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Chapter 1

The effectiveness of cloud programs hinges on the manner in which they are designed, imple-

mented and executed. Designing and implementing programs for the cloud requires several con-

siderations. First, they involve specifying the underlying programming model, whether message-

passing or shared-memory. Second, they entail developing synchronous or asynchronous compu-

tation model. Third, cloud programs can be tailored for graph or data parallelism, which require

employing either data striping and distribution, or graph partitioning and mapping. Lastly, from

architectural and management perspectives, a cloud program can be typically organized in two

ways, master/slave or peer-to-peer. Such organizations define the program’s complexity, effi-

ciency and scalability.

Added to the above design considerations, when constructing cloud programs, special at-

tention must be paid to various challenges like scalability, communication, heterogeneity, syn-

chronization, fault-tolerance and scheduling. First, scalability is hard to achieve in large-scale

systems (e.g., clouds) due to several reasons such as the inability of parallelizing all parts of

algorithms, the high probability of load-imbalance, and the inevitability of synchronization and

communication overheads. Second, exploiting locality and minimizing network traffic are not

easy to accomplish on (public) clouds since network topologies are usually unexposed. Third,

heterogeneity caused by two common realities on clouds, virtualization environments and vari-

ety in datacenter components, impose difficulties in scheduling tasks and masking hardware and

software differences across cloud nodes. Fourth, synchronization mechanisms must guarantee

mutual exclusive accesses as well as properties like avoiding deadlocks and transitive closures,

which are highly likely in distributed settings. Fifth, fault-tolerance mechanisms, including task

resiliency, distributed checkpointing and message logging should be incorporated since the like-

lihood of failures increases on large-scale (public) clouds. Finally, task locality, high parallelism,

task elasticity and service level objectives (SLOs) need to be addressed in task and job schedulers

for effective programs’ executions.
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2 CHAPTER 1.

While designing, addressing and implementing the requirements and challenges of cloud pro-

grams are crucial, they are difficult, require time and resource investments, and pose correctness

and performance issues. Recently, distributed analytics engines such as MapReduce, Pregel and

GraphLab were developed to relieve programmers from worrying about most of the needs to

construct cloud programs, and focus mainly on the sequential parts of their algorithms. Typi-

cally, these analytics engines automatically parallelize sequential algorithms provided by users

in high-level programming languages like Java and C++, synchronize and schedule constituent

tasks and jobs, and handle failures, all without any involvement from users/developers. In this

Chapter, we first define some common terms in the theory of distributed programming, draw a

requisite relationship between distributed systems and clouds, and discuss the main requirements

and challenges for building distributed programs for clouds. While discussing the main require-

ments for building cloud programs, we indicate how MapReduce, Pregel and GraphLab address

each requirement. Finally, we close up with a summary on the Chapter and a comparison between

MapReduce, Pregel and GraphLab.

1.1 Taxonomy of Programs

A computer program consists of variable declarations, variable assignments, expressions and

flow control statements written typically using a high-level programming language such as Java

or C++. Computer programs are compiled before executed on machines. After compilation, they

are converted to machine instructions/code that run over computer processors either sequentially

or concurrently in an in-order or out-of-order manners, respectively. A sequential program is a

program that runs in the program order. The program order is the original order of statements in

a program as specified by a programmer. A concurrent program is a set of sequential programs

that share in time a certain processor when executed. Sharing in time (or timesharing) allows

sequential programs to take turns in using a certain resource component. For instance, with a

single CPU and multiple sequential programs, the Operating System (OS) can allocate the CPU

to each program for a specific time interval; given that only one program can run at a time

on the CPU. This can be achieved by using a specific CPU scheduler such as the round-robin

scheduler [69].

Programs, being sequential or concurrent, are often named interchangeably as applications. A

different term that is also frequently used alongside concurrent programs is parallel programs.

Parallel programs are technically different than concurrent programs. A parallel program is a set

of sequential programs that overlap in time by running on separate CPUs. In multiprocessor sys-

tems such as chip multi-core machines, related sequential programs that are executed at different

cores represent a parallel program, while related sequential programs that share the same CPU in
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Figure 1.1: Our taxonomy of programs.
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Figure 1.2: A demonstration of the concepts of processes, threads, tasks, jobs and applications.

time represent a concurrent program. To this end, we refer to a parallel program with multiple

sequential programs that run on different networked machines (not on different cores at the same

machine) as distributed program. Consequently, a distributed program can essentially include

all types of programs. In particular, a distributed program can consist of multiple parallel pro-

grams, which in return can consist of multiple concurrent programs, which in return can consist of

multiple sequential programs. For example, assume a set S that includes 4 sequential programs,

P1, P2, P3 and P4 (i.e., S = {P1, P2, P3, P4}). A concurrent program, P ′, can encompass P1 and

P2 (i.e., P ′ = {P1, P2}) whereby P1 and P2 share in time a single core. Furthermore, a parallel

program, P ′′, can encompass P ′ and P3 (i.e., P ′′ = {P ′, P3}) whereby P ′ and P3 overlap in time

over multiple cores on the same machine. Lastly, a distributed program, P ′′′, can encompass P ′′

and P4 (i.e., P ′′′ = {P ′′, P4}) whereby P ′′ runs on different cores on the same machine and P4

runs on a different machine as opposed to P ′′. In this Chapter we are mostly concerned with

distributed programs. Fig. 1.1 shows our program taxonomy.

1.2 Tasks and Jobs in Distributed Programs
Another common term in the theory of parallel/distributed programming is multitasking. Multi-

tasking is referred to overlapping the computation of one program with that of another. Multitask-

ing is central to all modern Operating Systems (OSs), whereby an OS can overlap computations

of multiple programs by means of a scheduler. Multitasking has become so useful that almost

all modern programming languages are now supporting multitasking via providing constructs for
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Figure 1.3: (a) A sequential program with serial (Si) and parallel (Pi) parts. (b) A parallel/distributed program that corre-
sponds to the sequential program in (a), whereby the parallel parts can be either distributed across machines or run concurrently
on a single machine.

multithreading. A thread of execution is the smallest sequence of instructions that an OS can man-

age through its scheduler. The term thread was popularized by Pthreads (POSIX threads [59]),

a specification of concurrency constructs that has been widely adopted, especially in UNIX sys-

tems [8]. A technical distinction is often made between processes and threads. A process runs

using its own address space while a thread runs within the address space of a process (i.e., threads

are parts of processes and not standalone sequences of instructions). A process can contain one

or many threads. In principle, processes do not share address spaces among each other, while

the threads in a process do share the process’s address space. The term task is also used to refer

to a small unit of work. In this Chapter, we use the term task to denote a process, which can

include multiple threads. In addition, we refer to a group of tasks (which can only be 1 task) that

belong to the same program/application as a job. An application can encompass multiple jobs.

For instance, a fluid dynamics application typically consists of three jobs, one responsible for

structural analysis, one for fluid analysis and one for thermal analysis. Each of these jobs can in

return have multiple tasks to carry on the pertaining analysis. Fig. 1.2 demonstrates the concepts

of processes, threads, tasks, jobs and applications.

1.3 Motivations for Distributed Programming

In principle, every sequential program can be parallelized by identifying sources of parallelism

in it. Various analysis techniques at the algorithm and code levels can be applied to identify par-

allelism in sequential programs [67]. Once sources of parallelism are detected, a program can be

split into serial and parallel parts as shown in Fig. 1.3. The parallel parts of a program can be run

either concurrently or in parallel on a single machine, or in a distributed fashion across machines.

Programmers parallelize their sequential programs primarily to run them faster and/or achieve

higher throughput (e.g., number of data blocks read per hour). Specifically, in an ideal world,

what programmers expect is that by parallelizing a sequential program into an n-way distributed
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program, an n-fold decrease in execution time is obtained. Using distributed programs as opposed

to sequential ones is crucial for multiple domains, especially for science. For instance, simulating

a single protein folding can take years if performed sequentially, while it only takes days if exe-

cuted in a distributed manner [67]. Indeed, the pace of scientific discovery is contingent on how

fast some certain scientific problems can be solved. Furthermore, some programs have real time

constraints by which if computation is not performed fast enough, the whole program might turn

useless. For example, predicting the direction of hurricanes and tornados using weather modeling

must be done in a timely manner or the whole prediction will be unusable. In actuality, scientists

and engineers have relied on distributed programs for decades to solve important and complex

scientific problems such as quantum mechanics, physical simulations, weather forecasting, oil

and gas exploration, and molecular modeling, to mention a few. We expect this trend to continue,

at least for the foreseeable future.

Distributed programs have also found a broader audience outside science, such as serving

search engines, Web servers and databases. For instance, much of the success of Google can

be traced back to the effectiveness of its algorithms such as PageRank [42]. PageRank is a dis-

tributed program that is run within Google’s search engine over thousands of machines to rank

webpages. Without parallelization, PageRank cannot achieve its goals effectively. Parallelization

allows also leveraging available resources effectively. For example, running a Hadoop MapRe-

duce [27] program over a single Amazon EC2 instance will not be as effective as running it over

a large-scale cluster of EC2 instances. Of course, committing jobs earlier on the cloud leads to

fewer dollar costs, a key objective for cloud users. Lastly, distributed programs can further serve

greatly in alleviating subsystem bottlenecks. For instance, I/O devices such as disks and network

card interfaces typically represent major bottlenecks in terms of bandwidth, performance and/or

throughput. By distributing work across machines, data can be serviced from multiple disks si-

multaneously, thus offering an increasingly aggregate I/O bandwidth, improving performance and

maximizing throughput. In summary, distributed programs play a critical role in rapidly solving

various computing problems and effectively mitigating resource bottlenecks. This subsequently

improves performances, increases throughput and reduces costs, especially on the cloud.

1.4 Models of Distributed Programs

Distributed programs are run on distributed systems which consist of networked computers. The

cloud is a special distributed system. In this section, we first define distributed systems and

draw a relationship between clouds and distributed systems. Second, in an attempt to answer the

question of how to program the cloud, we present two traditional distributed programming models

which can be used for that sake, the shared-memory and the message-passing programming
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models. Third, we discuss the computation models that cloud programs can employ. Specifically,

we describe the synchronous and asynchronous computation models. Fourth, we present the

two main parallelism categories of distributed programs intended for clouds, data parallelism

and graph parallelism. Lastly, we end the discussion with the architectural models that cloud

programs can typically utilize, master/slave and peer-to-peer architectures.

1.4.1 Distributed Systems and the Cloud

Networks of computers are ubiquitous. The Internet, High Performance Computing (HPC) clus-

ters, mobile phone, and in-car networks, among others, are common examples of networked com-

puters. Many networks of computers are deemed as distributed systems. We define a distributed

system as one in which networked computers communicate using message passing and/or shared

memory, and coordinate their actions to solve a certain problem or offer a specific service. One

significant consequence of our definition pertains to clouds. Specifically, since a cloud is defined

as a set of Internet-based software, platform and infrastructure services offered through a cluster

of networked computers (i.e., a datacenter), it becomes a distributed system. Another conse-

quence of our definition is that distributed programs will be the norm in distributed systems such

as the cloud. In particular, we defined distributed programs in Section 1.1 as a set of sequential

programs that run on separate processors at different machines. Thus, the only way for tasks in

distributed programs to interact over a distributed system, is to either send and receive messages

explicitly, or read and write from/to a shared distributed memory supported by the underlying dis-

tributed system. We next discuss these two possible ways of enabling distributed tasks to interact

over distributed systems.

1.4.2 Traditional Programming Models and Distributed Analytics Engines

A distributed programming model is an abstraction provided to programmers so that they can

translate their algorithms into distributed programs that can execute over distributed systems

(e.g., the cloud). A distributed programming model defines how easily and efficiently algorithms

can be specified as distributed programs. For instance, a distributed programming model that

highly abstracts architectural/hardware details, automatically parallelizes and distributes compu-

tation, and transparently supports fault-tolerance is deemed an easy-to-use programming model.

The efficiency of the model, however, depends on the effectiveness of the techniques that un-

derlie the model. There are two classical distributed programming models that are in wide use,

shared-memory and message-passing. The two models fulfill different needs and suit differ-

ent circumstances. Nonetheless, they are elementary in a sense that they only provide a basic
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Figure 1.4: Tasks running in parallel and sharing an address space through which they can communicate.

interaction model for distributed tasks and lack any facility to automatically parallelize and dis-

tribute tasks, or tolerate faults. Recently, there have been other advanced models that address

the inefficiencies and challenges posed by the shared-memory and the message-passing models,

especially upon porting them to the cloud. Among these models are MapReduce [17], Pregel [49]

and GraphLab [47]. These models are built upon the shared-memory and the message-passing

programming paradigms, yet are more involved and offer various properties that are essential for

the cloud. As these models highly differ from the traditional ones, we refer to them as distributed

analytics engines.

1.4.2.1 The Shared-Memory Programming Model

In the shared-memory programming model, tasks can communicate by reading and writing to

shared memory (or disk) locations. Thus, the abstraction provided by the shared-memory model

is that tasks can access any location in the distributed memories/disks. This is similar to threads

of a single process in Operating Systems, whereby all threads share the process address space

and communicate by reading and writing to that space (see Fig. 1.4). Therefore, with shared-

memory, data is not explicitly communicated but implicitly exchanged via sharing. Due to shar-

ing, the shared-memory programming model entails the usage of synchronization mechanisms

within distributed programs. Synchronization is needed to control the order in which read/write

operations are performed by various tasks. In particular, what is required is that distributed tasks

are prevented from simultaneously writing to a shared data, so as to avoid corrupting the data or

making it inconsistent. This can be typically achieved using semaphores, locks and/or barriers.

A semaphore is a point-to-point synchronization mechanism that involves two parallel/distributed

tasks. Semaphores use two operations, post and wait. The post operation acts like depositing a

token, signaling that data has been produced. The wait operation blocks until signaled by the post

operation that it can proceed with consuming data. Locks protect critical sections, or regions that

at most one task can access (typically write) at a time. Locks involve two operations, lock and

unlock for acquiring and releasing a lock associated with a critical section, respectively. A lock

can be held by only one task at a time, and other tasks cannot acquire it until released. Lastly,
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a barrier defines a point at which a task is not allowed to proceed until every other task reaches

that point. The efficiency of semaphores, locks and barriers is a critical and challenging goal in

developing distributed/parallel programs for the shared-memory programming model (details on

the challenges that pertain to synchronization are provided in Section 1.5.4).

Fig. 1.5 shows an example that transforms a simple sequential program into a distributed

program using the shared-memory programming model. The sequential program adds up the

elements of two arrays b and c and stores the resultant elements in array a. Afterwards, if any

element in a is found to be greater than 0, it is added to a grand sum. The corresponding dis-

tributed version assumes only two tasks and splits the work evenly across them. For every task,

start and end variables are specified to correctly index the (shared) arrays, obtain data and apply

the given algorithm. Clearly, the grand sum is a critical section; hence, a lock is used to protect

it. In addition, no task can print the grand sum before every other task has finished its part, thus

a barrier is utilized prior to the printing statement. As shown in the program, the communica-

tion between the two tasks is implicit (via reads and writes to shared arrays and variables) and

synchronization is explicit (via locks and barriers). Lastly, as pointed out earlier, sharing of data

has to be offered by the underlying distributed system. Specifically, the underlying distributed

system should provide an illusion that all memories/disks of the computers in the system form

a single shared space addressable by all tasks. A common example of systems that offer such

an underlying shared (virtual) address space on a cluster of computers (connected by a LAN) is

denoted as Distributed Shared Memory (DSM) [44,45,70]. A common programing language that

can be used on DSMs and other distributed shared systems is OpenMP [55].

Other modern examples that employ a shared-memory view/abstraction are MapReduce and

GraphLab. To summarize, the shared-memory programming model entails two main criteria: (1)

developers need not explicitly encode functions that send/receive messages in their programs,

and (2) the underlying storage layer provides a shared view to all tasks (i.e., tasks can trans-

parently access any location in the underlying storage). Clearly, MapReduce satisfies the two

criteria. In particular, MapReduce developers write only two sequential functions known as the

map and the reduce functions (i.e., no functions are written or called that explicitly send and

receive messages). In return, MapReduce breaks down the user-defined map and reduce func-

tions into multiple tasks denoted as Map and Reduce tasks. All Map tasks are encapsulated in

what is known as the Map phase, and all Reduce tasks are encompassed in what is called the

Reduce phase. Subsequently, all communications occur only between the Map and the Reduce

phases and under the full control of the engine itself. In addition, any required synchronization

is also handled by the MapReduce engine. For instance, in MapReduce the user-defined reduce

function cannot be applied before all the Map phase output (or intermediate output) are shuffled,
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for (i=0; i<8; i++)

a[i] = b[i] + c[i];

sum = 0;

for (i=0; i<8; i++)

if (a[i] > 0)

sum = sum + a[i];

Print sum;

begin parallel // spawn a child thread

private int start_iter, end_iter, i;

shared int local_iter=4, sum=0;

shared double sum=0.0, a[], b[], c[];

shared lock_type mylock;

start_iter = getid() * local_iter;

end_iter = start_iter + local_iter;

for (i=start_iter; i<end_iter; i++)

a[i] = b[i] + c[i];

barrier;

for (i=start_iter; i<end_iter; i++)

if (a[i] > 0) {

lock(mylock);

sum = sum + a[i];

unlock(mylock);

}

barrier;    // necessary

end parallel // kill the child thread

Print sum;

(a)

(b)

Figure 1.5: (a) A sequential program that sums up elements of two arrays and compute a grand sum on results that are greater
than zero. (b) A distributed version of the program in (a) coded using the shared-memory programming model.

merged and sorted. Obviously, this requires a barrier between the Map and the Reduce phases,

which the MapReduce engine internally incorporates. Second, MapReduce uses the Hadoop Dis-

tributed File System (HDFS) [27] as an underlying storage layer. As any typical distributed file

system, HDFS provides a shared abstraction for all tasks, whereby any task can transparently

access any location in HDFS (i.e., as if accesses are local). Therefore, MapReduce is deemed to

offer a shared-memory abstraction provided internally by Hadoop (i.e., the MapReduce engine

and HDFS).

Similar to MapReduce, GraphLab offers a shared-memory abstraction [24, 47]. In particular,

GraphLab eliminates the need for users to explicitly send/receive messages in update functions

(which represent the user-defined computations in it), and provides a shared view among vertices

in a graph. To elaborate, GraphLab allows scopes of vertices to overlap and vertices to read and

write from and to their scopes. The scope of a vertex v (denoted as Sv) is the data stored in v

and in all v’s adjacent edges and vertices. Clearly, this poses potential read-write and write-write

conflicts between vertices sharing scopes. The GraphLab engine (and not the users) synchronizes

accesses to shared scopes and ensures consistent parallel execution via supporting three levels

of consistency settings, Full Consistency, Edge Consistency and Vertex Consistency. Under

Full Consistency, the update function at each vertex has an exclusive read-write access to its

vertex, adjacent edges and adjacent vertices. While this guarantees strong consistency and full

correctness, it limits parallelism and consequently performance. Under Edge Consistency, the
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Figure 1.6: Tasks running in parallel using the message-passing programming model whereby the interactions happen only
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update function at a vertex has an exclusive read-write access to its vertex and adjacent edges,

but only a read access to adjacent vertices. Clearly, this relaxes consistency and enables a superior

leverage of parallelism. Finally, under Vertex Consistency, the update function at a vertex has an

exclusive write access to only its vertex, hence, allowing all update functions at all vertices to

run simultaneously. Obviously, this provides the maximum possible parallelism but, in return,

the most relaxed consistency. GraphLab allows users to choose whatever consistency model they

find convenient for their applications.

1.4.2.2 The Message-Passing Programming Model
In the message-passing programming model, distributed tasks communicate by sending and re-

ceiving messages. In other words, distributed tasks do not share an address space at which they

can access each other’s memories (see Fig. 1.6). Accordingly, the abstraction provided by the

message-passing programming model is similar to that of processes (and not threads) in Operat-

ing Systems. The message-passing programming model incurs communication overheads (e.g.,

variable network latency and potentially excessive data transfers) for explicitly sending and re-

ceiving messages that contain data. Nonetheless, the explicit sends and receives of messages

serve in implicitly synchronizing the sequence of operations imposed by the communicating

tasks. Fig. 1.7 demonstrates an example that transforms the same sequential program shown in

Fig. 1.5 (a) into a distributed program using message passing. Initially, it is assumed that only

a main task with id = 0 has access to arrays b and c. Thus, assuming the existence of only two

tasks, the main task sends firstly parts of the arrays to the other task (using an explicit send oper-

ation) in order to evenly split the work among the two tasks. The other task receives the required

data (using an explicit receive operation) and performs a local sum. When done, it sends back its

local sum to the main task. Likewise, the main task performs a local sum on its part of data and

collects the local sum of the other task before aggregating and printing a grand sum. As shown,
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id = getpid(); 

local_iter = 4;

start_iter = id * local_iter;

end_iter = start_iter + local_iter;

if (id == 0)

send_msg (P1, b[4..7], c[4..7]);

else

recv_msg (P0, b[4..7], c[4..7]);

for (i=start_iter; i<end_iter; i++)

a[i] = b[i] + c[i];

local_sum = 0;

for (i=start_iter; i<end_iter; i++)

if (a[i] > 0)

local_sum = local_sum + a[i];

if (id == 0) {

recv_msg (P1, &local_sum1);

sum = local_sum + local_sum1;

Print sum;

}

else

send_msg (P0, local_sum);

Figure 1.7: A distributed program that corresponds to the sequential program in Fig. 1.5 (a) coded using the message-passing
programming model.

for every send operation, there is a corresponding receive operation. No explicit synchronization

is needed.

Clearly, the message-passing programming model does not necessitate any support from the

underlying distributed system due to relying on explicit messages. Specifically, no illusion for a

single shared address space is required from the distributed system in order for the tasks to inter-

act. A popular example of a message-passing programming model is provided by the Message

Passing Interface (MPI) [50]. MPI is a message passing, industry-standard library (more pre-

cisely, a specification of what a library can do) for writing message passing programs. A popular

high performance and widely portable implementation of MPI is MPICH [52]. A common ana-

lytics engine that employs the message-passing programming model is Pregel. In Pregel, vertices

can communicate only by sending and receiving messages, which should be explicitly encoded

by users/developers.

To this end, Table 1.1 compares between the shared-memory and the message-passing pro-

gramming models in terms of 5 aspects, communication, synchronization, hardware support,

development effort and tuning effort. Shared-memory programs are easier to develop at the outset

because programmers need not worry about how data is laid out or communicated. Furthermore,

the code structure of a shared-memory program is often not much different than its respective

sequential one. Typically, only additional directives are added by programmers to specify paral-
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lel/distributed tasks, scope of variables and synchronization points. In contrast, message-passing

programs require a switch in the programmer’s thinking, wherein the programmer needs to think

a-priori about how to partition data across tasks, collect data, and communicate and aggregate

results using explicit messaging. Alongside, scaling up the system entails less tuning (denoted

as tuning effort in Table 1.1) of message-passing programs as opposed to shared-memory ones.

Specifically, when using a shared-memory model, how data is laid out and where it is stored start

to affect performance significantly. To elaborate, large-scale distributed systems like the cloud

imply non-uniform access latencies (e.g., accessing remote data takes more time than accessing

local data), thus enforces programmers to lay out data close to relevant tasks. While message

passing programmers think about partitioning data across tasks during pre-development time,

shared memory programmers do not. Hence, shared memory programmers need (most of the

time) to address the issue during post-development time (e.g., through data migration or repli-

cation). Clearly, this might dictate a greater post-development tuning effort as compared to the

message-passing case. Finally, synchronization points might further become performance bottle-

necks in large-scale systems. In particular, as the number of users that attempt to access critical

sections increases, delays and waits on such sections also increase. More on synchronization and

other challenges involved in programming the cloud are presented in Section 1.5.

Table 1.1: A Comparison Between the Shared-Memory and the Message-Passing Programming Models.
Aspect The Shared-Memory Model The Message-Passing Model

Communication Implicit Explicit
Synchronization Explicit Implicit

Hardware Support Usually Required Not Required
Initial Development Effort Lower Higher

Tuning Effort Upon Scaling Up Higher Lower

1.4.3 Synchronous and Asynchronous Distributed Programs

Apart from programming models, distributed programs, being shared-memory or message-passing

based, can be specified as either synchronous or asynchronous programs. A distributed program

is synchronous if and only if the distributed tasks operate in a lock-step mode. That is, if there is

some constant c≥ 1 and any task has taken c+ 1 steps, every other task should have taken at least

1 step [71]. Clearly, this entails a coordination mechanism through which the activities of tasks

can be synchronized and the lock-step mode be accordingly enforced. Such a mechanism usually

has an important effect on performance. Typically, in synchronous programs, distributed tasks

must wait at predetermined points for the completion of certain computations or for the arrival

of certain data [9]. A distributed program that is not synchronous is referred to as asynchronous.

Asynchronous programs expose no requirements for waiting at predetermined points and/or for

the arrival of specific data. Obviously, this has less effect on performance but implies that the cor-

rectness/validity of the program must be assessed. In short, the distinction between synchronous
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Figure 1.8: The Bulk Synchronous Parallel (BSP) model.

and asynchronous distributed programs refers to the presence or absence of a (global) coordi-

nation mechanism that synchronizes the operations of tasks and imposes a lock-step mode. As

specific examples, MapReduce and Pregel programs are synchronous, while GraphLab ones are

asynchronous.

One synchronous model that is commonly employed for effectively implementing distributed

programs is the Bulk Synchronous Parallel (BSP) model [74] (see Fig. 1.8). The Pregel pro-

grams follow particularly the BSP model. BSP is defined as a combination of three attributes,

components, a router and a synchronization method. A component in BSP consists of a processor

attached with data stored in local memory. BSP, however, does not exclude other arrangements

such as holding data in remote memories. BSP is neutral about the number of processors, be it

two or millions. BSP programs can be written for v virtual distributed processors to run on p

physical distributed processors, where v is larger than p. BSP is based on the message-passing

programming model, whereby components can only communicate by sending and receiving mes-

sages. This is achieved through a router which in principle can only pass messages point-to-point

between pairs of components (i.e., no broadcasting facilities are available, though it can be imple-

mented using multiple point-to-point communications). Finally, as being a synchronous model,

BSP splits every computation into a sequence of steps called super-steps. In every super-step, S,

each component is assigned a task encompassing (local) computation. Besides, components in

super-step S are allowed to send messages to components in super-step S + 1, and are (implicitly)

allowed to receive messages from components in super-step S - 1. Tasks within every super-step

operate simultaneously and do not communicate with each other. Tasks across super-steps move

in a lock-step mode as suggested by any synchronous model. Specifically, no task in super-step

S + 1 is allowed to start before every task in super-step S commits. To satisfy this condition, BSP

applies a global barrier-style synchronization mechanism as shown in Fig 1.8.



14 CHAPTER 1.

BSP does not suggest simultaneous accesses to the same memory location, hence, precludes

the requirement for a synchronization mechanism other than barriers. Another primary concern

in a distributed setting is to allocate data in a way that computation will not be slowed down by

non-uniform memory access latencies or uneven loads among individual tasks. BSP promotes

uniform access latencies via enforcing local data accesses. In particular, data are communicated

across super-steps before triggering actual task computations. As such, BSP carefully segregates

computation from communication. Such a segregation entails that no particular network topology

is favored beyond the requirement that high throughput is delivered. Butterfly, hypercube and

optical crossbar topologies can all be employed with BSP. With respect to task loads, data can still

vary across tasks within a super-step. This typically depends on: (1) the responsibilities that the

distributed program imposes on its constituent tasks, and (2) the characteristics of the underlying

cluster nodes (more on this in Section 1.5.1). As a consequence, tasks that are lightly loaded (or

are run on fast machines) will potentially finish earlier than tasks that are heavily loaded (or are

run on slow machines). Subsequently, the time required to finish a super-step becomes bound

by the slowest task in the super-step (i.e., a super-step cannot commit before the slowest task

commits). This presents a major challenge for the BSP model as it might create load-imbalance,

which usually degrades performance. Finally, it is worth noting that while BSP suggests several

design choices, it does not make their use obligatory. Indeed, BSP leaves many design choices

open (e.g., barrier-based synchronization can be implemented at a finer granularity or completely

switched off- if it is acceptable by the given application).

1.4.4 Data Parallel and Graph Parallel Computations

As distributed programs can be constructed using either the shared-memory or the message-

passing programming models as well as specified as being synchronous or asynchronous, they

can be tailored for different parallelism types. Specifically, distributed programs can either in-

corporate data parallelism or graph parallelism. Data parallelism is a form of parallelizing

computation as a result of distributing data across multiple machines and running (in parallel)

corresponding tasks on those machines. Tasks across machines may involve the same code or

may be totally different. Nonetheless, in both cases, tasks will be applied to distinctive data. If

tasks involve the same code, we classify the distributed application as Single Program Multiple

Data (SPMD) application; otherwise we label it as Multiple Program Multiple Data (MPMD)

application. Clearly, the basic idea of data parallelism is simple; by distributing a large file across

multiple machines, it becomes possible to access and process different parts of the file in parallel.

One popular technique for distributing data is file-striping, by which a single file is partitioned

and distributed across multiple servers. Another form of data parallelism is to distribute whole

files (i.e., without striping) across machines, especially if files are small and their contained data
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Array A

  

…

…

do i=0, 49

local_sum = local_sum + A[i];

end do

lock(mylock);

      grand_sum = grand_sum + 

local_sum;

unlock(mylock);

…

…

  

…

…

do i=50, 99

local_sum = local_sum + A[i];

end do

lock(mylock);

      grand_sum = grand_sum + 

local_sum;

unlock(mylock);

…

…

  

…

…

do i=100, 149

local_sum = local_sum + A[i];

end do

lock(mylock);

      grand_sum = grand_sum + 

local_sum;

unlock(mylock);

…

…

Node1 Node2 Node3 

Figure 1.9: An SPMD distributed program using the shared-memory programming model.

exhibit very irregular structures. We note that data can be distributed among tasks either explic-

itly by using a message-passing model, or implicitly by using a shared-memory model (assuming

an underlying distributed system that offers a shared-memory abstraction).

Data parallelism is achieved when each machine runs one or many tasks over different parti-

tions of data. As a specific example, assume array A is shared among 3 machines in a distributed

shared memory system. Consider also a distributed program that simply adds all elements of ar-

ray A. It is possible to charge machines 1, 2 and 3 to run the addition task, each on 1/3 of A, or 50

elements, as shown in Fig. 1.9. The data can be allocated across tasks using the shared-memory

programming model, which requires a synchronization mechanism. Clearly, such a program is

SPMD. In contrast, array A can also be partitioned evenly and distributed accross 3 machines

using the message-passing model as shown in Fig. 1.10. Each machine will run the addition task

independently; nonetheless, summation results will have to be eventually aggregated at one main

task in order to generate a grand total. In such a scenario, every task is similar in a sense that it

is performing the same addition operation, yet on a different part of A. The main task, however,

is further aggregating summation results, thus making it a little different than the other two tasks.

Obviously, this makes the program MPMD.

As a real example, MapReduce uses data parallelism. In particular, input datasets are parti-

tioned by HDFS into blocks (by default, 64MB per a block) allowing MapReduce to effectively

exploit data parallelism via running a Map task per one or many blocks (by default, each Map

task processes only 1 HDFS block). Furthermore, as Map tasks operate on HDFS blocks, Re-

duce tasks operate on the output of Map tasks denoted as intermediate output or partitions.

In principle, each Reduce task can process one or many partitions. As a consequence, the data

processed by Map and Reduce tasks become different. Moreover, Map and Reduce tasks are
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1/3 of Array A

  

…

Dispatch array A evenly across 

the three nodes

do i=0, 49

local_sum = local_sum + A[i];

end do

if (id == 0) {

  recv_msg (Node2, 

&local_sum2);

  sum = local_sum + local_sum2;

  recv_msg (Node3, 

&local_sum3);

  sum = local_sum + local_sum3;

  Print sum;

}

else 

  send_msg (Node1, local_sum);

…

…

1/3 of Array A 1/3 of Array A

Node1 (or master)

  

…

…

do i=0, 49

local_sum = local_sum + A[i];

end do

if (id == 0) {

  recv_msg (Node2, 

&local_sum2);

  sum = local_sum + local_sum2;

  recv_msg (Node3, 

&local_sum3);

  sum = local_sum + local_sum3;

  Print sum;

}

else 

  send_msg (Node1, local_sum);

…

…

Node2

  

…

…

do i=0, 49

local_sum = local_sum + A[i];

end do

if (id == 0) {

  recv_msg (Node2, 

&local_sum2);

  sum = local_sum + local_sum2;

  recv_msg (Node3, 

&local_sum3);

  sum = local_sum + local_sum3;

  Print sum;

}

else 

  send_msg (Node1, local_sum);

…

…

Node3 

Figure 1.10: An MPMD distributed program using the message-passing programming model.

inherently dissimilar (i.e., the map and the reduce functions incorporate different binary codes).

Therefore, MapReduce jobs lie under the MPMD category.

Graph parallelism contrasts with data parallelism. Graph parallelism is another form of par-

allelism that focuses more on distributing graphs as opposed to data. Indeed, most distributed

programs fall somewhere on a continuum between data parallelism and graph parallelism. Graph

parallelism is widely used in many domains such as machine learning, data mining, physics, and

electronic circuit designs, among others. Many problems in these domains can be modeled as

graphs in which vertices represent computations and edges encode data dependencies or com-

munications. Recall that a graph G is a pair (V, E), where V is a finite set of vertices and E is

a finite set of pairwise relationships, E ⊂ V × V, called edges. Weights can be associated with

vertices and edges to indicate the amount of work per each vertex and the communication data

per each edge. To exemplify, let us consider a classical problem from circuit design. It is often the

case in circuit design that pins of several components are to be kept electronically equivalent by

wiring them together. If we assume n pins, then an arrangement of n - 1 wires, each connecting

two pins, can be employed. Of all such arrangements, the one that uses the minimum number of

wires is normally the most desirable. Obviously, this wiring problem can be modeled as a graph

problem. In particular, each pin can be represented as a vertex and each interconnection between

a pair of pins (u, v) can be represented as an edge. A weight w(u, v) can be set between u and v

to encode the cost (i.e., the amount of wires needed) to connect u and v. The problem becomes,

how to find an acyclic subset, S, of edges, E, that connects all the vertices, V, and whose total

weight
∑

(u,v)∈S w(u,v) is the minimum. As S is acyclic and fully connected, it must result in a
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Figure 1.11: A graph partitioned using the edge cut metric.

tree known as the minimum spanning tree. Consequently, solving the wiring problem morphs into

simply solving the minimum spanning tree problem. The minimum spanning tree problem is a

classical problem and can be solved using Kruskal’s or Prim’s algorithms, to mention a few [15].

Once a problem is modeled as a graph, it can be distributed over machines in a distributed

system using a graph partitioning technique. Graph partitioning implies dividing the work

(i.e., the vertices) over distributed nodes for efficient distributed computation. As is the case with

data parallelism, the basic idea is simple; by distributing a large graph across multiple machines,

it becomes possible to process different parts of the graph in parallel. As such, graph partitioning

enables what we refer to as graph parallelism. The standard objective of graph partitioning is

to uniformly distribute the work over p processors by partitioning the vertices into p equally

weighted partitions, while minimizing inter-node communication reflected by edges. Such an

objective is typically referred to as the standard edge cut metric [34]. The graph partitioning

problem is NP-hard [21], yet heuristics can be implemented to achieve near optimal solutions [34,

35,39]. As a specific example, Fig. 1.11 demonstrates 3 partitions, P1, P2 and P3 at which vertices

v1,..., v8 are divided using the edge cut metric. Each edge has a weight of 2 corresponding to 1

unit of data being communicated in each direction. Consequently, the total weight of the shown

edge cut is 10. Other cuts will result in more communication traffic. Clearly, for communication-

intensive applications, graph partitioning is very critical and can play a dramatic role in dictating

the overall application performance. We discuss some of the challenges pertaining to graph

partitioning in Section 1.5.3.

As real examples, both Pregel and GraphLab employ graph partitioning. Specifically, in Pregel

each vertex in a graph is assigned a unique ID, and partitioning of the graph is accomplished via

using a hash(ID) mod N function, where N is the number of partitions. The hash function is

customizable and can be altered by users. After partitioning the graph, partitions are mapped to
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cluster machines using a mapping function of a user choice. For example, a user can define a

mapping function for a Web graph that attempts to exploit locality by co-locating vertices of the

same Web site (a vertex in this case represents a Web page). In contrast to Pregel, GraphLab

utilizes a two-phase partitioning strategy. In the first phase, the input graph is partitioned into k

partitions using a hash-based random algorithm [47], with k being much larger than the number of

cluster machines. A partition in GraphLab is called an atom. GraphLab does not store the actual

vertices and edges in atoms, but commands to generate them. In addition to commands, GraphLab

maintains in each atom some information about the atom’s neighboring vertices and edges. This

is denoted in GraphLab as ghosts. Ghosts are used as a caching capability for efficient adjacent

data accessibility. In the second phase of the two-phase partitioning strategy, GraphLab stores

the connectivity structure and the locations of atoms in an atom index file referred to as meta-

graph. The atom index file encompasses k vertices (with each vertex corresponding to an atom)

and edges encoding connectivity among atoms. The atom index file is split uniformly across the

cluster machines. Afterwards, atoms are loaded by cluster machines and each machine constructs

its partitions by executing the commands in each of its assigned atoms. By generating partitions

via executing commands in atoms (and not directly mapping partitions to cluster machines),

GraphLab allows future changes to graphs to be simply appended as additional commands in

atoms without needing to re-partition the entire graphs. Furthermore, the same graph atoms

can be reused for different sizes of clusters by simply re-dividing the corresponding atom index

file and re-executing atom commands (i.e., only the second phase of the two-phase partitioning

strategy is repeated). In fact, GraphLab has adopted such a graph partitioning strategy with the

elasticity of clouds being in mind. Clearly, this improves upon the direct and non-elastic hash-

based partitioning strategy adopted by Pregel. Specifically, in Pregel, if graphs or cluster sizes

are altered after partitioning, the entire graphs need to be re-partitioned prior to processing.

1.4.5 Symmetrical and Asymmetrical Architectural Models

From architectural and management perspectives, a distributed program can be typically orga-

nized in two ways, master/slave (or asymmetrical) and peer-to-peer (or symmetrical) (see

Fig. 1.12). There are other organizations, such as hybrids of asymmetrical and symmetrical,

which do exist in literature [71]. For the purpose of our Chapter, we are only concerned with

the master/slave and peer-to-peer organizations. In a master/slave organization, a central process

known as the master handles all the logic and controls. All other processes are denoted as slave

processes. As such, the interaction between processes is asymmetrical, whereby bi-directional

connections are established between the master and all the slaves, and no interconnection is per-

mitted between any two slaves (see Fig. 1.12 (a)). This requires that the master keeps track of

every slave’s network location within what is referred to as a metadata structure. In addition, this
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Figure 1.12: (a) A master/slave organization. (b) A peer-to-peer organization. The master in such an organization is optional
(usually employed for monitoring the system and/or injecting administrative commands).

entails that each slave is always capable of identifying and locating the master.

The master in master/slave organizations can distribute the work among the slaves using one

of two protocols, push-based or pull-based. In the push-based protocol, the master assigns

work to the slaves without the slaves asking for that. Clearly, this might allow the master to

apply fairness over the slaves via distributing the work equally among them. In contrast, this

could also overwhelm/congest slaves that are currently experiencing some slowness/failures and

are unable to keep up with work. Consequently, load-imbalance might occur, which usually leads

to performance degradation. Nevertheless, smart strategies can be implemented by the master.

In particular, the master can assign work to a slave if and only if the slave is observed to be

ready for that. For this to happen, the master has to continuously monitor the slaves and apply

some certain logic (usually complex) to accurately determine ready slaves. The master has also

to decide upon the amount of work to assign to a ready slave so as fairness is maintained and

performance is not degraded. In clouds, the probability of faulty and slow processes increases

due to heterogeneity, performance unpredictability and scalability (see Section 1.5 for details on

that). This might make the push-based protocol somehow inefficient on the cloud.

Unlike the push-based protocol, in the pull-based protocol, the master assigns work to the

slaves only if they ask for that. This highly reduces complexity and potentially avoids load-

imbalance, since the decision of whether a certain slave is ready to receive work or not is dele-

gated to the slave itself. Nonetheless, the master still needs to monitor the slaves, usually to track

the progresses of tasks at slaves and/or apply fault-tolerance mechanisms (e.g., to effectively

address faulty and slow tasks, commonly present in large-scale clouds).

To this end, we note that the master/slave organization suffers from a single point of failure

(SPOF). Specifically, if the master fails, the entire distributed program comes to a grinding halt.

Furthermore, having a central process (i.e., the master) for controlling and managing everything

might not scale well beyond a few hundred slaves, unless efficient strategies are applied to re-

duce the contention on the master (e.g., caching metadata at the slaves so as to avoid accessing
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the master upon each request). In contrary, using a master/slave organization simplifies decision

making (e.g., allow a write transaction on a certain shared data). In particular, the master is al-

ways the sole entity which controls everything and can make any decision singlehandedly without

bothering anyone else. This averts the employment of voting mechanisms [23, 71, 72], typically

needed when only a group of entities (not a single entity) have to make decisions. The basic idea

of voting mechanisms is to require a task to request and acquire the permission for a certain ac-

tion from at least half of the tasks plus one (a majority). Voting mechanisms usually complicate

implementations of distributed programs. Lastly, as specific examples, Hadoop MapReduce and

Pregel adopt master/slave organizations and apply the pull-based and the push-based protocols,

respectively. We note, however, that recently, Hadoop has undergone a major overhaul to address

several inherent technical deficiencies, including the reliability and availability of the JobTracker,

among others. The outcome is a new version referred to as Yet Another Resource Negotiator

(YARN) [53]. To elaborate, YARN still adopts a master/slave topology but with various enhance-

ments. First, the resource management module, which is responsible for task and job scheduling

as well as resource allocation, has been entirely detached from the master (or the JobTracker in

Hadoop’s parlance) and defined as a separate entity entitled as Resource Manager (RM). RM has

been further sliced into two main components, the Scheduler (S) and the Applications Manager

(AsM). Second, instead of having a single master for all applications, which was the JobTracker,

YARN has defined a master per application, referred to as Application Master (AM). AMs can

be distributed across cluster nodes so as to avoid application SPOFs and potential performance

degradations. Finally, the slaves (or what is known in Hadoop as TaskTrackers) has remained

effectively the same but are now called Node Managers (NMs).

In a Peer-to-Peer organization, logic, control and work are distributed evenly among tasks.

That is, all tasks are equal (i.e., they all have the same capability) and no one is a boss. This

makes peer-to-peer organizations symmetrical. Specifically, each task can communicate directly

with tasks around it, without having to contact a master process (see Fig. 1.12 (b)). A master

may be adopted, however, but only for purposes like monitoring the system and/or injecting ad-

ministrative commands. In other words, as opposed to a master/slave organization, the presence

of a master in a peer-to-peer organization is not requisite for the peer tasks to function correctly.

Moreover, although tasks communicate with one another, their work can be totally indepen-

dent and could even be unrelated. Peer-to-Peer organizations eliminate the potential for SPOF

and bandwidth bottlenecks, thus typically exhibit good scalability and robust fault-tolerance. In

contrary, making decisions in peer-to-peer organizations has to be carried out collectively us-

ing usually voting mechanisms. This typically implies increased implementation complexity as

well as more communication overhead and latency, especially in large-scale systems such as the
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cloud. As a specific example, GraphLab employs a peer-to-peer organization. Specifically, when

GraphLab is launched on a cluster, one instance of its engine is started on each machine. All

engine instances in GraphLab are symmetric. Moreover, they all communicate directly with each

other using a customized asynchronous Remote Procedure Call (RPC) protocol over TCP/IP. The

first triggered engine instance, however, will have an additional responsibility of being a monitor-

ing/master engine. The other engine instances across machines will still work and communicate

directly without having to be coordinated by the master engine. Consequently, GraphLab satisfies

the criteria to be a peer-to-peer system.

1.5 Main Challenges In Building Cloud Programs

Designing and implementing a distributed program for the cloud involves more than just sending

and receiving messages and deciding upon the computational and architectural models. While

all these are extremely important, they do not reflect the whole story of developing programs for

the cloud. In particular, there are various challenges that a designer needs to pay careful attention

to and address before developing a cloud program. We next discuss heterogeneity, scalabil-

ity, communication, synchronization, fault-tolerance and scheduling challenges exhibited in

building cloud programs.

1.5.1 Heterogeneity
The cloud datacenters are composed of various collections of components including comput-

ers, networks, Operating Systems (OSs), libraries and programming languages. In principle, if

there is variety and difference in datacenter components, the cloud is referred to as a heteroge-

neous cloud. Otherwise, the cloud is denoted as a homogenous cloud. In practice, homogeneity

does not always hold. This is mainly due to two major reasons. First, cloud providers typically

keep multiple generations of IT resources purchased over different time frames. Second, cloud

providers are increasingly applying the virtualization technology on their clouds for server con-

solidation, enhanced system utilization and simplified management. Public clouds are primarily

virtualized datacenters. Even on private clouds, it is expected that virtualized environments will

become the norm [83]. Heterogeneity is a direct cause of virtualized environments. For exam-

ple, co-locating virtual machines (VMs) on similar physical machines may cause heterogeneity.

Specifically, if we suppose two identical physical machines A and B, placing 1 VM over machine

A and 10 VMs over machine B will stress machine B way more than machine A, assuming all

VMs are identical and running the same programs. Having dissimilar VMs and diverse demand-

ing programs are even more probable on the cloud. An especially compelling setting is Amazon

EC2. Amazon EC2 offers 17 VM types [1] (as of March 4, 2013) for millions of users with dif-

ferent programs. Clearly, this creates even more heterogeneity. In short, heterogeneity is already,
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and will continue to be, the norm on the cloud.

Heterogeneity poses multiple challenges for running distributed programs on the cloud. First,

distributed programs must be designed in a way that masks the heterogeneity of the underlying

hardware, networks, OSs, and the programming languages. This is a necessity for distributed

tasks to communicate, or otherwise, the whole concept of distributed programs will not hold

(recall that what defines distributed programs is passing messages). To elaborate, messages ex-

changed between tasks would usually contain primitive data types such as integers. Unfortu-

nately, not all computers store integers in the same order. In particular, some computers might

use the so-called big-endian order, in which the most significant byte comes first, while others

might use the so-called little-endian order, in which the most significant byte comes last. The

floating-point numbers can also differ across computer architectures. Another issue is the set of

codes used to represent characters. Some systems use ASCII characters, while others use the Uni-

code standard. In a word, distributed programs have to work out such heterogeneity so as to exist.

The part that can be incorporated in distributed programs to work out heterogeneity is commonly

referred to as middleware. Fortunately, most middleware are implemented over the Internet pro-

tocols, which themselves mask the differences in the underlying networks. The Simple Object

Access Protocol (SOAP) [16] is an example of a middleware. SOAP defines a scheme for using

Extensible Markup Language (XML), a textual self-describing format, to represent contents of

messages and allow distributed tasks at diverse machines to interact.

In general, code suitable for one machine might not be suitable for another machine on the

cloud, especially when instruction set architectures (ISAs) vary across machines. Ironically, the

virtualization technology, which induces heterogeneity, can effectively serve in solving such a

problem. Same VMs can be initiated for a user cluster and mapped to physical machines with

different underlying ISAs. Afterwards, the virtualization hypervisor will take care of emulating

any difference between the ISAs of the provisioned VMs and the underlying physical machines

(if any). From a user’s perspective, all emulations occur transparently. Lastly, users can always

install their own OSs and libraries on system VMs, like Amazon EC2 instances, thus ensuring

homogeneity at the OS and library levels.

Another serious problem that requires a great deal of attention from distributed programmers

is performance variation [20, 60] on the cloud. Performance variation entails that running the

same distributed program on the same cluster twice can result in largely different execution times.

It has been observed that execution times can vary by a factor of 5 for the same application on the

same private cluster [60]. Performance variation is mostly caused by the heterogeneity of clouds

imposed by virtualized environments and resource demand spikes and lulls typically experienced
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over time. As a consequence, VMs on clouds rarely carry work at the same speed, preventing

thereby tasks from making progress at (roughly) constant rates. Clearly, this can create tricky

load-imbalance and subsequently degrade overall performance. As pointed out earlier, load-

imbalance makes a program’s performance contingent on its slowest task. Distributed programs

can attempt to tackle slow tasks by detecting them and scheduling corresponding speculative

tasks on fast VMs so as they finish earlier. Specifically, two tasks with the same responsibility

can compete by running at two different VMs, with the one that finishes earlier getting committed

and the other getting killed. For instance, Hadoop MapReduce follows a similar strategy for

solving the same problem, known as speculative execution (see Section 1.5.5). Unfortunately,

distinguishing between slow and fast tasks/VMs is very challenging on the cloud. It could happen

that a certain VM running a task is temporarily passing through a demand spike, or it could be

the case that the VM is simply faulty. In theory, not any detectably slow node is faulty and

differentiating between faulty and slow nodes is hard [71]. Because of that, speculative execution

in Hadoop MapReduce does not perform very well in heterogeneous environments [11, 26, 73].

1.5.2 Scalability
The issue of scalability is a dominant subject in distributed computing. A distributed program

is said to be scalable if it remains effective when the quantities of users, data and resources are

increased significantly. To get a sense of the problem scope at hand, as per users, in cloud com-

puting, most popular applications and platforms are currently offered as Internet-based services

with millions of users. As per data, in the time of Big Data, or the Era of Tera as denoted by

Intel [13], distributed programs typically cope with Web-scale data in the order of hundreds and

thousands of GBs, TBs or PBs. Also, Internet services such as e-commerce and social networks

deal with sheer volumes of data generated by millions of users every day [83]. As per resources,

cloud datacenters already host tens and hundreds of thousands of machines (e.g., Amazon EC2

is estimated to host almost half a million machines [46]), and projections for scaling up machine

counts to extra folds have already been set forth.

As pointed out in Section 1.3, upon scaling up the number of machines, what program-

mers/users expect is escalated performance. Specifically, programmers expect from distributed

execution of their programs on n nodes, versus on a single node, an n-fold improvement in per-

formance. Unfortunately, this never happens in reality due to several reasons. First, as shown in

Fig. 1.13, parts of programs can never be parallelized (e.g., initialization parts). Second, load-

imbalance among tasks is highly likely, especially in distributed systems like clouds. One of the

reasons for load-imbalance is the heterogeneity of the cloud as discussed in the previous section.

As depicted in Fig. 1.13 (b), load-imbalance usually delays programs, wherein a program be-

comes bound to the slowest task. Particularly, even if all tasks in a program finish, the program
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Figure 1.13: Parallel speedup. (a) Ideal case. (b) Real case.

cannot commit before the last task finishes (which might greatly linger!). Lastly, other serious

overheads such as communication and synchronization can highly impede scalability. Such over-

heads are significantly important when measuring speedups obtained by distributed programs

compared to sequential ones. A standard law that allows measuring speedups attained by dis-

tributed programs and, additionally, accounting for various overheads is known as Amdahl’s

law.

For the purpose of describing Amdahl’s law we assume that a sequential version of a program

P takes Ts time units, while a parallel/distributed version takes Tp time units using a cluster of n

nodes. In addition, we suppose that s fraction of the program is not parallelizable. Clearly, this

makes 1 - s fraction of the program parallelizable. According to Amdahl’s law, the speedup of

the parallel/distributed execution of P versus the sequential one can be defined as follows:

Speedupp = Ts/Tp = Ts/(Ts × s + Ts × (1-s)/n) = 1/(s + (1-s)/n)

While the formula is apparently simple, it exhibits a crucial implication. In particular, if we as-

sume a cluster with an unlimited number of machines and a constant s, we can use the formula to

express the maximum speedup that can be achieved by simply computing the limn→∞Speedupp

as follows:

limn→∞Speedupp = limn→∞ 1/(s + (1-s)/n) = 1/s

To understand the essentiality of the formula’s implication, let us assume a serial fraction s of

only 2%. Applying the formula with an assumingly unlimited number of machines will result in a

maximum speedup of only 50!. Reducing s to 0.5% would result in a maximum speedup of 200.
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Consequently, we realize that attaining scalability in distributed systems is quite challenging, as it

requires s to be almost 0, let alone the effects of load-imbalance, synchronization and communica-

tion overheads. In practice, synchronization overheads (e.g., performing barrier synchronization

and acquiring locks) increase with an increasing number of machines, often super-linearly [67].

Communication overheads also grow dramatically since machines in large-scale distributed sys-

tems cannot be interconnected with very short physical distances. Load-imbalance becomes a big

factor in heterogeneous environments as explained shortly. While this is truly challenging, we

point out that with Web-scale input data, the overheads of synchronization and communication

can be highly reduced if they contribute way less towards the overall execution time as compared

to computation. Fortunately, this is the case with many Big Data applications.

1.5.3 Communication
As defined in Section 1.4.1, distributed systems are composed of networked computers that can

communicate by explicitly passing messages or implicitly accessing shared memories. Even with

distributed shared memory systems, messages are internally passed between machines, yet in a

manner that is totally transparent to users. Hence, it all boils down essentially to passing mes-

sages. Consequently, it can be argued that the only way for distributed systems to communicate

is by passing messages. In fact, Coulouris et al. [16] adopts such a definition for distributed

systems. Distributed systems such as the cloud rely heavily on the underlying network to deliver

messages rapidly enough to destination entities for three main reasons, performance, cost and

quality of service (QoS). Specifically, faster delivery of messages entails minimized execution

times, reduced costs (as cloud applications can commit earlier), and higher QoS, especially for

audio and video applications. This makes the issue of communication a principal theme in devel-

oping distributed programs for the cloud. Indeed, it will not be surprising if some people argue

that communication is at the heart of the cloud and is one of its major bottlenecks.

Distributed programs can mainly apply two techniques to address the communication bot-

tleneck on the cloud. First, the strategy of distributing/partitioning the work across machines

should attempt to co-locate highly communicating entities together. This can mitigate the pres-

sure on the cloud network and subsequently improve performance. Such an aspired goal is not

as easy as it might appear, though. For instance, the standard edge cut strategy seeks to partition

graph vertices into p equally weighted partitions over p processors so that the total weight of the

edges crossing between partitions is minimized (see Section 1.4.4). Unfortunately, by carefully

inspecting such a strategy, we realize a serious shortcoming that directly impacts communication.

To exemplify, Fig. 1.11 in Section 1.4.4 shows that the minimum cut resulted from the edge cut

metric overlooks the fact that some edges may represent the same information flow. In particular,

v2 at P1 in the figure sends the same message twice to P2 (specifically to v4 and v5 at P2), while it
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Figure 1.14: Effective mapping of graph partitions to cluster machines. A mapping of P1 to the other rack while P2 and P3

remain on the same rack causes more network traffic and potentially degraded performance.

suffices to communicate the message only once, since v4 and v5 will exist on the same machine.

Likewise, v4 and v7 can communicate messages to P1 only once but they do it twice. Therefore,

the standard edge cut metric causes an over-count of the true volume of communication and con-

sequently incurs superfluous network traffic. As an outcome, interconnection bandwidth can be

potentially stressed and performance degraded. Even if the total communication volume (or the

number of messages) is minimized more effectively, load-imbalance can render the bottleneck. In

particular, it might happen that while the communication volume is minimized, some machines

receive heavier partitions (i.e., partitions with more vertices) than others. An ideal, yet a chal-

lenging approach, is to minimize communication overheads while circumventing computation

skew among machines. To summarize, this technique strives for effective partitioning of work

across machines so as highly communicating entities are co-located together.

The second technique is effective mapping of partitions. Specifically, the mapping strategy of

partitions to machines, whether graph or data partitions, should be done in a way that is totally

aware of the underlying network topology. This dictates the number of switches that a message

will hit before it reaches its destination. As a specific example, Fig. 1.14 demonstrates the same

graph shown previously in Fig. 1.11 and a simplified cluster with a tree-style network and 6

machines. The cluster network consists of two rack switches (RSs), each connecting 3 machines,

and a core switch (CS) connecting the two RSs. A salient point is that the bandwidth between

two machines is dependent on their relative locations in the network topology. For instance,

machines that are on the same rack have higher bandwidth between them as opposed to machines

that are off-rack. As such, it pays to minimize network traffic across racks. If P1, P2 and P3

are mapped to M1, M2 and M3, respectively, less network latency will be incurred when P1, P2

and P3 communicate versus if they are mapped across the two racks. More precisely, for P1 to

communicate with P2 on the same rack, only one hop is incurred to route a message from P1
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to P2. In contrast, for P1 to communicate with P2 on different racks, two hops are incurred per

each message. Clearly, a less number of hops results in a better network latency and improved

overall performance. Unfortunately, this is not as easy as it might appear to achieve on clouds,

especially on public clouds, for one main reason. That is, clouds such as Amazon EC2 do not

expose their network topologies. Nevertheless, the network topology can still be learned (though

not very effectively) using a benchmark like Netperf [54] to measure point-to-point TCP stream

bandwidths between all pairs of cluster nodes [32]. This enables estimating the relative locality

of nodes and arriving at a reasonable inference regarding the rack topology of the cluster.

1.5.4 Synchronization
Distributed tasks should be allowed to simultaneously operate on shared data without corrupting

data or causing any inconsistency. For instance, GraphLab allows multiple tasks to operate on

different vertices of the same graph simultaneously. This might lead to race-conditions whereby

two tasks might try to modify data on a shared edge at the same time, resulting in a corrupted

value. Consequently, synchronization solutions for providing distributed mutual exclusive ac-

cesses by tasks will be required. Synchronization acts as a mechanism through which program-

mers can control the sequence of operations (reads and writes) that are performed by tasks. As

discussed in Section 1.4.2.1, there are three types of synchronization methods that are in wide

use, semaphores, locks and barriers. The efficiency of such methods is a critical goal in devel-

oping distributed programs. For instance, as pointed out in Section 1.4.2.1 and exemplified by

the BSP model (see Section 1.4.3), a barrier defines a point at which no task is allowed to con-

tinue unless all other tasks reach that point. While this is easy to implement, the whole execution

time of a distributed program becomes dependent on the slowest task. In distributed systems

such as the cloud, where heterogeneity is the norm, this can cause serious performance degrada-

tion. The challenge becomes how to apply synchronization methods and at the same time avert

performance degradation.

In addition to ensuring mutual exclusion, there are other properties that need to be guaranteed

for distributed programs when it comes to synchronization. To start with, if one task shows

interest in getting access to a critical section, eventually it should succeed. If two tasks show

interest in getting access to a critical section simultaneously, one of them should only succeed.

This is denoted as the deadlock-free property and has to be delivered by any mutual exclusion

mechanism. Things, however, might not go always as expected. For instance, if task A succeeds

in acquiring lock1 and, at about the same time, task B succeeds in acquiring lock2; then if task A

attempts to acquire lock2 and task B attempts to acquire lock1, we end up with what is known as

a deadlock. Avoiding deadlocks is a real challenge in developing distributed programs, especially

when the number of tasks is scaled up. To build upon the example of tasks A and B, let us assume
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a larger set of tasks A, B, C, Z. In ensuring mutual exclusion, task A might wait on task B, if B

is holding a lock required by A. In return, task B might wait on task C, if C is holding a lock

required by B. The ”wait on” sequence can carry on all the way up to task Z. Specifically, task

C might wait on task D, and task D might wait on task E, all the way until task Y, which might

also wait on task Z. Such a ”wait on” chain is usually referred to as transitive closure. When

a transitive closure occurs, a circular wait is said to arise. Circular waits lead normally to stark

deadlocks that might bring the whole distributed programs/systems to grinding halts. Lastly, we

note that the ”wait on” relation is at the heart of every mutual exclusion mechanism. In particular,

no mutual exclusion protocol can preclude it; no matter how clever it is [36]. In normal scenarios,

a task expects to ”wait on” for a limited (reasonable) amount of time. But what if a task that is

holding a lock/token crashes? This suggests another major challenge that distributed programs

need to address, that is, fault-tolerance.

1.5.5 Fault-tolerance

A basic feature that distinguishes distributed systems such as the cloud from uniprocessor systems

is the concept of partial failures. Specifically, in distributed systems if a node or component

fails, the whole system can continue functioning. On the other hand, if one component (e.g.,

the RAM) fails in a uniprocessor system, the whole system will fail. A crucial objective in

designing distributed systems/programs is to construct them in a way that they can automatically

tolerate partial failures without seriously affecting performance. A key technique for masking

faults in distributed systems is to use hardware redundancy such as the RAID technology [56]. In

most cases, however, distributed programs cannot only depend on the underlying hardware fault-

tolerance techniques of distributed systems. Thus, they usually apply their own fault-tolerance

techniques. Among these techniques is software redundancy.

A common type of software redundancy is task redundancy (or resiliency or replication).

Task replication is applied as a protection against task failures. In particular, tasks can be repli-

cated as flat or hierarchical groups, exemplified in Fig. 1.15. In flat groups (see Fig. 1.15 (a)), all

tasks are identical in a sense that they all carry the same work. Eventually, only the result of one

task is considered and the other results are discarded. Obviously, flat groups are symmetrical and

preclude single point of failures (SPOFs). Particularly, if one task crashes, the application will

stay in business, yet the group will become smaller until recovered. However, if for some applica-

tions, a decision is to be made (e.g., acquiring a lock), a voting mechanism might be required. As

discussed earlier, voting mechanisms incur implementation complexity, communication delays

and performance overheads.

A hierarchical group (see Fig. 1.15 (b)) usually employs a coordinator task and specifies the
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Figure 1.15: Two classical ways to employ task redundancy. (a) A flat group of tasks. (b) A hierarchical group of tasks with
a central process (i.e., T0, whereby Ti stands for task i.).

rest of the tasks as workers. In this model, when a user request is made, it gets first forwarded to

the coordinator who, in return, decides which worker is best suited to fulfill it. Clearly, hierarchi-

cal groups reflect opposite properties as compared to flat ones. In particular, the coordinator is

an SPOF and a potential performance bottleneck (especially in large-scale systems with millions

of users). In contrast, as long as the coordinator is protected, the whole group remains func-

tional. Furthermore, decisions can be easily made, solely by the coordinator without bothering

any worker or incurring communication delays and performance overheads.

As a real example, Hadoop MapReduce applies task resiliency to recover from task failures

and mitigate the effects of slow tasks. Specifically, Hadoop MapReduce suggests monitoring and

replicating tasks in an attempt to detect and treat slow/faulty ones. To detect slow/faulty tasks,

Hadoop MapReduce depends on what is denoted as the heartbeat mechanism. As pointed out

earlier, MapReduce adopts a master/slave architecture. Slaves (or TaskTrackers) send their heart-

beats every 3 seconds (by default) to the master (or the JobTracker). The JobTracker employs

an expiry thread that checks these heartbeats and decides whether tasks at TaskTrackers are dead

or alive. If the expiry thread does not receive heartbeats from a task in 10 minutes (by default),

the task is deemed dead. Otherwise, the task is marked alive. Alive tasks can be slow (referred

interchangeably to as stragglers) or not-slow. To measure the slowness of tasks, the JobTracker

calculates task progresses using a progress score per each task between 0 and 1. The progress

scores of Map and Reduce tasks are computed differently. For a Map task, the progress score is

a function of the input HDFS block read so far. For a Reduce task the progress score is more



30 CHAPTER 1.

Initial state A checkpoint

Message sent from 

process Q to process P

D1: A recovery line D2: Not a recovery line

A failure

The two local checkpoints at P and Q jointly form a  

distributed checkpoint

P

m1

m2

Q
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inconsistent. Specifically, D2’s checkpoint at Q indicates that m2 has been received, while D2’s checkpoint at P does not indicate
that m2 has been sent.

involved. To elaborate, the execution of a Reduce task is split into three main stages, the Shuf-

fle, the Merge & Sort, and the Reduce stages. Hadoop MapReduce assumes that each of these

stages accounts for 1/3 of a Reduce task’s score. Per each stage, the score is the fraction of

data processed so far. For instance, a Reduce task halfway through the Shuffle stage will have a

progress score of 1/3 × 1/2 = 1/6. On the other hand, a Reduce task halfway through the Merge

& Sort stage will have a progress score of 1/3 + (1/2 × 1/3) = 1/2. Finally, a Reduce task halfway

through the Reduce stage will have a progress score of 1/3 + 1/3 + (1/3 × 1/2) = 5/6. After slow

tasks are detected, corresponding backup (or speculative) tasks are run simultaneously. Hadoop

allows a maximum of one speculative task per an original slow task. The speculative tasks com-

pete with the original ones and optimistically finish earlier. The tasks that finish earlier, being

speculative or original, are committed while the others are killed. This type of task resiliency is

known in Hadoop MapReduce as speculative execution. Speculative execution is turned on by

default in Hadoop, but can be enabled or disabled independently for Map and Reduce tasks, on

a cluster-wide basis or on a per-job basis. To this end, we indicate two points: (1) speculative

tasks are identical due to running the same function on the same data, and (2) no coordinator task

is specified among the speculative tasks, yet a coordinator is still used, but not from among the

tasks (i.e., the JobTracker). As such, we refer to the strategy adopted by Hadoop MapReduce as

a hybrid of flat and hierarchical task groups.

Fault tolerance in distributed programs is not only concerned with tolerating faults, but further

with recovering from failures. The basic idea of failure recovery is to replace a flawed state with

a flaw-free state. One way to achieve this is by using backward-recovery. Backward-recovery

requires that the distributed program/system is brought from its present flawed state to a previ-

ously correct state. This can be accomplished by recording the state at each process from time to

time. Once a failure occurs, recovery can be started from the last recorded correct state, typically
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Figure 1.17: The domino effect that might result from rolling back each process (e.g., processes P and Q) to a saved local
checkpoint in order to locate a recovery line. Neither D1, D2 nor D3 are recovery lines because they exhibit inconsistent global
states.

denoted as the recovery line. Every time the state is recorded at a process, a checkpoint is said to

be obtained. The checkpoints of a distributed program at different processes in a distributed sys-

tem are known as a distributed checkpoint. The process of capturing a distributed checkpoint is

not easy for one main reason. Specifically, a distributed checkpoint needs to maintain a consis-

tent global state. More precisely, a distributed checkpoint should maintain the property that if a

process P has recorded the receipt of a message, m, then there should be another process Q that

has recorded the sending of m. After all, m should have been sent from somewhere. Fig. 1.16

demonstrates two distributed checkpoints, D1, which maintains a consistent global state and D2,

which does not maintain a consistent global state. The D1’s checkpoint at Q indicates that Q has

received a message m1, and the D1’s checkpoint at P indicates that P has sent m1, hence, making

D1 consistent. In contrary, the D2’s checkpoint at Q indicates that message m2 has been received,

and the D2’s checkpoint at P does not indicate that m2 has been sent from P. Therefore, D2 cannot

be treated as a recovery line due to being inconsistent.

The distributed program/system can inspect whether a certain distributed checkpoint is consis-

tent or not by rolling back each process to its most recently saved state. When local states jointly

form a consistent global state, a recovery line is said to be discovered. For instance, after a fail-

ure, the system exemplified in Fig. 1.16 will roll back until hitting D1. As D1 reflects a global

consistent state, a recovery line is said to be discovered. Unfortunately, the process of cascaded

rollbacks is challenging since it might lead to what is called the domino effect. As a specific

example, Fig. 1.17 exhibits a case where a recovery line cannot be found. In particular, every

distributed checkpoint in Fig. 1.17 is indeed inconsistent. This makes distributed checkpointing

a costly operation which might not converge to an acceptable recovery solution. Accordingly,

many fault-tolerant distributed systems combine checkpointing with message logging. One way

to achieve that is by logging messages of a process before sending them off and after a checkpoint

has been taken. Obviously, this solves the problem of D2 at Fig. 1.16, for example. In particular,
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after the D2’s checkpoint at P is taken, the send of m2 will be marked in a log message at P, which

if merged with D2’s checkpoint at Q, can form a global consistent state. Apart from distributed

analytics engines, Hadoop Distributed File System (HDFS) combines distributed checkpointing

(i.e., the image file) and message logging (i.e., the edit file) to recover slave (or NameNode in

HDFS’s parlance) failures [27]. As examples from analytics engines, distributed checkpointing

alone is adopted by GraphLab, while message logging and distributed checkpointing combined

together are employed by Pregel.

1.5.6 Scheduling
The effectiveness of a distributed program hinges on the manner in which its constituent tasks

are scheduled over distributed machines. Scheduling in distributed programs is usually catego-

rized into two main classes, task scheduling and job scheduling. To start with, as defined in

Section 1.2, a job can encompass one or many tasks. Tasks are the finest unit of granularity

for execution. Many jobs from many users can be submitted simultaneously for execution on a

cluster. Job schedulers decide on which job should go next. For instance, Hadoop MapReduce

adopts a First In, First Out (FIFO) job scheduler, whereby jobs are run according to the order

of which they have been received. With FIFO, running jobs cannot be preempted so as to allow

waiting jobs to proceed and, consequently, achieve certain objectives (e.g., avoiding job starva-

tions and/or sharing resources effectively). As a result, simultaneous sharing of cluster resources

is greatly limited. In particular, as long as a job occupies the whole cluster resources, no other

job is allowed to carry on. That is, the next job in the FIFO work queue is not allowed to start up

unless some resources become free and the currently running job has no more tasks to execute.

Clearly, this might lead to a fairness issue wherein a very long job can block the whole cluster for

a very long time starving all small jobs. Hadoop MapReduce, however, employs multiple other

job schedulers besides FIFO (e.g., Capacity [28] and Fair [29] schedulers). After a job is granted

the cluster, the decision morphs into how the job’s tasks should be scheduled. Tasks can be

scheduled either close to the data that they are supposed to process or anywhere. When tasks are

scheduled nearby their data, locality is said to be exploited. For example, Hadoop MapReduce

schedules Map tasks in the vicinity of their uniform-sized input HDFS blocks and Reduce tasks

at any cluster nodes, irrespective of the locations of their input data. As opposed to MapReduce,

Pregel and GraphLab do not exploit any locality when scheduling tasks/vertices.

Task schedulers must account for the heterogeneity of the underlying cloud or, otherwise, per-

formance might degrade significantly. To elaborate, similar tasks that belong to the same job can

be scheduled at nodes of variant speeds in a heterogeneous cloud. As reiterated in Sections 1.4.3

and 1.5.1, this can create load-imbalance and make jobs move at the pace of their slowest tasks.

Strategies such as speculative execution in Hadoop MapReduce can (minimally) address such
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a challenge (see Section 1.5.5). In addition to considering heterogeneity, task schedulers must

seek to enhance system utilization and improve task parallelism. Specifically, tasks should be

uniformly distributed across cluster machines in a way that fairly utilizes the available cluster

resources and effectively increases parallelism. Obviously, this presents some contradictory ob-

jectives. To begin with, by evenly distributing tasks across cluster machines, locality might be

affected. For instance, machines in a Hadoop cluster can contain different numbers of HDFS

blocks. If at one machine, a larger number of HDFS blocks exist as opposed to others, locality

would entail scheduling all respective Map tasks at that machine. This might make other ma-

chines less loaded and utilized. In addition, this can reduce task parallelism as a consequence

of accumulating many tasks on the same machine. If locality is relaxed a little bit, however,

utilization can be enhanced, loads across machines can be balanced and task parallelism can be

increased. Nonetheless, this would necessitate moving data towards tasks, which if done inju-

diciously, might increase communication overhead, impede scalability and potentially degrade

performance. In fact, with datacenters hosting thousands of machines, moving data frequently

towards distant tasks might become one of the major bottlenecks. As such, an optimal task

scheduler would strike a balance between system utilization, load balancing, task parallelism,

communication overhead and scalability so as performance is improved and costs are reduced.

Unfortunately, in practice, this is very hard to accomplish. In reality, most task schedulers attempt

to optimize one objective and overlook the others.

Another major challenge when scheduling jobs and tasks is to meet what is known as Service-

Level Objectives (SLOs). SLOs reflect the performance expectations of end-users. Amazon,

Google and Microsoft have identified SLO violations as a major cause of user dissatisfaction [31,

64, 79]. For example, SLO can be expressed as a maximum latency for allocating the desired

set of resources to a job, a soft/hard deadline to finish a job, or GPU preferences of some tasks,

among others. In multi-tenant heterogeneous clusters, SLOs are hard to achieve, especially upon

the arrival of new jobs while others are executing. This might require suspending currently run-

ning tasks in order to allow the newly arrived ones to proceed and, subsequently, meet their

specified SLOs. The capability of suspending and resuming tasks is referred to as task elasticity.

Unfortunately, most distributed analytics engines at the moment; including Hadoop MapReduce,

Pregel and GraphLab do not support task elasticity. Making tasks elastic is quite challenging. It

demands identifying safe points where a task can be suspended. A safe point in a task is a point

at which the correctness of the task is not affected, and its committed work is not all repeated

when it is suspended then resumed. In summary, meeting SLOs, enhancing system utilization,

balancing load, increasing parallelism, reducing communication traffic and facilitating scalabil-

ity are among the objectives that make job and task scheduling one of the major challenges in
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developing distributed programs for the cloud.

1.6 Summary

To this end, we conclude our discussion on distributed programming for the cloud. As a recap,

we commenced our treatment for the topic with a brief background on the theory of distributed

programming. Specifically, we categorized programs into sequential, parallel, concurrent and

distributed programs, and recognized the difference between processes, threads, tasks and jobs.

Second, we motivated the case for distributed programming and explained why cloud programs

(a special type of distributed programs) are important for solving complex computing problems.

Third, we defined distributed systems and indicated the relationship between distributed systems

and clouds. Fourth, we delved into the details of the models that cloud programs can adopt. In

particular, we presented the distributed programming (i.e., shared-memory or message-passing),

the computation (i.e., synchronous or asynchronous), the parallelism (i.e., graph-parallel or data-

parallel), and the architectural (i.e., master/slave or peer-to-peer) models in detail. Lastly, we

discussed the challenges with heterogeneity, scalability, communication, synchronization, fault-

tolerance and scheduling which are encountered when constructing cloud programs.

Throughout our discussion on distributed programming for the cloud, we also indicated that

it is extremely advantageous to relieve programmers from worrying about specifying and im-

plementing the distributed programming model, the computation model, the architectural model,

the graph or data partitioning algorithm (e.g., file striping or edge cut metric), the fault-tolerance

mechanism (i.e., task resiliency and/or distributed checkpointing and/or message logging), the

low level synchronization methods (e.g., semaphores, locks and/or barriers) and properties (e.g.,

avoiding deadlocks and transitive closures), and the job and task scheduling algorithms (e.g.,

FIFO, locality-aware and elastic schedulers). Designing, developing, verifying and debugging all

(or some of) these requirements might induce tremendous correctness and performance hurdles,

let alone the time and resources that need to be invested and the inherent difficulty involved. As

a consequence, we presented Hadoop MapReduce, Pregel and GraphLab as being easy-to-use,

effective and popular distributed analytics engines for building cloud programs.

Table 1.2: A Comparison Between the Hadoop MapReduce, the Pregel and the GraphLab Analytics Engines.
Aspect Hadoop MapReduce Pregel GraphLab

Programming Model Shared-Memory Message-Passing Shared-Memory
Computation Model Synchronous Bulk-Synchronous Asynchronous
Parallelism Model Data-Parallel Graph-Parallel Graph-Parallel

Architectural Model Master/Slave Master/Slave Peer-To-Peer
Task/Vertex Scheduling Model Pull-Based Push-Based Push-Based

Hadoop MapReduce, Pregel and GraphLab were created to remove the burdens of creating
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and managing distributed programs from the shoulders of users/developers and delegate all that

to the analytics engines themselves. Specifically, such engines eliminate the need for users to: (1)

design and implement the programming model and overcome all its associated synchronization

and consistency issues, (2) develop the computation model, (3) specify the parallelism model and

encode the accompanying partitioning and mapping algorithms, (4) architect the underlying orga-

nization (i.e., master-slave or peer-to-peer), and (5) apply the task/vertex scheduling strategy (i.e.,

push-based or pull-based). With respect to all these aspects, Table 1.2 compares Hadoop MapRe-

duce, Pregel and GraphLab. In short, Hadoop MapReduce is regarded as a data-parallel engine,

while Pregel and GraphLab are characterized as graph-parallel engines. Furthermore, while both

MapReduce and Pregel suggest synchronous computation models, GraphLab promotes an asyn-

chronous model. MapReduce suits more loosely-connected/embarrassingly parallel applications

(i.e., applications with no or little dependency/communication between the parallel tasks), which

involve vast volumes of data and non-iterative computations. On the other hand, Pregel and

GraphLab suit more strongly-connected applications (i.e., applications with high degrees of de-

pendency between parallel tasks/vertices), which involve iterative computations and little data

per a task/vertex. Asynchronous computation can lead to theoretical and empirical gains in al-

gorithms and system performance. Thus, for graph and iterative oriented applications that do

not converge synchronously (e.g., greedy graph coloring) or converge way faster when executed

asynchronously (e.g., dynamic PageRank), GraphLab becomes a superior option as opposed to

Pregel. Finally, for graph and iterative oriented applications that converge faster if serializabil-

ity (which entails that for every parallel/distributed execution, there is an equivalent sequential

execution) is ensured or even necessitate serializability for correctness (e.g., Gibbs sampling, a

very common algorithm in Machine Learning and Data Mining problems), GraphLab remains a

supreme alternative versus Pregel.
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