
Multithreaded Layer-wise Training of Sparse Deep
Neural Networks using Compressed Sparse Column

Mohammad Hasanzadeh Mofrad, Rami Melhem
University of Pittsburgh

Pittsburgh, USA
{moh18, melhem}@pitt.edu

Yousuf Ahmad and Mohammad Hammoud
Carnegie Mellon University in Qatar

Doha, Qatar
{myahmad, mhhamoud}@cmu.edu

Abstract—Training a sparse Deep Neural Network (DNN) is
inherently less memory-intensive and processor-intensive com-
pared to training a dense (fully-connected) DNN. In this paper,
we utilize Sparse Matrix-Matrix Multiplication (SpMM) to train
sparsely-connected DNNs as opposed to dense matrix-matrix
multiplication used for training dense DNNs. In our C/C++ im-
plementation, we extensively use in-memory Compressed Sparse
Column (CSC) data structures to store and traverse the neural
network layers. Also, we train the neural network layer by layer,
and within each layer we use 1D-Column partitioning to divide
the computation required for training among threads. To speedup
the computation, we apply the bias and activation functions
while executing SpMM operations. We tested our implementation
using benchmarks provided by MIT/IEEE/Amazon HPEC graph
challenge [1]. Based on our results, our single thread (1 core)
and multithreaded (12 cores) implementations are up to 22×,
and 150× faster than the serial Matlab results provided by the
challenge. We believe this speedup is due to the 1D-Column
partitioning that we use to balance the computation of SpMM
operations among computing threads, the efficient mechanism
that we use for memory (re)allocation of sparse matrices, and
the overlapping of the accumulation of SpMM results with the
application of the bias and activation functions.

I. INTRODUCTION

Deep Neural networks (DNNs) [2], [3] have influenced dif-
ferent computational fields such as natural language processing
and computer vision with their ability to extract useful features
within the data across different layers. Traditionally, DNNs’
layers are fully (densely) connected where each neuron in
one layer is connected to all neurons in the next layer. The
full-connectedness characteristic of these networks requires
a significant amount of memory and processing power. In
addition, utilizing activation functions such as Rectified Linear
Unit (ReLU) results in deactivated neurons (having zero value)
and sparse outputs for hidden layers which is wasteful if
treated densely. Hence, the first question that arises here is
”do we really need a dense (fully-connected) DNN?”. The
answer is no, because a sparsely connected DNN has less
training complexity and memory requirement while offering
comparable accuracy to a dense DNN [4]. Then, the next
question is ”how to encode the sparsity of hidden layers of a
sparse DNN in an efficient way so that we can train the DNN
quickly?”. The answer to this question is to use compressed
sparse formats which offer fast sequential access to sparse
matrices [5].

In this work, we introduce a multithreaded implementation
that trains sparse DNNs. We utilize C/C++ and OpenMP [6] to
parallelize the training and building of DNNs. In addition, we
employ Compressed Sparse Column (CSC) [5] to store the
layers of the sparse DNNs. Moreover, we use a column by
column SpMM algorithm with Sparse Accumulators (SPAs)
[5] to train them. In our implementation, the SpMM is done
layer by layer, calculating and propagating the weights through
the neural network. The SpMM computation done per layer is
partitioned using 1D-Column partitioning, with each partition
assigned to a unique thread (core). Experiments are done on a
machine with a 12-core Intel Xeon CPU (@ 3.40GHz speed).
Our multithreaded implementation is up to 150× faster than
the provided serial Matlab results from the challenge [1] and
up to 140× compared to a serial Matlab running at the same
machine where we conducted our experiments.

The rest of this paper is organized as follows. Section II
introduces the problem statement. Section III introduces a
brief background. Section IV describes the challenges we have
faced and overcame in our implementation. In Section V, we
discuss the details of our implementation. Section VI describes
the experimental setup and reports the performance of our
multithreaded implementation. Finally, Section VII concludes
the paper.

II. PROBLEM STATEMENT

Neural network layers can be represented using the ”triplet
format”, where a triplet i, j, w implies a connection from
neuron i of a layer to neuron j of the following layer with
w as the weight of their connection. In its simplest form,
training a sparse DNN using forward propagation boils down
to an iterative SpMM operation from linear algebra domain as
shown in (1):

YL+1 = h((YL ×WL) + bL) (1)

where L is the index of hidden layer which is the same as
the iteration SpMM is at; Y0 is the input layer, YL is an n×m
input sparse matrix, WL is the Lth m×p hidden layer matrix,
and YL+1 is an n× p sparse matrix resulting from a previous
SpMM. The function h is a nonlinear mapping function such
as the ReLU activation function h(y) = max(y, 0). Finally,
bL is a one dimensional column vector of biases for Lth layer.

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

III. BACKGROUND

A. Deep Learning

Deep learning [2] has delivered promising advancement in
many large-scale practical problems such as natural language
processing [7], [8], speech recognition [9], [10], and computer
vision [11], [12]. Emergence of virtual assistants, self-driving
cars, and online item recommendation systems are dramati-
cally accelerated by the research conducted in deep learning.
This dramatic change in IT industry is significantly accredited
to the research on the scalability of dense neural networks via
revamping their architectures. Often, these complex architec-
tures can simply be represented by graphs where the relational
representation of graphs makes it possible to exploit graph
structures for weight propagation [13].

B. Sparse Matrix-Matrix Multiplication

Distributed training of a sparse deep neural network can
essentially be reduced to the problem of parallel execution of
matrix - matrix multiplication primitive. The theory of dis-
tributed matrix - matrix multiplication spans over decades of
research with Cannon’s algorithm [14] and Scalable Universal
Matrix Multiplication Algorithm (SUMMA) [15] as examples
of parallel dense implementations. Gustavson algorithm [16],
Sparse Accumulator (SPA) [5], sparse Cannon [17], and Sparse
SUMMA [18] are suggested for Sparse Matrix-Matrix Multi-
plication (SpMM) [19].

SpMM, C = A × B is a widely used operation, where
the results of multiplying two input sparse matrices A and
B produces a sparse output matrix C and the dimensions
of A, B and C are n × m, m × p and n × p, respectively
[20]. The matrices, A, B, and C are commonly stored using
Compressed Sparse Column (CSC), which essentially stores
only the nonzero elements [20].

C. Compressed Sparse Column Format

The Compressed Sparse Column (CSC) [5] format stores
an n×m input matrix A using three one dimensional arrays
JA, IA, and V A. JA is an array of column pointers, IA is
an array of row numbers, and V A is an array that contains
the nonzero values (or weights) in A. As such, |JA| = n+1,
|IA| = nnz, and |V A| = nnz, where n is the number of rows
and nnz is the number of nonzero elements of A. In case of
a highly sparse matrix, CSC can significantly save memory,
because CSC has space requirement of n+2nnz+1, whereas a
dense matrix has n×m space requirement. Also, CSC provides
column-major sequential access to A’s data which facilitates
the SpMM operation as well.

D. 1D-Column Matrix Partitioning

Matrix partitioning divides and distributes a matrix among
multiple working threads. Having t threads, 1D-Column par-
titioning, partitions an n×m matrix A into t partitions where
each partition has n rows and m/t columns. Figure 1a shows
how matrix A is tiled into four partitions. During execution,
each partition is assigned to a unique thread. Figure 1b shows
the assignment of four threads to tiles using 1D-Column.

(a) (b)

Fig. 1: (1a) 1D-Column partitioning, and (1b) 1D-Column
thread assignment for t = 4 threads.

IV. SPMM IMPLEMENTATION CHALLENGES

In this section we discuss the challenges we have solved
in order to design our multithreaded program for sparse
DNN training. These challenges include the SpMM algorithm
selection and memory allocation for storing the output matrix.

A. Choice of SpMM Algorithm

Our first challenge to run the SpMM was to find an efficient
algorithm to execute C = A × B. Gustavson algorithm [16]
is a well-known SpMM algorithm that multiplies rows of A
with columns of B and stores the results in rows of C. If
we compress A using Compressed Sparse Row (CSR) and B
using CSC, we can directly multiply rows of A by columns
of B and store the results into a CSR representation of C row
by row. The advantage of this algorithm is that C is created
row by row at once and we can avoid contention during the
accumulation of results. However, this approach is not efficient
because for all nonzero entries of ith row of A, we should
lookup identical nonzero entries of jth column of B (∃ Cij

iff ∃ Ai: ∧ B:j ; : denotes all rows or columns). Thus, the
approximated number of lookups is

∑
i,j (nz(Ai:) + nz(B:j))

where nz() returns the number of nonzero elements of ith/jth

row/column. This algorithm is clearly not efficient because
while multiplying a row of A by a column of B, it needs to
exhaustively scan all nonzero entries of those row and column
to match the identical entries.

A better way to implement SpMM is to run the multipli-
cation of A and B column by column and store the partial
results in a Sparse Accumulator (SPA) [5] which is later
used to construct a column of C. In this approach, A and B
are stored in CSC formats (to provide column-major access),
then columns of B are multiplied by columns of A and the
results are accumulated in a SPA vector temporarily. In other
words, Bj (jth column of B) is multiplied by all columns
of A and the results are gradually accumulated in a SPA
as specified by the nonzero rows of Bj . Eventually, after
finishing multiplying Bj by A, the SPA will form Cj (jth

column of C) [20]. The approximated number of operations
for this approach is

∑
j (nz(B:j)× (

∑
k nz(A:k) iff ∃Bij))

which is extremely less than the number of lookups of the
former described method. Because Bj can precisely index A,
avoiding any extra calculation for matching nonzero entries.

2
978-1-7281-5020-8/19/$31.00 ©2019 IEEE

B. Choice of SpMM Output Matrix Allocation

The second challenge is to find an upper bound for the size
of C. A simple and accurate way to approximate this is to run
a symbolic SpMM before running the real SpMM operation
[21]. The more complex way is to dynamically reallocate C as
SpMM operation executes [22]. The symbolic method requires
an extra pass over A and B to calculate the size of C but
can allocate the exact required memory, whereas the dynamic
method does not need that extra pass, but it imposes memory
allocation overhead during SpMM operations which tends to
be a performance bottleneck. We choose the former method
as we found out this approach is faster than fusing memory
allocation with SpMM execution on a multicore machine.

V. MULTITHREADED LAYER-WISE TRAINING OF SPARSE
DEEP NEURAL NETWORKS

Basically, training a neural network can be translated into an
iterative SpMM, YL+1 = h((YL×WL)+bL) where the number
of iterations is the number of hidden layers of the neural
network, YL and WL are the Lth input weights and hidden
layer, YL+1 is the results of the SpMM, bL is the bias vector,
and h is the activation function. Note that in our algorithms A,
B, and C are aliases for YL, WL, and YL+1 (or Z). Algorithm
1 shows the pseudocode of our multithreaded approach. The
two key methods in this pseudocode are SPMM SYM() that
estimates an upper bound for the required memory, and
SPMM() that runs the numeric SpMM. In the following, we
discuss the details of our implemented approach.

A. Forking and Joining Threads

Before starting the main loop for training the DNN, we use
FORK() to launch t threads and finally after the training loop,
JOIN() is used to yield threads. We use OpenMP [6] to support
multithreading in our implementation. Algorithm 2 shows
how columns of WL are partitioned and distributed among
threads using 1D-Column partitioning. Given, the outer-loop
of SPMM() is an independent loop based on the columns
of WL, 1D-Column can break the computation into highly
parallelized blocks without need for any concurrency control
mechanism while executing the SpMM.

B. Symbolic SpMM

The symbolic SpMM calculates the number of nonzero
elements (nnz) results from multiplying YL by WL. Note that
each thread has a separate SPA to allow threads accumulate
concurrently. As shown in Algorithm 3, in SPMM SYM()
each qth thread iterates over a unique subset of columns of WL

(or B in pseudocode) and intercept the corresponding entries
of YL (or A in pseudocode). If there are entries that result
into nonzero entries, the associated SPA entry will be set to
one. Later, each qth thread gathers its SPA while multiplying
a column of WL by the entire YL, then updates its local nnzq ,
and finally resets the SPA values. After running the symbolic
SpMM, the maximum size of SpMM result is calculated.
We treat this as maximum number of nonzeros that results
of SpMM might have (nnzmax) as the activation function

might also result into some zero entries. Note that memory
can become a huge performance bottleneck, if overallocated.
To avoid stressing the memory controller, after estimating the
size of Z, the REINIT() method is called to (re)allocate a CSC,
e.g., to grow/shrink the size of a currently allocated CSC.

Algorithm 1 Sparse DNN Training (YL+1 = h((YL×WL)+bL))

1: Y0 is the n×m input layer CSC
2: W is λ, m × p hidden layer CSCs i.e. λ is #layers &
m == p

3: Z is an n×p temporary CSC storing the results of SpMM
4: s is a t, n× 1 1D row SPA i.e. t is #threads
5: b is λ, 1×m 1D column bias vectors
6: h is the ReLU activation function
7: nnz is the number of nonzeros
8: nnzm is the maximum nnz
9: FORK(t)

10: for L = 0→ λ do
11: SPMM SYM(YL, WL, Z, sq , q) . Symbolic SpMM
12: SPMM(YL, WL, Z, sq , bL, q) . Numeric SpMM
13: JOIN()

Algorithm 2 Fork and Join Threads

1: function FORK(t)
2: For-loops convention is For(i = 0; i < n; i++)
3: for q = 0 to t do . Launch t threads
4: fork(q) . q as thread id of Tq
5: start cq ← (p/t) ∗ q . Start column
6: end cq ← start cq + (p/t) . End column
7: offsetq ← 0 . zero offset
8: nnzq ← 0
9: nnzmq ← 0 . Maximum nnz

10: function JOIN()
11: join() . Join threads

Algorithm 3 Symbolic SpMM

1: A = YL, B =WL, C = Z, s = sq
2: function SPMM SYM(A,B,C, s, q)
3: An×m and Bm×p are CSCs
4: C is the temporary empty or already allocated CSC
5: sn×1 is the dense SPA of Tq
6: for j = start cq to end cq do . 1D-col part.
7: for k = JAB [j] to JAB [j + 1] do
8: l← IAB [k]
9: for o = JAA[l] to JAA[l + 1] do

10: s[IAA[o]]← 1 . Accumulate SPA
11: for i = 0 to n do . Gather per column of B
12: if s[i] > 0 then
13: nnzmq

+←− 1
14: s[i]← 0

15: nnzm← 0 . maximum nnz
16: Barrier()
17: if q == 0 then
18: for k = 0 to t do . Calc. A×B output size
19: nnzm

+←− nnzmk

20: REINIT(Z,m, p, nnzm) . (Re)Allocate memory
21: Barrier()

3
978-1-7281-5020-8/19/$31.00 ©2019 IEEE

C. Numeric SpMM

The numeric SpMM (SPMM()) executes the real sparse
matrix multiplication. The result of this multiplication will
be used as an input for the next iteration. In Algorithm 4,
each thread iterates over a chunk of WL columns and column
by column multiplies columns of WL by the entire YL, and
accumulates the results into its corresponding SPA. After
finishing a column of WL, each thread gathers results from its
SPA and stores it into a column of Z (or C in pseudocodes).
Later, Z will be copied to YL+1 in order to be used for the next
layer. To save future computations, we overlap the SPA gather
with adding the bias vector bL and applying the activation
function h. Therefore, we do not need to have another pass
over Z to apply these operations. Applying the activation
function results into having some zero entries at the end of
each partition of Z because each thread pushes nonzero entries
from the beginning of its partition. Thus, a refinement step for
column pointer of Z is needed so that threads can skip the
trailing zero entries of their previous partitions.

D. CSC Refinement

After executing the SpMM, and applying the bias and
activation function, Z might have some zero entries because
of the threshold applied by the activation function. One way
to eliminate these zeros is to recompress and reallocate Z and
then copy it to YL+1 (we may skip the copy operation by
toggling between YL+1 and Z). The better way which we opt
for is to refine Z and then copy the nonzero entries of Z to
YL+1. In Algorithm 5, REFINE() method is called by each
thread where it includes updating the column pointer of Z
and then calculating an offset to skip the zero entries at the
end of each partition of Z. The output of the refinement step
is the number of nonzero entries of Z.

E. Copying CSCs

After computing the nnz of Z, thread zero will reallocate
YL+1 using REINIT() and then all threads start copying data
from their partitions in Z to their partitions in YL+1. From
Algorithm 6, the COPY() method can be run in parallel using
the combination of refined column pointers and offsets of zero
entries of Z. Therefore, we can construct the compressed YL+1

quickly in parallel.
Finally, the sequence of operations discussed so far from

Algorithm 1 are executed by all threads iteratively. In each
iteration, new weights (YL+1s) are computed and propagated
through layers of the neural network (WLs), and in essence
the neural network is trained. Since 1D-Column suits for
multithreading of matrix multiplication within each layer, our
approach trains the neural network one layer at a time. This
offers perfect multithreading per layer where all methods are
designed to execute in parallel on their designated partitions.

Algorithm 4 Numeric SpMM

1: A = YL, B =WL, C = Z, and s = sq, b = bL
2: function SPMM(A,B,C, s, b, q)
3: An×m, Bm×p and Cn×p are CSCs (JA, IA, V A)
4: sn×1 is the dense SPA of Tq
5: b1×m is the dense bias vector
6: for j = start ck to end ck do . 1D-col part.
7: for k = JAB [j] to JAB [j + 1] do
8: l← IAB [k]
9: for o = JAA[l] to JAA[l + 1] do

10: sq[IAA[o]]
+←− V AB [k]× V AA[o] . Acc.

11: for i = 0 to n do . Gather per column of B
12: if sq[i] > 0 then
13: sq[i]← h(sq[i] + b[j]) . Apply activation
14: if sq[i] > 0 then . Populate C
15: JAC [j + 1]

+←− 1
16: IAC [nnzq]← i
17: V AC [nnzq]← sq[i]

18: nnzq
+←− 1

19: sq[i]← 0

20: Barrier()
21: nnz = REFINE(Z, q) . Refine Z’s column pointer
22: if q == 0 then
23: REINIT(A,n, p, nnz)

24: Barrier()
25: COPY(A,Z, q) . Repopulate A using Z
26: Barrier()

Algorithm 5 Refining CSC’s Column Pointer

1: C = Z
2: function REFINE(C, q)
3: JAC [start cq] = 0
4: for k = 0 to q do
5: JAC [start cq]

+←− nnzk
6: offsetq

+←− (nnzmk − nnzk)
7: for j = start cq + 1 to end cq do
8: JAC [j]

+←− JAC [j − 1]

9: if q == (t− 1) then
10: JAC [end cq]

+←− JAC [end cq − 1]

11: nnz ← 0
12: if q == 0 then
13: for k = 0 to t do
14: nnz

+←− nnzkreturn nnz

Algorithm 6 Copying CSC C to CSC A

1: A = YL, C = Z
2: function COPY(A,C, q)
3: JAA[start cq]← JAC [start cq]
4: nnzq ← JAA[start cq]
5: for j = start cq to end cq do
6: JAA[j + 1]← JAA[j]
7: for i = JAC [j] to JAC [j + 1] do
8: JAA[j + 1]

+←− 1
9: IAA[nnzq]← IAC [i+ offsetq]

10: V AA[nnzq]← V AC [i+ offsetq]

11: nnzq
+←− 1

4
978-1-7281-5020-8/19/$31.00 ©2019 IEEE

VI. RESULTS

A. Experimental Settings

1) Hardware & Software: Experiments are run on a ma-
chine with a 12-core Intel Xeon CPU (@ 3.40GHz speed),
and 256 GB memory running Linux OS. Our multithreaded
program to train sparse DNNs is open source and freely
available to the public1. The program is written in C/C++.
We extensively use template metrprogramming to support
different weight data types. The core data structure we have
used is CSC, which is used to compress neural network
layers and perform multiplication on them. We have also
defined a dense vector data structure to represent bias and
SPA vectors. The memory management for all of our key
data structures is done by a base allocator class which is
backed by mmap() with 4KB pages. We also use mremap()
in order to shrink/grow size of CSCs storing hidden layers
after applying the activation function (or when reusing them).
We use OpenMP [6] #pragma omp parallel (without
dynamic task scheduling) to parallelize the symbolic and
numeric SpMM execution and CSC recompression precisely
based on the 1D-Column partitioning. On the same machine
we benchmarked our implementation, we use Matlab R2017a
64-bit [23] to run the serial Matlab code given by the challenge
[1] and reported a subset of its results.

2) Datasets: Datasets for the experiments are a set of sparse
DNNs provided by the IEEE HPEC challenge [1]. These
are synthetic sparse DNNs generated by RadiX-Net synthetic
sparse DNN generator [24] with 120, 480, and 1920 layers,
and 1024, 4096, 16384, and 65536 neurons per layer, and
32 connections per neuron. The largest dataset has 4.02B
connections (1920×65536×32). Also, the input to this neural
networks is MNIST hadwritten letters [25] which has 60K
instances. Furthermore, the correctness is checked using the
provided groundtruth data [1] where the nonzero rows of the
output layer are tested against the groundtruth data. We have
perfect inference score (100% correctness) for all datasets.

B. Runtime Comparison

Table I shows the Matlab results reported in graph challenge
draft [1] alongside results collected from running Matlab and
our C/C++ implementation on the 12-core Intel Xeon machine.
We only ran Matlab for half of the data points, because our
Matlab gives comparable results to the results reported in [1].
From Table I, running our developed C/C++ implementation
with one thread and 12 threads is up to 22× and 150× faster
than the serial Matlab results reported in [1], respectively.
Also, with single and 12 threads, we are up to 19× and 140×
faster than running Matlab on our 12-core machine.

The right half of Table I shows the strong scaling results,
where we increase the number of threads to process the
same sparse DNN. From this experiment, running our C/C++
implementation with 12 threads gives up to 7.2× speedup
compared to running it with a single thread. This shows our
implementation is highly scalable.

1The source code is available at https://github.com/hmofrad/SparseDNN

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 4 6 8 10 12

In
fe

re
n

ce
 R

at
e

#Threads (Cores)

1920x1024 1920x4096 1920x16384 1920x65536

× 1011

Fig. 2: Inference rate (#Inputs×#Edges/time) for different
DNN sizes (#Layers×#Neurons) and #threads

Here, the speedup against serial Matlab is significant due
to the utilized 1D-Column partitioning that breaks the entire
computation of each layer between threads while avoiding
concurrency control mechanisms. Also, mixing the steps for
applying the bias and activation function with SpMM execu-
tion helps us skip extra passes over the SpMM output.

C. Inference Rate Comparison
Figure 2 shows the inference rate for four DNNs, all with

1920 layers but different number of neurons including 1024,
4096, 16384, and 65536 neurons. The inference rate formula
is #Inputs×#Edges/time where #Inputs is the number
of input instances (60,000 for MNIST [25]), and #Edges
and time are the total number of DNN connections, and
runtime reported in Table I. From Figure 2, as we increase the
number of threads, the inference rate increases as well. From
this figure, our implementation has a decent training capacity
where by adding more threads, it can effectively train a neural
network faster.

VII. CONCLUSIONS

Sparse DNNs are reviving the old promise of scalable
training of neural networks by providing less memory re-
quirement and computation complexity while offering com-
parable classification accuracy. In this paper, we leverage
SpMM to implement a multithreaded program written in
C/C++ that trains sparse DNNs layer by layer. We tested our
implementation using MIT/IEEE/Amazon HPEC Sparse DNN
challenge datasets [1] and demonstrated that our multithreaded
C/C++ implementation outperforms the serial Matlab results
provided by the challenge by up to 150×. The 1D-Column
partitioning of CSC data structures, efficient memory alloca-
tion/reallocation mechanism, and overloaded SpMM execution
are among the implemented features that contributed to this
performance gain.

The scalability of the current system is limited. It can only
scale up within a single machine using multithreading [6].
Moving to a distributed system that uses Message Passing
Interface (MPI) [26] for scaling out is among our future
directions. Also, the core compression technique which is used
in this work is CSC, utilizing better compression techniques
such as Doubly Compressed Sparse Column [27] or Triply
Compressed Sparse Column [28] is also among our future
work.

5
978-1-7281-5020-8/19/$31.00 ©2019 IEEE

TABLE I: Runtime of different implementations for Sparse DNN Datasets. First Serial Matlab results are from
MIT/IEEE/Amazon HPEC 2019 Challenge [1]. Second Matlab results are from running Matlab on our utilized machine
with a 12-core Intel Xeon CPU (@ 3.40GHz). The rest are also from running our multithreaded C/C++ implementation on
the same 12-core machine with different number of threads.

Implementation Matlab [1] Matlab C/C++
#Threads (Cores) 1 1 1 2 4 6 8 10 12
Neurons Layers Edges Time(s) Time(s) Time (s)
1024 120 3932160 626 122.06 37.26 19.37 11.18 9.77 7.37 6.60 5.91
1024 480 15728640 2440 464.50 131.01 69.12 36.86 31.94 23.43 21.74 19.07
1024 1920 62914560 9760 1817.95 506.79 269.27 142.88 121.32 99.93 91.23 77.00
4096 120 15728640 2446 2392.79 145.48 78.63 44.32 30.30 29.24 26.70 23.26
4096 480 62914560 10229 10003.83 529.05 286.47 160.88 111.53 98.82 84.87 75.37
4096 1920 251658240 40245 40464.40 2147.98 1111.61 587.91 427.18 381.85 352.08 291.08
16384 120 62914560 10956 604.03 321.69 183.32 123.63 110.46 102.52 85.18
16384 480 251658240 45268 2067.13 1209.65 638.31 462.00 419.69 380.58 316.55
16384 1920 1006632960 179401 8919.98 4772.50 2536.70 1835.23 1733.85 1498.29 1245.41
65536 120 251658240 45813 2551.63 1422.26 787.85 558.90 472.98 397.48 377.00
65536 480 1006632960 202393 9716.59 5176.92 2910.20 2082.55 1654.41 1516.00 1357.36
65536 1920 4026531840 38260.04 20369.04 11348.16 7823.23 6740.40 6569.96 5341.21

VIII. ACKNOWLEDGMENTS

This publication was made possible by NPRP grant #7-
1330-2-483 from the Qatar National Research Fund (a member
of Qatar Foundation). This research was supported in part by
the University of Pittsburgh Center for Research Computing
through the resources provided. Finally, we thank the IEEE
HPEC Graph Challenge 2019 reviewers for their valuable
suggestions and comments.

REFERENCES

[1] J. Kepner, S. Alford, V. Gadepally, M. Jones, L. Milechin, R. Robi-
nett, and S. Samsi, “Sparse deep neural network graph challenge,” in
2019 IEEE High Performance Extreme Computing Conference (HPEC).
IEEE, 2019, pp. 1–7.

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[4] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Advances in neural information
processing systems, 2015, pp. 1135–1143.

[5] J. R. Gilbert, C. Moler, and R. Schreiber, “Sparse matrices in matlab:
Design and implementation,” SIAM Journal on Matrix Analysis and
Applications, vol. 13, no. 1, pp. 333–356, 1992.

[6] OpenMP, “The openmp api specification for parallel programming,”
https://www.openmp.org/.

[7] R. Collobert and J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” in Proceed-
ings of the 25th international conference on Machine learning. ACM,
2008, pp. 160–167.

[8] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and D. Mc-
Closky, “The stanford corenlp natural language processing toolkit,” in
Proceedings of 52nd annual meeting of the association for computa-
tional linguistics: system demonstrations, 2014, pp. 55–60.

[9] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg,
C. Case, J. Casper, B. Catanzaro, Q. Cheng, G. Chen et al., “Deep
speech 2: End-to-end speech recognition in english and mandarin,” in
International conference on machine learning, 2016, pp. 173–182.

[10] G. Hinton, L. Deng, D. Yu, G. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, B. Kingsbury et al., “Deep neural networks
for acoustic modeling in speech recognition,” IEEE Signal processing
magazine, vol. 29, 2012.

[11] F. Chollet, “Xception: Deep learning with depthwise separable convolu-
tions,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, pp. 1251–1258.

[12] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
European Conference on Computer Vision. Springer, 2016, pp. 525–
542.

[13] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61–80, 2008.

[14] L. E. Cannon, “A cellular computer to implement the kalman filter algo-
rithm,” Ph.D. dissertation, Montana State University-Bozeman, College
of Engineering, 1969.

[15] R. A. Van De Geijn and J. Watts, “Summa: Scalable universal matrix
multiplication algorithm,” Concurrency: Practice and Experience, vol. 9,
no. 4, pp. 255–274, 1997.

[16] F. G. Gustavson, “Two fast algorithms for sparse matrices: Multiplica-
tion and permuted transposition,” ACM Transactions on Mathematical
Software (TOMS), vol. 4, no. 3, pp. 250–269, 1978.

[17] A. Buluc and J. R. Gilbert, Linear algebraic primitives for parallel
computing on large graphs. University of California, Santa Barbara,
2010.

[18] A. Buluç and J. R. Gilbert, “Parallel sparse matrix-matrix multiplication
and indexing: Implementation and experiments,” SIAM Journal on
Scientific Computing, vol. 34, no. 4, pp. C170–C191, 2012.

[19] A. Azad, G. Ballard, A. Buluc, J. Demmel, L. Grigori, O. Schwartz,
S. Toledo, and S. Williams, “Exploiting multiple levels of parallelism
in sparse matrix-matrix multiplication,” SIAM Journal on Scientific
Computing, vol. 38, no. 6, pp. C624–C651, 2016.

[20] J. Kepner and J. Gilbert, Graph algorithms in the language of linear
algebra. SIAM, 2011.

[21] M. Deveci, C. Trott, and S. Rajamanickam, “Performance-portable
sparse matrix-matrix multiplication for many-core architectures,” in
2017 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW). IEEE, 2017, pp. 693–702.

[22] K. Matam, S. R. K. B. Indarapu, and K. Kothapalli, “Sparse matrix-
matrix multiplication on modern architectures,” in 2012 19th Interna-
tional Conference on High Performance Computing. IEEE, 2012, pp.
1–10.

[23] Mathworks, “Matlab,” https://www.mathworks.com/products/matlab.html.
[24] R. Robinett and J. Kepner, “Radix-net: Structured sparse matrices

for deep neural networks,” in 2019 IEEE International Parallel and
Distributed Processing Symposium Workshop (IPDPSW). IEEE, 2019.

[25] Y. LeCun, C. Cortes, and C. J.C. Burges, “The mnist database of
handwritten digits,” http://yann.lecun.com/exdb/mnist/.

[26] M. Forum, “Mpi forum,” https://www.mpi-forum.org/.
[27] A. Buluc and J. R. Gilbert, “On the representation and multiplication

of hypersparse matrices,” in 2008 IEEE International Symposium on
Parallel and Distributed Processing. IEEE, 2008, pp. 1–11.

[28] M. H. Mofrad, R. Melhem, Y. Ahamd, and M. Hammoud, “Efficient
distributed graph analytics using triply compressed sparse format,” in
2019 IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, 2019, pp. 1–11.

6
978-1-7281-5020-8/19/$31.00 ©2019 IEEE

