
Efficient Distributed Graph Analytics using Triply
Compressed Sparse Format

Mohammad Hasanzadeh Mofrad, Rami Melhem
University of Pittsburgh

Pittsburgh, USA
{moh18, melhem}@pitt.edu

Yousuf Ahmad and Mohammad Hammoud
Carnegie Mellon University in Qatar

Doha, Qatar
{myahmad, mhhamoud}@cmu.edu

Abstract—This paper presents Triply Compressed Sparse Col-
umn (TCSC), a novel compression technique designed specifically
for matrix-vector operations where the matrix as well as the
input and output vectors are sparse. We refer to these operations
as SpMSpV2. TCSC compresses the nonzero columns and rows
of a highly sparse input matrix representing a large real-world
graph. During this compression process, it encodes the sparsity
patterns of the input and output vectors within the compressed
representation of the sparse matrix itself. Consequently, it aligns
the compressed indices of the input and output vectors with
those of the compressed matrix columns and rows, thus eliminat-
ing the need for extra indirections when SpMSpV2 operations
access the vectors. This results in fewer cache misses, greater
space efficiency and faster execution times. We evaluate TCSC’s
performance and show that it is more space and time efficient
compared to CSC and DCSC, with up to 11× speedup. We
integrate TCSC into GraphTap, our suggested linear algebra-
based distributed graph analytics system. We compare GraphTap
against GraphPad and LA3, two state-of-the-art linear algebra-
based distributed graph analytics systems, using different dataset
scales and numbers of processes. We demonstrate that GraphTap
is up to 7× faster than these systems due to TCSC and the
resulting communication efficiency.

Index Terms—Triply compressed sparse column, TCSC, sparse
matrix, sparse vector, SpMV, SpMSpV2, big graphs, distributed
graph analytics

I. INTRODUCTION

Scalable systems for big data analytics are invaluable tools
for efficiently extracting insights from vast volumes of data
generated mainly by billions of Internet-connected users and
devices. Big data domains that focus on the relationships
between data points (e.g., the Web, social networks, rec-
ommendation systems, and road networks, to name just a
few) typically model such data as graphs. Most traditional
graph analytics systems employ vertex-centric computation
systems [1]–[10]. However, many recent systems have opted
alternatively for linear algebra-based computation systems,
leveraging decades of work by the HPC community on opti-
mizing the performance and scalability of basic linear algebra
operations [11]–[20].

In the language of linear algebra, a graph is usually rep-
resented as an adjacency matrix and most common graph
operations can be executed atop this matrix using a handful
of generalized basic linear algebra primitives [12]. Also, since
big real-world graphs tend to produce highly sparse matrices,

the data structures and algorithms associated with these op-
erations need to be highly optimized for sparsity. Often, such
optimizations are pursued independently, resulting in various
algorithms that do not inherently exploit certain common data
structural optimizations and vice-versa. In this paper, we show
that tightly coupling specific algorithmic and data structural
optimizations can yield significant performance and scalability
benefits in both centralized and distributed settings.

To elaborate, given an input graph, G, with n vertices, most
graph algorithms on G can be translated to an iteratively exe-
cuted Sparse Matrix-Vector (SpMV) operation, y = A ⊕.⊗ x,
where A is the transpose of G’s n × n adjacency matrix, x
and y are input and output vectors of length n, and ⊕.⊗ is a
pair of overridable additive and multiplicative operations [12].
The algorithms would then iteratively apply the results from y
back to x, looping until they converge or stopped after certain
numbers of iterations. The sparse matrix, A, is commonly
stored using some variant of Compressed Sparse Column
(CSC), which essentially compresses its nonzero elements into
an array [12], [21]. As for x and y, they may be stored in
either a dense or a sparse vector representation [12], [22]. The
dense representation stores an uncompressed array of length n.
However, real-world graph matrices tend to have significantly
many empty columns and rows, rendering the corresponding
x and y elements irrelevant during SpMV [19]. Therefore, a
sparse format maintains relevant elements only, either as a
compressed list of (index, value) pairs, or as an uncompressed
array paired with a bitvector that marks the relevant entries
only. While the compressed form is more space efficient,
it does not allow direct index accesses, for which purpose
additional index mapping metadata must be maintained.

One of our key observations is that indirect accesses and
cache misses on compressed x and y vectors incur substantial
performance penalties during SpMV execution. Motivated by
this, we present Triply Compressed Sparse Column (TCSC), a
new technique for co-compressing the sparse matrix together
with the sparse input and output vectors in a tightly-coupled
fashion. TCSC implicitly encodes the sparsity of the vectors
within the compressed sparse matrix data structure itself, while
being more space efficient overall compared to the popular and
asymptotically efficient Doubly Compressed Sparse Column
(DCSC) format [21], [23]. As such, not only does TCSC
enables direct index accesses on compressed x and y vectors,



it also does so without requiring any additional bitvectors or
index mapping metadata. With this in mind, we carefully co-
design the SpMV algorithm to take full advantage of TCSC’s
features and refer to this optimized operation as Sparse Matrix
- Sparse input and output Vectors (SpMSpV2). In short, TCSC
working in tandem with SpMSpV2 results in faster execution
times, fewer cache misses, and efficient space utilization.

We show that TCSC provides promising performance and
space efficiency on a single machine. Nonetheless, for han-
dling truly big graphs, TCSC needs to scale out to a distributed
setting. To this end, we introduce GraphTap, a new distributed
graph analytics system built around TCSC, which taps into
the sparsity of the matrix and the input and output vectors
offering thereby fast executions of SpMSpV2 kernels. Along-
side efficient computation, TCSC allows GraphTap to reduce
communication in a distributed setting via precluding the need
for exchanging index mapping metadata across machines. As
a result, GraphTap scales better in terms of both data and
cluster sizes when compared against the state-of-the-art dis-
tributed linear algebra-based graph analytics systems, namely,
GraphPad [18] and LA3 [19]. In summary, we demonstrate
that GraphTap is up to 4× faster than GraphPad and 7× faster
than LA3 using a range of standard graph analytics algorithms
on top of real-world and synthetic datasets.

The rest of the paper is organized as follows. In Section
II, we provide some background on related work. Section III
describes the motivation of the current work. In Section IV,
we elaborate on TCSC. GraphTap is introduced in Section V.
In Section VI, we report our experimental results and we
conclude in Section VII.

II. BACKGROUND

A. Linear Algebra-based Distributed Graph Analytics Systems

As pointed out in Section I, graph algorithms can be
translated into iterative linear algebra primitives (e.g., SpMV
operations). For instance, Pegasus [11], which is implemented
atop Hadoop, is one of the first distributed graph mining sys-
tems that supports SpMV operations. Alongside, CombBLAS
[13] is an edge-centric distributed graph analytics system that
offers a rich set of primitives via its API including SpMV and
Sparse Matrix-Matrix (SpMM) operations, among others. To
represent sparse matrices, CombBLAS uses DCSC [21].

GraphMat [17] is a multi-core graph analytics system,
which fills the gap between the performance and productivity
of graph analytics platforms. It abstracts a vertex program
through a generalized iterative SpMV operation. It uses DCSC
for representing sparse matrices and utilizes lists of (index,
value) pairs for representing sparse vectors. GraphPad [18]
(distributed GraphMat) uses OpenMP for scaling up (intra-
node scalability) and MPI for scaling out (inter-node scalabil-
ity). For this sake, it adopts a 2D tiling strategy [24], [25] to
distribute the adjacency matrix of a graph among machines.

Akin to GraphPad [18], LA3 [19] is a distributed linear
algebra-based graph analytics system, which partitions the
adjacency matrix of an input graph into a 2D grid of tiles and
stores each tile in a DCSC data structure. LA3 incorporates
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Fig. 1: (a) The input graph with 6 vertices and 8 edges. (b) The
edge list of the input graph. Each entry is an edge from the
source endpoint (Src) to the destination endpoint (Dst) with a
weight (Wgt). (c) The adjacency matrix of the graph. (d) The
transpose of the adjacency matrix denoted by A.

three optimizations, namely: 1) computation filtering, which
excludes subsets of trivial vertices out of the main loop of a
running graph application, 2) communication filtering, which
ensures that each vertex receives only the information that are
necessary for accurate calculations within the graph applica-
tion, and 3) pseudo-asynchronous computation and commu-
nication, which overlaps communication and computation to
expedite performance.

B. Column Compressed Sparse Formats

Graphs are highly sparse structures. Many linear-algebra
based graph processing systems use CSC or DCSC to store the
adjacency matrix of a graph since they are both space efficient
and fast to traverse [13], [17]–[19]1. We next delve deeper into
CSC and DCSC to set the stage for our proposed TCSC. We
use a running example of an adjacency matrix from Figure 1
to explain the CSC and DCSC formats.

1) CSC Format: Figure 2 shows the CSC representation of
matrix A from Figure 1. In CSC, JA is an array of column
pointers, IA is an array of row numbers, and V A is an array
that contains the nonzero values (or weights) in A. As such,
|JA| = n + 1, |IA| = nnz, and |V A| = nnz, where n is the
number of vertices and nnz is the number of edges. The space
requirement of CSC (without considering the space required
for storing vectors) is n + 2 nnz + 1.

1This is especially the case if the goal is to access the nonzero elements of
the matrix in column order. If, however, the goal is to access these nonzero
elements in row order, similar formats, namely, Compressed Sparse Row
(CSR) or Doubly Compressed Sparse Row (DCSR) [23] are typically used.
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for(j = 0; j < n; j++) {
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CSC Data Structures
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Fig. 2: CSC format for Figure 1d.
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JC 1 2 4 5

for(j = 0; j < nzc; j++) {
for(i = JA[j]; i < JA[j+1]; i++)

y[IA[i]] ⊕= (VA[i] ⊗ x[JC[j]])
}

x
n x 1

Fig. 3: DCSC format for Figure 1d.

The SpMV operation y = A ⊕.⊗ x is a widely used linear
algebra operation. In this operation, A is highly sparse, and x
and y vectors are uncompressed. For many applications, this
operation is repeated multiple times with changes in input
vector x. Although CSC is a common way of compressing
A, it fundamentally lacks direct indexing of sparse input and
output vectors. Figure 2 shows how an SpMV kernel runs on
a CSC data structure. From this figure, the row and column
indices retrieved by CSC essentially belong to the original
number of rows and columns, n. With the presence of com-
pressed vectors, CSC requires mappings from uncompressed
to compressed vectors for converting JA and IA indices.

2) DCSC Format: DCSC [21] is an extension of CSC,
whereby it further compresses matrix A by removing the zero
(empty) columns avoiding thereby repeated elements in array
JA. Since zero columns are removed, a level of indirection
is required to index the retained nonzero columns. To this
end, DCSC introduces an array for column indices, JC, which
provides constant time access to nonzero columns (see Figure
3). In DCSC, |JC| = nzc, |JA| = nzc + 1, |IA| = nnz,
and |V A| = nnz, where nzc is the number of nonzero
columns. Subsequently, the space requirement of DCSC is
2 nzc + 2nnz + 1, without considering the space needed
for storing vectors.

CSC can scale poorly if the number of zero columns grows
significantly [7]. DCSC tackles this problem by converting
A to Ā, which does not contain zero columns. Figure 3
shows how SpMV operations are executed on top of DCSC,
wherein Ā is multiplied by an uncompressed input vector x

and the results are stored in an uncompressed output vector y.
Note that Sparse Matrix - Sparse Vector (SpMSpV) operations
can also be ran on top of DCSC, with x being compressed
(which can be represented by (index, value) pairs) and y being
uncompressed or dense [22]. Although compressed input x can
be indexed through an uncompressed output y using JC, most
implementations do not exploit such an option [17], [18] in
order to use the output of one SpMSpV directly as an input
to the next SpMSpV operation [22].

III. MOTIVATION

The standard CSC and DCSC runs SpMV kernels without
any changes. CSC SpMV does not need any indirection to
access the uncompressed input and output vectors, whereas
DCSC SpMV requires one indirection because it compresses
the JA. Luckily, in DCSC if there are enough zero columns to
remove, the cost of this indirection would not hurt the runtime.

In a distributed setting where the elements of input and
output vectors are transported over the network, vector sizes
become highly important because they are acting as a proxy for
communication. The communication volume can be reduced
by compressing the input/output vectors through removing
the zero columns/rows and then adding indirection to the
CSC and DCSC formats to support SpMSpV2 kernels on
the compressed vectors. To index the compressed vectors,
CSC SpMSpV2 requires two indirections (both rows and
columns) and DCSC SpMSpV2 requires only one (given it
has already supported compressed column, hence it only needs
one indirection for indexing rows).

To demonstrate the tradeoff between communication reduc-
tion and runtime increase due to indirection, we profile the
execution of 20 iterations of PageRank (PR) on two large
graphs, Twitter and Rmat29 (see Table II for details), running
on our GraphTap distributed platform using CSC and DCSC.
As shown in Figure 4a, CSC/DCSC SpMV have roughly
identical amounts of communication, whereas the computation
time of DCSC SpMV is more than CSC SpMV. This is
due to the DCSC SpMV’s extra level of indirection. For a
relatively less sparse graph like Twitter which only has a
small number of empty columns, this indirection turns out
to cause a computation penalty. Yet, this is not the case for a
sparser graph like Rmat29 (Figure 4b), where DCSC SpMV’s
indirection contributes to a better runtime compared to CSC
SpMV. Last, SpMV compressions are spending approximately
half and three-quarter of their runtime for sending/receiving
vectors, where a good portion of them are zeros.

Figure 4a shows that for Twitter graph, compressing vectors
does not help CSC/DCSC SpMSpV2 to achieve a better com-
munication time because vectors are relatively dense. Whereas,
for Rmat29 (Figure 4b) the communication time is cut in
half compared to SpMV because there is a good number of
zero columns/rows to remove. Finally, the computation time of
SpMSpV2 increases significantly in both Twitter and Rmat29
graphs because of the extra levels of indirections added to
support SpMspV2 kernels.
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Fig. 4: Comparison of SpMV with SpMSpV2 using PR

Hence, there is a trade-off between SpMV and SpMSpV2.
As communication time goes down in SpMSpV2 due to
compressing the vectors, the computation time goes up due
to adding the levels of indirections (note that this trade-off is
beneficial when sparsity is large and detrimental when sparsity
is small). Hence, it would be desirable to compress the vectors
while adding no indirection to the SpMSpV2 kernel, which is
the rationale behind TCSC. This desirable feature is shown in
the last columns of Figure 4 that shows using TCSC with the
SpMSpV2 kernel always decreases the computation time while
either decreasing (in Rmat29) or not increasing (in Twitter) the
communication time.

IV. TRIPLY COMPRESSED SPARSE FORMAT

In this paper we propose a simple, yet highly efficient,
co-compression technique called Triply Compressed Sparse
Column (TCSC) (or Triply Compressed Sparse Row (TCSR)
for row compressed data). By removing nonzero columns
and rows of a sparse matrix, TCSC does not only store the
sparse matrix in an efficient and cost-effective way, but further
extends that to input and output sparse vectors. TCSC supports
SpMSpV2 operations on sparse matrix and vectors without
requiring any indirection to access compressed vectors.

A. Triply Compressed Sparse Column (TCSC)

DCSC compresses matrix A by removing only its zero
columns while retaining its zero and nonzero rows. TCSC
capitalizes on DCSC’s compression strategy via removing
A’s zero rows as well. Like array JC for indexing nonzero
columns, TCSC introduces array IR, the row indices array
for indexing nonzero rows, where |IR| = nzr. As illustrated
in Figure 5, TCSC utilizes IR to populate IA with values
within the range of nonzero rows. This eliminates the problem
of row indexing upon executing SpMSpV2 operations. Figure
5 shows how an SpMSpV2 kernel can run on top of TCSC
with fully compressed matrix ¯̄A and fully compressed input
and output vectors x̄ and ȳ, without requiring any additional
support from a bitvector or a list of (index, value) pairs. More
precisely, by using JC and IR together, TCSC provides direct
accesses to x̄ and ȳ. Lastly, the space requirement of TCSC
is 2 nzc + nzr + 2 nnz + 1.

TCSC consolidates the sparsity of matrix and vectors in
a co-designed data structure to enable efficient executions of
SpMSpV2 operations. CSC and DCSC can also be used to
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Fig. 5: TCSC format for Figure 1d.

run SpMSpV2. However, to support SpMSpV2, CSC requires
two levels of indirections for indexing compressed input and
output vectors, while DCSC requires only one indirection for
indexing the compressed output vector.

B. Comparison of Space Requirements

Table I shows a comparison between different compression
techniques. For SpMSpV2 operations, CSC requires using data
structures like two lists of (index, value) pairs for input and
output vectors. In addition, it needs to store metadata for
column and row indirections. Therefore, its space requirement
evaluates to 3 n + 3 nzc + 3 nzr + 2 nnz + 1. DCSC
requires maintaining information on input and output vectors
and metadata for row indirection. Thus, its space requirement
for SpMSpV2 operations is n + 3 nzc + 3 nzr + 2 nnz + 1.
TCSC total space requirement is 3 nzc+ 2 nzr + 2 nnz + 1.

In comparing space requirements for SpMSpV2 operations,
TCSC demands the least space due to uniquely addressing
the sparsity of vectors in conjunction with the sparsity of
the matrix. It can be proved that under certain conditions
TCSC can save space when at least 40% of rows/columns
of the matrix are empty compared to CSC and DCSC with
SpMV (see Figure 6; more on this shortly). Alongside space
savings, TCSC provides faster SpMSpV2 operations because:
1) it averts two levels of indirections compared to CSC and one
level of indirection compared to DCSC, 2) it requires send-
ing/receiving only values of compressed vectors (especially in
distributed settings) without exchanging any metadata since it
retains internally the nonzero indices, 3) it results in smaller
vectors, which can potentially fit in cache, and 4) it exhibits
sequential access patterns on the input vector (like DCSC),
thus exploiting more cache locality (as compared to CSC).

Given the information reported in Table I, we can derive
relaxed space formulas for all the compression schemes by
ignoring the IA and V A arrays and the plus one in JA array,
which are equivalent across all the schemes. Thus, we can
eliminate the term 2 nnz+ 1. Furthermore, we assume nzc ≈
nzr ≈ nz and thus nz = n − z, where nz is the number
of nonzero elements and z is the number of zeros agnostic
to rows and columns. Finally, by removing 2 nnz + 1 and,
subsequently, substituting nzc and nzr with n− z, we obtain
the following approximate space formulas:



TABLE I: Space required for storing matrix, vector, and
column/row indirections of different compression schemes.

Arr CSC DCSC CSC DCSC TCSC
SpMV SpMV SpMSpV2 SpMSpV2 SpMSpV2

JC nzc nzc nzc
JA n + 1 nzc + 1 n + 1 nzc + 1 nzc + 1

Mat IA nnz nnz nnz nnz nnz
V A nnz nnz nnz nnz nnz
IR nzr

Vec x/x̄ n n 2 nzc nzc nzc
y/ȳ n n 2 nzr 2 nzr nzr

Ind c nzc → n nzc → n
r nzr → n nzr → n
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By varying the value of z in equations (1) over the range
[0, n], the space of each compression can be computed in terms
of n. As demonstrated in Figure 6, from z = 0.4 n onward
(marked by the vertical gray line), TCSC will require less
space as opposed to other schemes. In Section VI, we present
experimental results that corroborate this observation.

C. Translating Graph Algorithms onto SpMSpV2 Operations

Leveraging the duality between graphs and matrices, many
graph theory operations can be mapped onto certain linear
algebra primitives on matrices [13]. As a simple primitive,
SpMSpV2 primitive, ȳ = ¯̄A ⊕.⊗ x̄ can be formalized as:

• ¯̄A is the nzr×nzc sparse matrix with nnz entries (edges),
where nzr and nzc are the number of nonzero rows and
columns, respectively.

• x̄ is the nzc × 1 sparse input vector with nzc entries
(columns), which is multiplied in ¯̄A using the multipli-
cation and addition operators.

• ȳ is the nzr × 1 sparse output vector with nzr entries
(rows), which stores the results of multiplying ¯̄A and x̄.

• ⊕.⊗ is a semiring equipped with (+,×) operators.
SpMSpV2 requires a way of encoding the sparsity for

both x̄ and ȳ vectors. Previous works have used bitvectors
[17], [18] or lists of (index, value) pairs [19] to encode this
information. In contrast, TCSC coalesces this information in
the compressed sparse matrix format and assumes that sparse
input and output vectors are of sizes nzc and nzr, respectively.
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Fig. 7: Calculating weighted outgoing degree of Figure 1d.
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(b)
Fig. 8: (a) Matrix/vector partitioned to p2 tiles / p segments
(p = 4); (b) Tiles/segments assigned to p processes (p = 4).

To exemplify, we consider weighted degree calculation
which calculates the outgoing degree of a graph ponderated
by the weight of each edge. This problem can be solved via
multiplying the outgoing edges of each vertex by one and
summing up the results. Using SpMSpV2 operations, first x̄
is initialized with ones. Second, the weighted outgoing degree
of each vertex is calculated by multiplying each entry of x̄ to
its corresponding column of ¯̄A. Third, the result of each row
is stored in the respective entry of ȳ, which will eventually
hold the weighted outgoing degrees of all vertices.

V. GRAPHTAP: DISTRIBUTED GRAPH ANALYTICS USING
TRIPLY COMPRESSED SPARSE FORMAT

In this section, we introduce GraphTap, a new distributed
system for scalable graph analytics that features a TCSC-based
SpMSpV2 system mated with a vertex-centric programming
interface. As such, GraphTap can execute any user-defined
vertex program on any input graph. This is done in two steps.
First, GraphTap loads and partitions the input graph into TCSC
tiles distributed across multiple processes. Next, it executes the
user’s vertex program in an iterative fashion via its distributed
SpMSpV2 core. The followings describe these steps in details.

A. Matrix Partitioning

GraphTap can read graphs given in an edge-list format. It
loads edges into an adjacency matrix representation that is par-
titioned in two dimensions and distributed for scalability [18],
[19], [24], [25]. To elaborate, given p processes, GraphTap
partitions the matrix into p2 tiles and any associated vector
into p segments, as exemplified in Figure 8a.

GraphTap assigns tiles and segments to processes while
accounting for both load balancing and locality [19]. As
Figure 8b shows, each process is assigned p tiles and one
of p vector segments. In particular, the process owning the ith

diagonal tile, Aii, also owns the ith vector segment, si. We
call this process the leader of the ith row group (i.e., the set of
processes that own tiles in the ith row) and column group (i.e.,
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the set of processes that own tiles in the ith column). During
distributed SpMSpV2 execution, each leader communicates
with its row and column group followers (members) via MPI.
For example, in Figure 8b, process P0 owns tiles A00, A02,
A30, and A32. Also, P0 is the leader of the first row and
column groups; thus, P1 is P0’s follower in the first row group
and P2 is P0’s follower in the first column group.

GraphTap stores each tile using the TCSC format. The
compressed height of any given tile, ¯̄Aij , is the number of
nonzero rows across the entire ith row of tiles. Similarly,
the compressed width of any given tile, ¯̄Aij , is the number
of nonzero columns across the entire jth column of tiles.
Moreover, in order to eliminate indirections during SpMSpV2,
the compressed sizes of the ith input (or output) vector
segments are equal to the compressed width (or height) of
the ith column (or row) of tiles. For example, in Figure 9,
tiles ¯̄A00 and ¯̄A10 both have a compressed width of two, as
does input segment x̄0. Similarly, tiles ¯̄A00 and ¯̄A01 both have
a compressed height of one, as does output segment ȳ0.

B. Vertex Program Execution

Similar to other recent graph analytics systems [17]–[19],
GraphTap translates a user-defined vertex-centric program into
iteratively-executed SpMSpV2 operations. Like these systems,
GraphTap applies a variant of the Gather, Apply, Scatter
(GAS) model [5]. To be more precise, GraphTap involves
three method calls per SpMSpV2 iteration: Scatter-Gather,
Combine, and Apply, which we shall elaborate upon shortly.

In order to map a vertex-centric program to its SpMSpV2

system, GraphTap maintains – in addition to the compressed
input and output vectors, x̄ and ȳ – a state vector, v, which
stores vertex states. The state vector is not compressed, and
its size equals the number of vertices, because we assume
that all vertices have states, even if some states may remain
unchanged. The state vector is partitioned into p segments,
each assigned to its corresponding leader process. Thus, each
process initializes the states of its own vertices. Thereafter,
GraphTap launches its iterative SpMSpV2 execution. Per iter-
ation, each process calls the following methods.

1) Scatter-Gather: To begin an iteration, each ith leader,
in parallel, prepares its new x̄i and scatters it to its column
group followers. x̄i is essentially an interpolation of the old
state, vi (i.e., resulting from the previous iteration).

Consequently, TCSC offers the following advantages dur-
ing Scatter-Gather: 1) Since |x̄| = nzc < |x| = n, less

communication is required (per column group). 2) Given that
TCSC already incorporates the sparsity information inside its
data structures, there is no need to send the indices of the
nonzero elements. Therefore, the communication volume is
only limited to sending the values themselves, which is less
compared to sending a list of (index, value) pairs in [18],
[19]. 3) When calculating the new x̄ from v, TCSC’s JC
array efficiently enables direct indexing on both x̄ and v (i.e.,
without requiring any extra levels of indirection).

2) Combine: After the scattered x̄ is gathered at all pro-
cesses, each process starts processing the tiles that it owns
in a row-wise fashion. For each tile, Tij , in the ith row, the
SpMSpV2 operation is called on its TCSC value array, V A,
and the x̄j belonging to the jth column group. The result
is combined (accumulated) locally in ȳi, which is indexed
directly using the IA array. After processing all its tiles
belonging to the ith row, each follower sends its ȳi to its row
group leader, which combines it into its own ȳi. Given Graph-
Tap uses asynchronous communication, leaders/followers post
their receives/sends and move on to their next row of tiles.

Thus, TCSC offers the following advantages during Com-
bine: 1) No indirections are needed while running SpMSpV2

operations on x̄, V A, or ȳ (for storing the results). This is
because, ∀ Tij , |x̄j | = |JA| and |ȳi| = |IA|. 2) Since
|ȳ| = nzr < |y| = n, less communication is required (per
row group). 3) When followers send ȳis to their leader, only
the actual values are sent without their indices, further reduc-
ing communication volume. 4) Asynchronous communication
allows GraphTap to overlap communication with computation.

3) Apply: To complete an iteration, each ith leader, in
parallel, waits until its ȳi is finalized, and then uses it to
update its vi (to be used in the next iteration). Although
|ȳ| = nzr 6= |v| = n, TCSC’s IR array circumvents
an undesired indirection when computing v from ȳ since it
contains the original row ids of the nonzero indices of v.

GraphTap continues iterating until v converges or a specified
maximum number of iterations is reached.

4) Activity Filtering and Computation Filtering: Graph
applications may be classified as stationary or non-stationary
[18], [19]. In a stationary application, all vertices remain active
over all iterations. In a non-stationary application, only a
subset of vertices is active during each iteration and this subset
can change dynamically. GraphTap skips the communication
and computation of inactive vertices in non-stationary appli-
cations. We implement activity filtering by communicating
(index, value) pairs of active vertices only.

For directed graphs, it is possible to make the SpMV more
efficient via computation filtering [19]. This firstly requires
classifying vertices into regular vertices (have both incoming
and outgoing edges), source vertices (have only outgoing
edges), sink vertices (have only incoming edges), and isolated
vertices (have no edges). Subsequently, processing only regular
and source vertices in the first iteration, only regular vertices
in the middle iterations, and only regular and sink vertices in
the final iteration. We implemented computation filtering for
stationary applications on directed graphs only.



VI. RESULTS

Experiments are conducted in two settings: single node
processing and distributed processing, both written in C/C++.
The single node implementation is a single thread PageRank
application which basically compares CSC, DCSC, and TCSC
SpMSpV2. The distributed implementation uses GraphTap2,
the proposed distributed graph analytics system which utilizes
TCSC as its default compression technique and MPI for both
inter and intra-node communication. GraphTap’s experiments
include both weak scaling comparison where graph size is
scaled alongside the cluster size, and strong scaling where
graph size is fixed, and the cluster size is varied.

A. Experimental Setup

1) Hardware and Software Configurations: We ran exper-
iments on a cluster of machines that uses Slurm workload
manager for batch job queuing [26]. We used Intel MPI [27]
to compile our program on the cluster. Moreover, for single
node experiments, we used a machine with 12-core Xeon
processor (@ 3.40 GHz speed) and 512 GB RAM. For the
distributed experiments, we used a sub-cluster of 32 machines
each with 28-core Broadwell Processor (@ 2.60 GHz speed),
192 GB RAM, and Intel Omni-path network (10 Gbps transfer
speed). At our largest scale, we utilized all these 32 machines
and launched 16 processes (cores) per machine without over
subscription of cores (512 cores in total). Finally, any data
point reported here is the average of multiple individual runs.

2) Counterpart Systems: GraphTap has been tested against
GraphPad [18], a linear algebra-based system developed by
Intel, and LA3 [19], a linear algebra based system with
sophisticated communication and computation optimizations.
After a careful assessment, we noticed that GraphPad works
best when launched with two threads per MPI process and LA3
with one thread per MPI process (without multithreading).
Furthermore, we allocate 16 cores per machine and thus
GraphPad is launched with 8 processes and two threads (cores)
per process, and LA3 and GraphTap are launched with 16
processes (cores) per machine.

3) Graph Datasets: Table II shows the collection of six
real-world graphs and five synthesized graphs alongside their
characteristics and the number of processes allocated to pro-
cess them. This collection includes multiple web crawls and
social network from LAW [28], and RMAT 26 - 30 graphs
from the Graph 500 challenge [29].

4) Graph Applications: To evaluate TCSC, we imple-
mented two types of graph applications: 1) stationary appli-
cations including Degree, and PageRank (PR) on unweighted
directed graphs, and 2) non-stationary applications including
Single Source Shortest Path (SSSP) on weighted directed
graphs, and Breadth First Search (BFS) and Connected Com-
ponent (CC) on unweighted undirected graphs. Note that
similar to the setting used in [18], [19], we ran PR for 20
iterations and SSSP, BFS, and CC until convergence and report
the average execution.

2GraphTap source code is online at https://github.com/hmofrad/GraphTap

TABLE II: Datasets used for experiments. Zc and Zr are the
percentage of zero columns and rows. T is the type (including
web crawl, social network and synthetic graphs). N is the
number of machines used to process the graph.

Graph |V | |E| Zc Zr T N
UK’05 (UK5) [28] 39.4 M 0.93 B 0 0.12 Web 4
IT’04 (IT4) [28] 41.2 M 1.15 B 0 0.13 Web 4
Twitter (TWT) [28] 41.6 M 1.46 B 0.09 0.14 Soc 8
GSH’15 (G15) [28] 68.6 M 1.80 B 0 0.19 Web 8
UK’06 (UK6) [28] 80.6 M 2.48 B 0.01 0.14 Web 16
UK Union (UKU) [28] 133 M 5.50 B 0.05 0.09 Web 24
Rmat26 (R26) [29] 67.1 M 1.07 B 0.55 0.72 Syn 4
Rmat27 (R27) [29] 134 M 2.14 B 0.57 0.73 Syn 8
Rmat28 (R28) [29] 268 M 4.29 B 0.59 0.74 Syn 16
Rmat29 (R29) [29] 536 M 8.58 B 0.61 0.75 Syn 24
Rmat30 (R30) [29] 1.07 B 17.1 B 0.62 0.76 Syn 32

B. Single Node Results

To experimentally measure the performance of TCSC, we
implemented a single thread PageRank application and re-
ported its space, number of L1 cache misses, and speedup in
Figure 10. We choose PageRank as it is a compute-intensive
application and our focus in this section is more on identifying
the computational characteristics of TCSC.

1) Space Utilization: Figure 10a shows the space utilization
measured for different compressions. Similar to the TCSC
space analysis (Section IV-B), we only report the space
required for vectors and indirections for this comparison as
the amount of storage required for storing the graph edges is
the same across all compressions (see Table I).

From Figure 10a, we note that CSC and DCSC have
approximately similar space utilization and TCSC has the least
space requirement in both real-world and synthetic graphs.
Compared to CSC, on average TCSC requires 45% and 70%
less space in real-world and synthetic graphs. Also, compared
to DCSC, on average TCSC requires 15% and 25% less
space in real-world and synthetic graphs. This space efficiency
roots in the indexing algorithm of TCSC where it stores the
sparsity of vectors while constructing the compressed matrix
data structure by renumbering its column and row indices and
removing zero (empty) columns and rows. This successfully
allows TCSC to trivially expand or compress the input and
output vectors and at the same time consumes the least space.

2) Cache Analysis: We used CPU performance counters to
collect data on L1 cache misses. Figure 10b shows the number
of cache misses of different compressions. Comparing CSC
and DCSC with TCSC, on average TCSC has 20% to 40% less
cache misses across all real-world and synthetic graphs. TCSC
is a cache friendly compression inasmuch as it can access the
compressed input and output vectors without requiring any
level of indirection while avoid trashing the L1 cache. TCSC
sequentially indexes the input vector. This avoids unnecessary
cache invalidations of the input vector and provides more
cache locality. Moreover, TCSC can access the output vector
with no level of indirection compared to CSC and DCSC,
providing faster access to output vector entries. Last, given
the compressed input and output vectors are essentially smaller
than the original SpMV vectors, they can possibly fit in L2
cache which further yields better cache utilization.



3) Time Analysis: Figure 10c compares the speedup for
different compressions. From this figure, compared to CSC
and DCSC, TCSC is up to 2.2× and 11× faster in real-
world and synthetic graphs, respectively. We believe this per-
formance gain is mainly due to the direct indexing algorithm
of TCSC which offers a better cache locality. CSC and DCSC
underperform compared to TCSC because they suffer from
access indirections and poor cache locality.

In Figure 10c, DCSC is slightly faster than CSC on average
because it collapses the nonzero columns and skips the com-
putation for nonzero columns. Furthermore, TCSC is faster
than both CSC and DCSC because it additionally collapses
the nonzero rows which further reduces the chances of L2
cache and memory thrashing. Moving to larger scales synthetic
graphs such as RMAT30, the cache thrashing effect becomes
more prominent and TCSC is 11× faster than CSC and DCSC.

There are two levels of indirection while running the
SpMSpV2 kernel: 1) indirection used for the input vector
while accessing column data using pairs of (index, value), and
2)indirection used for sparse output vector while writing the
result of executing the operation. Although CSC and DCSC
are adapted to work with sparse vectors, CSC requires both
levels of indirections and DCSC requires the latter one. TCSC,
on the other hand does not need these levels of indirections
because for the former one, like DCSC the number of columns
in the sparse matrix are aligned with the size of input vector.
For the latter indirection, since TCSC’s row indices array is
populated using values derived from the number of nonzero
rows, the row indices stored in the compressed matrix are
essentially able to directly index the output vector.

C. Distributed Processing Results

In this section we discuss experimental results of GraphTap.
In the first and second experiments we compare different
compression techniques implemented inside GraphTap and in
the third experiment, GraphTap is compared with GraphPad
[18] and LA3 [19], two state-of-the-art linear algebra-based
graph analytics systems. The graphs and cluster sizes used for
these experiments are reported in Table II.

1) Speedup Comparison of CSC, DCSC, and TCSC
in GraphTap: We implemented CSC, DCSC, and TCSC
SpMSpV2 in GraphTap and benchmarked them using PR (a
stationary application). As shown in Figure 11, on real-world
and synthetic graphs, CSC and DCSC perform comparatively
with DCSC performing slightly better. Also, TCSC performs
the best compared to CSC and DCSC with up 3.5× and
5.7× speedup, respectively. From the results, CSC and DCSC
are not scaling well compared to TCSC as while solving
PR they become slower as dataset size increases (especially
in synthetics). TCSC on the other hand is scalable because
as dataset size increases, the runtime also improves in both
real-world and synthetic graphs. This is because TCSC not
only compresses vectors leading to less communication, but
also has a better indexing algorithm, leading to more efficient
computation.
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Fig. 10: Normalized space, speedup, and cache misses of
compressions on a single node for PR with CSC as baseline.
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Fig. 11: Normalized speedup of compressions on GraphTap
for PR with CSC as baseline

2) Scalability Comparison of CSC, DCSC, and TCSC in
GraphTap: Figure 12a shows the results of cluster scalability
test. In this experiment, we keep the number of processes per
machine to 16 but change the number of machines from 2 to
32 and run PR on R29. Here, TCSC improves the runtime as
we add more machines (or processes) to solve the problem be-
cause TCSC’s communication volume is smaller compared to
CSC and DCSC. Thus, increasing the communication volume
by having more machines does not hurt its performance.



 

0

50

100

150

200

250

300

350

2 4 8 16 32

Ti
m

e 
(s

)

#Machines per cluster

CSC DCSC TCSC

(a) Cluster scalability test using PR on R29 with 8.58 B edges

 

0

50

100

150

200

1 2 4 8 16

Ti
m

e 
(s

)

#Processes per machine

CSC DCSC TCSC

(b) Process scalability test using PR on R30 with 17.1 B edges

Fig. 12: Scalability tests for different compressions

Figure 12b shows the process scalability test of different
compressions. In this experiment, we run PR on R30 using
32 machines while changing the number of processes per
machine from 1 to 16. From this figure, TCSC is scalable
because it can efficiently harvest the added processes to
achieve a better runtime while maintaining a decent gap with
other compressions. Moreover, CSC is not scalable because
it achieves worse or comparable runtimes with more than 2
processes, whereas TCSC even with 16 processes per machine
can still slightly improve the runtime.

D. Runtime Comparison of GraphPad, LA3, and GraphTap

In this experiment, we compare GraphTap with GraphPad
and LA3 using PR, SSSP, BFS, and CC applications on
selected datasets from Table II. GraphPad [18] uses DCSC for
compressing the sparse matrix and bitvectors for representing
the sparse vectors. Similarly, LA3 [19] uses DCSC for sparse
matrices, but uses lists of (index, value) pairs for representing
sparse vectors. On the other hand, GraphTap uses TCSC that
compress both matrix and vectors simultaneously and uses lists
of (index, value) pairs for representing sparse vectors.

Figure 13a reports the results for PR. Based on this figure,
GraphTap is up to 1.5× faster than GraphPad and 7× faster
than LA3 in real-world datasets. Also, GraphTap is up to 2×
faster than GraphPad and 4× faster than LA3 in synthetic
datasets. LA3 uses aggressive communication optimizations
that tailor the communication per tile while sending the input
vectors. The overhead of this optimization becomes a bottle-
neck when running on a cluster with a fast communication
infrastructure. Specifically, LA3 spends a significant amount
of time on constructing these tailored input vectors. GraphTap,
on the other hand, tailors input vectors for each column

group of tiles so that it can skip the overhead of constructing
individual input vectors per receiver process like LA3, while
still efficiently utilizing the network bandwidth. Similarly,
GraphPad performs better than LA3 because of its efficient
communication.

Figure 13b and Figure 13c show the results for the non-
stationary applications SSSP and BFS. From these figures,
GraphTap is 2–3× faster than GraphPad and LA3. SSSP runs
on weighted directed graphs, it starts from a source vertex
and converges when it finds the shortest path to all vertices
inside the connected component the source vertex is belonged
to. Clearly, executing vertices which are not at the same
component with source is unnecessary. Thus, activity filtering
removes them from the main loop of computation. Moreover,
vertices that have converged already are also factored out
of the computation. For non-stationary applications, activity
filtering significantly reduces the volume of communication
compared to stationary applications like PR. Therefore, having
less communication is the reason that LA3 performs better
than GraphPad while running BFS on synthetic graphs. Also,
GraphTap performs worse than GraphPad in SSSP and BFS
on TWT; this is because TWT is among the relatively high-
density real-world graphs where there is a small number of
zero rows and columns to filter for TCSC.

Figure 13d shows the result for CC. GraphTap is 1.2−4.5×
faster than GraphPad and 2 − 4× faster than LA3 in real-
world graphs. Also, GraphTap is 2× faster than GraphPad
and 3× faster than LA3 in synthetic graphs. From Figure
13d, GraphPad performs better than LA3 because CC deals
with significant amount of messaging to identify the connected
components and the communication optimizations of LA3 are
extremely expensive for such an application. Also, comparing
GraphTap’s TCSC with DCSC used in GraphPad, DCSC uses
a bitvector to locate the nonzero entries of output vectors,
whereas TCSC can directly index the output vectors.

Last, in Figure 13 on average GraphTap is 2−4× faster than
others on all scales which is due to the proposed TCSC format.
Moreover, GraphTap scales better compared to GraphPad
and LA3 because while adding more processes for larger
graphs, it can efficiently utilize the additional processes with
a negligible increase in runtime (this trend is more visible in
Rmat synthesized graphs).

E. Discussion of Results

TCSC introduced in this paper has significant space and
indexing advantages over CSC and DCSC. Moreover, Graph-
Tap which uses TCSC as its core compression format, out-
performs GraphPad and LA3 distributed systems with DCSC
compression scheme. The following are a summary of TCSC
and GraphTap results:

1) TCSC is more cache friendly than CSC and DCSC. The
input and output vectors are intrinsically smaller for TCSC
and are accessed directly without indirection. The smaller
vector sizes and the locality of access patterns cause fewer
cache misses and less cache pollution in TCSC.
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2) GraphTap communication volume is less than GraphPad
and LA3 because the sizes of its vectors are equal to the
number of nonzero columns/rows. There is no need for an
auxiliary mechanism to index input and output vectors as
they are aligned to the number of nonzero columns/rows.
Therefore, input vectors are scattered without any change in
their size and partial output vectors are aggregated without
requiring any extra indexing metadata.

3) The proposed triple compression can be applied to row
major compression resulting in a TCSR scheme. However,
we picked TCSC for the same reason CSC and DCSC
are preferred over CSR and DCSR. Specifically, in column
major compressions, like CSC, DCSC or TCSC, access to
the input vector is sequential and infrequent and access
to the output vector is random and frequent providing
better cache locality for input vectors. This flips for row
major compressions like CSR, DCSR and TCSR. In non-
stationary applications, given that input vector only carries
information about active vertices, a column compression
can immediately locate the active columns and runs the
SpMV kernel, whereas in row compression, the algorithm
first needs to scan all rows and locates the active vertices
and then runs the SpMV which significantly requires more
effort. Thus, column compressions are expected to, and
have been shown to, perform better for graph applications.

4) TCSC is a scalable compression format. We have used it
to process big graphs as large as 17.1 B edge on up 32
machines with 16 processes per machine (512 processes
in total). From our experiments, by adding more machines
per cluster or more processes per machine, TCSC can har-
vest additional processes efficiently because it compresses
empty rows/columns and reduces the problem space.

VII. CONCLUSION

This paper presents Triply Compressed Sparse Column
(TCSC), a novel compression technique which leads to ef-
ficient Sparse Matrix - Sparse input and output Vectors
(SpMSpV2) operations. TCSC logically compresses both
columns and rows of a sparse matrix and hence integrates
the sparsity of input and output vectors within the sparse
matrix. In our experiments, we analyzed the performance
of TCSC on real-world and synthetic graphs with different
sizes and demonstrated that TCSC has less space requirement
while offering up to 11× speedup compared to common
CSC and DCSC. TCSC is implemented in GraphTap, a new
linear algebra-based distributed graph analytics system intro-
duced in this paper. We compared GraphTap with GraphPad
and LA3, two state-of-the-art linear algebra-based distributed
graph analytics systems on different graph sizes and numbers
of machines and cores. We showed that GraphTap is up to 7×
faster than these distributed systems due to its efficient sparse
matrix compression format, faster SpMSpV2 algorithm, and
smaller communication volume.
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[15] D. Bader, A. Buluç, J. Gilbert, J. Gonzalez, J. Kepner, and T. Mattson,
“The graph blas effort and its implications for exascale,” in SIAM Work-
shop on Exascale Applied Mathematics Challenges and Opportunities
(EX14), 2014.

[16] Z. Fu, M. Personick, and B. Thompson, “Mapgraph: A high level api
for fast development of high performance graph analytics on gpus,” in
Proceedings of Workshop on GRAph Data management Experiences and
Systems. ACM, 2014, pp. 1–6.

[17] N. Sundaram, N. Satish, M. M. A. Patwary, S. R. Dulloor, M. J.
Anderson, S. G. Vadlamudi, D. Das, and P. Dubey, “Graphmat: High
performance graph analytics made productive,” Proceedings of the VLDB
Endowment, vol. 8, no. 11, pp. 1214–1225, 2015.

[18] M. J. Anderson, N. Sundaram, N. Satish, M. M. A. Patwary, T. L. Willke,
and P. Dubey, “Graphpad: Optimized graph primitives for parallel and
distributed platforms,” in Parallel and Distributed Processing Sympo-
sium, 2016 IEEE International. IEEE, 2016, pp. 313–322.

[19] Y. Ahmad, O. Khattab, A. Malik, A. Musleh, M. Hammoud, M. Kutlu,
M. Shehata, and T. Elsayed, “La3: a scalable link-and locality-aware
linear algebra-based graph analytics system,” Proceedings of the VLDB
Endowment, vol. 11, no. 8, pp. 920–933, 2018.

[20] T. Davis, “Algorithm 9xx: Suitesparse: Graphblas: graph algorithms in
the language of sparse linear algebra,” submitted to ACM Trans on
Mathematical Software, 2018.

[21] A. Buluc and J. R. Gilbert, “On the representation and multiplication
of hypersparse matrices,” in Parallel and Distributed Processing, 2008.
IPDPS 2008. IEEE International Symposium on. IEEE, 2008, pp. 1–11.
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