants LazyBM-A and
LazyBM-AB, and DBMW.

Mean query latency is also shown broken down by query length
in Figure 7, geometrically-averaged across models. While LazyBM
and DBMW are competitive with each other for short queries (i.e.,
those of length at most three terms), LazyBM increasingly picks up
for longer queries.

Subsequently, to verify that LazyBM’s advantage is robust across
variousmemory budgets, Figure 5 compares LazyBM againstDBMW
across a wide spectrum of block sizes. At one end, with block size 25,
both strategies require nearly 16GiBs for the Block-Max metadata.
At the other end with 29, both require only 1GiB. As the figure
shows, LazyBM demonstrates consistent gains across the entire
range in terms of both mean and tail latency.

Lastly, Table 5 confirms LazyBM’s robust advantage overDBMW
across our auxiliary experiments’ index settings.

VarintG8IU Index URL-ordered Index
DBMW LazyBM DBMW LazyBM

BM25 12 (38) 9 (26) 9 (31) 7 (20)
F2EXP 30 (129) 22 (95) 19 (79) 13 (47)
PL2 31 (124) 12 (38) 24 (96) 9 (24)
SPL 53 (230) 17 (56) 40 (178) 18 (61)
LMDir 147 (691) 38 (156) 106 (491) 27 (109)

Table 5: Mean and tail top-10 latency upon switching to
VarintG8IU index encoding and to URL re-ordering, respec-
tively. The results are consistent with Figure 4.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we investigated strategies for efficient top-k document
retrieval. We focused on the robustness of said strategies, particu-
larly how they perform under representative ranking models and
values of k . We conducted an extensive empirical comparison be-
tween ten strategies, many of which were never compared before
to our knowledge. Based on a careful analysis of the results, we
proposed LazyBM, a remarkably simple query evaluation strategy
that bridges the gap between the best performing WAND-based
and MaxScore-based approaches. Experimentally, LazyBM greatly
and consistently outperforms all of the considered strategies across
ranking models and values of k in terms of both mean and tail
query latency. Moreover, its gains are robust to memory budget,
query length, and index configurations.

Future work will examine how LazyBM can contribute to end-to-
end effective and efficient retrieval, specifically by expanding the set
of ranking models that can be employed for top-k retrieval. While
we used a representative Web collection to run our experiments
(i.e., the most recent ClueWeb collection), future work will also
consider how top-k retrieval strategies behave on top of different
collection types (e.g., microblogs or news).

ACKNOWLEDGMENTS
We thank Yousuf Ahmad, Reem Suwaileh, and Mucahid Kutlu for
valuable discussions and insights. This publication was made possi-
ble by NPRP grant# NPRP 7-1330-2-483 from the Qatar National
Research Fund (a member of Qatar Foundation). The statements
made herein are solely the responsibility of the authors.



REFERENCES
[1] Giambattista Amati. 2006. Frequentist and bayesian approach to information

retrieval. In European Conference on Information Retrieval. Springer, 13–24.
[2] Gianni Amati and Cornelis Joost Van Rijsbergen. 2002. Probabilistic models of

information retrieval based on measuring the divergence from randomness. TOIS
(2002).

[3] Ramesh Bhashyam. 1996. TPC-D—the challenges, issues and results. ACM
SIGMOD Record 25, 4 (1996), 89–93.

[4] Edward Bortnikov, David Carmel, and Guy Golan-Gueta. 2017. Top-k query pro-
cessing with conditional skips. In Proceedings of the 26th International Conference
on World Wide Web Companion. International World Wide Web Conferences
Steering Committee, 653–661.

[5] Andrei Z Broder, David Carmel, Michael Herscovici, Aya Soffer, and Jason Zien.
2003. Efficient query evaluation using a two-level retrieval process. In CIKM.

[6] Kaushik Chakrabarti, Surajit Chaudhuri, and Venkatesh Ganti. 2011. Interval-
based pruning for top-k processing over compressed lists. In ICDE.

[7] Stéphane Clinchant and Eric Gaussier. 2010. Information-based models for ad
hoc IR. In SIGIR.

[8] Kevyn Collins-Thompson, Paul N. Bennett, Fernando Diaz, Charlie Clarke, and
Ellen M. Voorhees. 2014. TREC 2013 Web Track Overview. In TREC.

[9] Matt Crane, J Shane Culpepper, Jimmy Lin, Joel Mackenzie, and Andrew Trot-
man. 2017. A comparison of Document-at-a-Time and Score-at-a-Time query
evaluation. In WSDM.

[10] Caio Moura Daoud, Edleno Silva de Moura, Andre Carvalho, Altigran Soares da
Silva, David Fernandes, and Cristian Rossi. 2016. Fast top-k preserving query
processing using two-tier indexes. Information Processing & Management 52, 5
(2016), 855–872.

[11] Caio Moura Daoud, Edleno Silva de Moura, David Fernandes, Altigran Soares da
Silva, Cristian Rossi, and Andre Carvalho. 2017. Waves: a fast multi-tier top-k
query processing algorithm. Information Retrieval Journal 20, 3 (2017), 292–316.

[12] Jeffrey Dean. 2009. Challenges in building large-scale information retrieval
systems: invited talk. In WSDM. 1–1.

[13] Constantinos Dimopoulos, Sergey Nepomnyachiy, and Torsten Suel. 2013. A
candidate filtering mechanism for fast top-k query processing on modern cpus.
In Proceedings of the 36th international ACM SIGIR conference on Research and
development in information retrieval. ACM, 723–732.

[14] Constantinos Dimopoulos, Sergey Nepomnyachiy, and Torsten Suel. 2013. Opti-
mizing top-k document retrieval strategies for block-max indexes. In WSDM.

[15] Shuai Ding and Torsten Suel. 2011. Faster top-k document retrieval using block-
max indexes. In SIGIR.

[16] Hui Fang and ChengXiang Zhai. 2005. An exploration of axiomatic approaches to
information retrieval. In Proceedings of the 28th annual international ACM SIGIR
conference on Research and development in information retrieval. ACM, 480–487.

[17] Marcus Fontoura, Vanja Josifovski, Jinhui Liu, Srihari Venkatesan, Xiangfei Zhu,
and Jason Zien. 2011. Evaluation strategies for top-k queries over memory-
resident inverted indexes. VLDB (2011).

[18] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce Croft. 2016. A deep relevance
matching model for ad-hoc retrieval. In Proceedings of the 25th ACM International
on Conference on Information and Knowledge Management. ACM, 55–64.

[19] Myeongjae Jeon, Saehoon Kim, Seung-won Hwang, Yuxiong He, Sameh Elnikety,
Alan L Cox, and Scott Rixner. 2014. Predictive parallelization: Taming tail latencies
in web search. In Proceedings of the 37th international ACM SIGIR conference on
Research & development in information retrieval. ACM, 253–262.

[20] Jimmy Lin and Andrew Trotman. 2015. Anytime ranking for impact-ordered
indexes. In Proceedings of the 2015 International Conference on The Theory of
Information Retrieval. ACM, 301–304.

[21] Jimmy Lin and Andrew Trotman. 2017. The role of index compression in score-
at-a-time query evaluation. Information Retrieval Journal 20, 3 (2017), 199–220.

[22] Claudio Lucchese, Franco Maria Nardini, Raffaele Perego, Salvatore Orlando, and
Salvatore Trani. 2018. Selective Gradient Boosting for Effective Learning to Rank.
In The 41st International ACM SIGIR Conference on Research & Development in
Information Retrieval. ACM, 155–164.

[23] Craig Macdonald, Iadh Ounis, and Nicola Tonellotto. 2011. Upper-bound approx-
imations for dynamic pruning. ACM Transactions on Information Systems (TOIS)
29, 4 (2011), 17.

[24] Craig Macdonald and Nicola Tonellotto. 2017. Upper Bound Approximation for
BlockMaxWand. In Proceedings of the ACM SIGIR International Conference on
Theory of Information Retrieval. ACM, 273–276.

[25] Craig Macdonald, Nicola Tonellotto, and Iadh Ounis. 2017. Efficient & effective
selective query rewriting with efficiency predictions. In Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM, 495–504.

[26] AntonioMallia, Giuseppe Ottaviano, Elia Porciani, Nicola Tonellotto, and Rossano
Venturini. 2017. Faster blockmax wand with variable-sized blocks. In SIGIR.

[27] Antonio Mallia, Michał Siedlaczek, Joel Mackenzie, and Torsten Suel. 2019. PISA:
Performant Indexes and Search for Academia. (2019).

[28] Antonio Mallia, Michał Siedlaczek, and Torsten Suel. 2019. An experimental
study of index compression and DAAT query processing methods. In European
Conference on Information Retrieval. Springer, 353–368.

[29] Eric Nalisnick, Bhaskar Mitra, Nick Craswell, and Rich Caruana. 2016. Improv-
ing document ranking with dual word embeddings. In Proceedings of the 25th
International Conference Companion on World Wide Web. International World
Wide Web Conferences Steering Committee, 83–84.

[30] Matthias Petri, J Shane Culpepper, and Alistair Moffat. 2013. Exploring the
magic of WAND. In Proceedings of the 18th Australasian Document Computing
Symposium. ACM, 58–65.

[31] Matthias Petri, Alistair Moffat, Joel Mackenzie, J Shane Culpepper, and Daniel
Beck. 2019. Accelerated Query Processing Via Similarity Score Prediction. In
Proceedings of the 42nd International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM, 485–494.

[32] Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-Beaulieu,
Mike Gatford, et al. 1995. Okapi at TREC-3. NIST Special Publication (1995).

[33] Oscar Rojas, Veronica Gil-Costa, and Mauricio Marin. 2013. Distributing effi-
ciently the Block-Max WAND algorithm. Procedia Computer Science (2013).

[34] Oscar Rojas, Veronica Gil-Costa, and Mauricio Marin. 2013. Efficient paral-
lel block-max WAND algorithm. In European Conference on Parallel Processing.
Springer, 394–405.

[35] Dongdong Shan, Shuai Ding, Jing He, Hongfei Yan, and Xiaoming Li. 2012.
Optimized top-k processing with global page scores on block-max indexes. In
Proceedings of the fifth ACM international conference on Web search and data
mining. ACM, 423–432.

[36] Alexander A Stepanov, Anil R Gangolli, Daniel E Rose, Ryan J Ernst, and
Paramjit S Oberoi. 2011. SIMD-based decoding of posting lists. In Proceedings of
the 20th ACM international conference on Information and knowledge management.
317–326.

[37] Nicola Tonellotto, Craig Macdonald, Iadh Ounis, et al. 2018. Efficient Query
Processing for Scalable Web Search. Foundations and Trends® in Information
Retrieval (2018).

[38] Howard Turtle and James Flood. 1995. Query evaluation: strategies and optimiza-
tions. IP & M (1995).

[39] Sebastiano Vigna. 2013. Quasi-succinct Indices. In WSDM.
[40] Lidan Wang, Jimmy Lin, and Donald Metzler. 2011. A cascade ranking model for

efficient ranked retrieval. In SIGIR.
[41] Peilin Yang, Hui Fang, and Jimmy Lin. 2018. Anserini: Reproducible ranking

baselines using Lucene. JDIQ (2018).
[42] Dawei Yin, Yuening Hu, Jiliang Tang, Tim Daly, Mianwei Zhou, Hua Ouyang,

Jianhui Chen, Changsung Kang, Hongbo Deng, Chikashi Nobata, et al. 2016.
Ranking relevance in yahoo search. In SIGKDD.

[43] Chengxiang Zhai and John Lafferty. 2004. A study of smoothing methods for
language models applied to information retrieval. TOIS (2004).


	Abstract
	1 Introduction
	2 Background & Related Work
	3 Experimental Setup
	4 Evaluation of WAND Variants
	4.1 Strategies
	4.2 Results

	5 Evaluation of MaxScore Variants
	5.1 Strategies
	5.2 Results

	6 Best of Both Worlds: LazyBM
	7 Evaluation of LazyBM
	8 Conclusions and Future Work
	References

