
Sanguthevar Rajasekaran, Lance Fiondella, Reda A. Ammar, Mohamed F.
Ahmed

Multi-Core Technologies:
Architectures, Algorithms,
& Applications

2

Contents

1 FSB: A Flexible Set Balancing Strategy for Last Level
Caches 1
Mohammad Hammoud, Sangyeun Cho, and Rami Melhem
1.1 Introduction . 2
1.2 Motivation and Background 4

1.2.1 Baseline Architecture 4
1.2.2 A Caching Problem 5
1.2.3 Dynamic Set Balancing Cache and Inherent Shortcom-

ings . 5
1.2.4 Our Solution . 8

1.3 Flexible Set Balancing (FSB) 10
1.3.1 Retention Limits . 10
1.3.2 Retention Policy . 11
1.3.3 Lookup Policy . 13
1.3.4 FSB Cost . 13

1.4 Quantitative Evaluation . 15
1.4.1 Methodology . 15
1.4.2 Comparing FSB against Shared Baseline 16
1.4.3 Sensitivity to Different Pressure Functions 19
1.4.4 Sensitivity to LPL and HPL 20
1.4.5 Impact of Increasing Cache Size and Associativity . . 20
1.4.6 FSB versus Victim Caching 21
1.4.7 FSB versus DSBC and V-WAY 22

1.5 Related Work . 23
1.6 Conclusions and Future Work 25

i

ii

Chapter 1

FSB: A Flexible Set Balancing
Strategy for Last Level Caches

Mohammad Hammoud

Postdoctoral Research Associate
School of Computer Science (SCS)
Carnegie Mellon University Qatar

Sangyeun Cho

Associate Professor
Department of Computer Science
University of Pittsburgh

Rami Melhem

Professor
Department of Computer Science
University of Pittsburgh

1.1 Introduction . 2
1.2 Motivation and Background . 4

1.2.1 Baseline Architecture . 4
1.2.2 A Caching Problem . 5
1.2.3 Dynamic Set Balancing Cache and Inherent Shortcomings 5
1.2.4 Our Solution . 8

1.3 Flexible Set Balancing (FSB) . 10
1.3.1 Retention Limits . 10
1.3.2 Retention Policy . 11
1.3.3 Lookup Policy . 13
1.3.4 FSB Cost . 13

1.4 Quantitative Evaluation . 15
1.4.1 Methodology . 15
1.4.2 Comparing FSB against Shared Baseline . 15
1.4.3 Sensitivity to Different Pressure Functions . 18
1.4.4 Sensitivity to LPL and HPL . 19
1.4.5 Impact of Increasing Cache Size and Associativity 20
1.4.6 FSB versus Victim Caching . 21
1.4.7 FSB versus DSBC and V-WAY . 21

1.5 Related Work . 23
1.6 Conclusions and Future Work . 25

Bibliography . 25

This paper describes Flexible Set Balancing (FSB), a practical strategy for
providing high-performance caching. Our work is motivated by large asymme-

1

2 Multi-Core Technologies: Architectures, Algorithms, & Applications

try in cache sets’ usages. FSB extends the lifetime of cache lines via retain-
ing some fraction of the working set at underutilized sets to satisfy far-flung
reuses. FSB promotes a very flexible sharing among cache sets, referred to
as many-from-many sharing, providing significant reduction in interference
misses. Simulation results using a full-system simulator which models a 16-
way tiled chip multiprocessor platform demonstrate that FSB achieves an av-
erage miss rate reduction of 36.6% on multithreading and multiprogramming
benchmarks from SPEC2006, PARSEC, and SPLASH-2 suites. This translates
into an average execution time improvement of 13%. Furthermore, evaluations
manifested the outperformance of FSB over some recent proposals including
DSBC [27] and V-WAY [25].

1.1 Introduction

Processor and memory speeds are increasing at about 60% and 10% per year,
respectively [15]. Besides, after the emergence of chip multiprocessors (CMPs)
as a main stream architecture of choice, the off-chip bandwidth is expected
to grow at a much slower rate than the number of processor cores on a CMP
chip [7]. These factors together substantially increase the capacity pressure on
the on-chip memory hierarchy, and, in particular, the last level cache (LLC).
Intelligent design and management of LLC continue, accordingly, to be very
essential to bridge the increasing speed and bandwidth gaps between processor
and memory.

In this work we observe that more than two thirds of cache lines placed in
an LLC logically shared by 16 CMP cores remain unused between placement
and eviction. As such, these lines don’t contribute to good utilization of the
silicon estate devoted to the caches. One reason for this phenomenon is that
cache lines might be re-referenced at distances greater than the cache associa-
tivity [23]. The problem is magnified on CMPs that share caches as on-chip
lifetimes of cache lines can become shorter due to the increasing interferences
between co-scheduled threads/processes. Cache performance can be improved
by retaining some fraction of the working set long enough to provide cache
hits on future reuses [23, 19].

Computer programs exhibit a non-uniform distribution of memory accesses
across different cache sets [27, 25]. Fig. 1.1 demonstrates this fact by show-
ing the number of misses experienced by cache sets at different physically
distributed, logically shared L2 banks on a 16-way tiled CMP for two bench-
marks, SpecJBB and MIX31. Only the sets that exhibit the maximum and
the minimum misses are shown. Clearly, some sets suffer from large local miss

1Description of the adopted CMP platform, the experimental parameters, and the bench-
mark programs can be found in Section 1.4.1.

FSB: A Flexible Set Balancing Strategy for Last Level Caches 3

!"

#!!!!"

$!!!!"

%!!!!"

&!!!!"

'!!!!!"

'#!!!!"

'$!!!!"

'%!!!!"

'&!!!!"

(!" ('" (#" ()" ($" (*" (%" (+" (&" (,"('!"(''"('#"(')"('$"('*"

-
".
/"
0
#
"1

23
3
4
3
"

0#"(5673"

189)"

1:9";4<"

18=";4<"

!"

#!!!!"

$!!!!!"

$#!!!!"

%!!!!!"

%#!!!!"

&!" &$" &%" &'" &(" &#" &)" &*" &+" &,"&$!"&$$"&$%"&$'"&$("&$#"

-
".
/"
0
%
"1

23
3
4
3
"

0%"&5673"

89:;<&&"

1=>"84?"

1@A"84?"

FIGURE 1.1: Number of misses experienced by two cache sets at differ-
ent L2 banks for SPECJBB and MIX3 (MAX Set = the set that experi-
ences the maximum misses and MIN Set = the set that experiences the
minimum misses).

ratios while some others remain underutilized. Our work extends the lifetime
of cache lines by exploiting this phenomenon via flexibly retaining cache lines
evicted from highly pressured sets at underutilized ones.

Recently, Rolán et al. [27] proposed Dynamic Set Balancing Cache (DSBC)
to mitigate the large asymmetry in cache sets’ usages. DSBC suggests associat-
ing every two cache sets, making the capacity of an underutilized set available
for a stressed one. When a cache line is evicted from a set whose working set
seems not to fit in, the line can be stored at another set whose working set
seems to fit in. They refer to the former and latter sets as source and desti-
nation sets, respectively. DSBC associates source and destination sets after a
request made by a source set. The source and destination sets remain associ-
ated as long as the destination set hosts at least one line from the source set.
Upon the eviction of the last line retained by the source set at the destination
set, the association between the two sets is broken and the destination set
(assuming still underutilized) can be subsequently shared by another source
set.

There are inherent drawbacks with DSBC. Once an association is estab-
lished between two sets, the source, S, is not allowed to retain blocks at any
other set but the destination set, D. If the program phase changes after associa-
tion and both S and D become stressed, they will compete on only D’s capacity
(i.e., retention is unidirectional), potentially causing significant thrashing at
D. Besides, S is not permitted to request more capacity although many other
underutilized sets might be available. Lastly, if D becomes underutilized, it is
not allowed to share its space by more than one source set though it might be
capable of doing so and many other sources might be in need of its available
space.

We refer to the capacity sharing provided by DSBC as one-from-one shar-
ing. We propose Flexible Set Balancing (FSB) in which a highly pressured set
is allowed to retain its lines at many underutilized sets. We refer to this sharing
as many-from-one sharing because the capacity of many sets can be shared by
a single set. Furthermore, we allow many pressured sets to retain their lines

4 Multi-Core Technologies: Architectures, Algorithms, & Applications

at a single underutilized set. This sharing is referred to as one-from-many
sharing because the capacity of a single set can be shared by multiple sets.
Consequently, FSB offers a very flexible (many-from-many) capacity sharing
among cache sets. FSB adapts to phase changes in programs and doesn’t solely
associate any set with any other set (i.e., makes a set a sole owner of another
set). As long as there is a space available at any set, any stressed set can
immediately leverage that space.

The major contributions of our work are as follows:

• We propose Flexible Set Balancing (FSB), a caching strategy that ex-
tends the lifetime of cache lines via exploiting the phenomenon of work-
load imbalance among cache sets. FSB suggests a very flexible sharing
between cache sets, referred to as many-from-many sharing, seeking to
minimize interference misses and maximize system performance.

• We evaluate our work on a full system simulator which models a 16-
way tiled CMP and find that FSB reduces interference cache misses of a
baseline shared last level cache by an average of 36.6%. This translates
into an average execution time improvement of 13%.

• We employ the two recent and closely related works, DSBC [27] and
V-WAY [25], on a CMP platform and compare them against FSB. On
average, FSB provides 27.2% and 29.2% miss reductions against DSBC
and V-WAY, respectively.

The rest of the paper is organized as follows. A motivational study and
background are given in Section 1.2. We detail FSB in Section 1.3. We evaluate
FSB and some related designs in Section 1.4. Section 1.5 summarizes prior
work and we conclude in Section 1.6.

1.2 Motivation and Background

1.2.1 Baseline Architecture

Our proposed scheme doesn’t impose any limitation on employing any caching
architecture. Without loss of generality, we assume a 16-way tiled CMP plat-
form. Economic, manufacturing, and physical design considerations suggest
tiled architectures (e.g., Tilera’s Tile64 and Intel’s Teraflops Research chip)
which co-locate distributed cores with distributed cache banks in tiles com-
municating via a network on-chip (NoC) [14]. Each tile encompasses a core,
private L1 caches (I/D), and an L2 cache bank. We assume block interleaved
logically shared L2 cache banks. An in-cache directory coherence MESI-based
protocol is employed [6, 13, 35]. Hence, each L2 cache line is associated with
a bit vector indicating which cores had cached copies of that line in their L1
private caches. Lastly, we assume an LRU replacement policy.

FSB: A Flexible Set Balancing Strategy for Last Level Caches 5

1.2.2 A Caching Problem

To mitigate the high off-chip data access latency, the microprocessor industry
has incorporated techniques such as deep cache hierarchies, large associative
last level caches (LLC), and sophisticated data prefetchers. But even with
these techniques, a significant number of cache lines still miss in LLC [3].
Evaluations of 10 benchmarks from Spec2006, PARSEC, and Splash-2 (Sec-
tion 1.4.1 describes the benchmark programs) manifested that more than two
thirds of the cache lines are never reused before getting evicted. A similar
observation appeared in [23]. These cache lines are referred to as zero reuse
lines.

Many reasons cause the occurrence of zero reuse lines at LLC. First, mem-
ory references exhibit locality and are not evenly distributed across cache
sets. This skew reduces the effectiveness of a cache and results in storing a
considerable number of lines that are less likely to be re-referenced before re-
placement [22]. Second, the access stream visible to LLC is filtered through
the higher level(s) caches on the memory hierarchy. Third, some cache lines
reveal no temporal locality. Fourth, many cache lines exhibit far-flung reuses.
That is, an evicted block might probably be used many times in the future,
although not in the near future [8]. Fifth, the advent of CMPs exacerbates
the problem due to interferences among co-scheduled threads/processes on an
underlying shared LLC. Recent research work on CMP cache management
has recognized the importance of the shared CMP design [29, 13, 18, 35, 10].
Furthermore, many of today’s multi-core processors, the Intel CoreTM2 Duo
processor family [26], Sun Niagara [21], and IBM Power5 [28], feature shared
caches. We conducted a quantification study on different kinds of misses (i.e.,
compulsory, intra-processor, and inter-processor) on our adopted CMP model
and found that 69.5% of misses are inter-processor (i.e., lines are replaced at
earlier times by different processors).

1.2.3 Dynamic Set Balancing Cache and Inherent Shortcom-
ings

Cache sets’ usages are typically asymmetric [27, 25]. An intuitive solution
to the zero reuse lines phenomenon is to extend the lifetime of some cache
lines long enough so that at least a portion of these lines can provide cache
hits on future reuses. Dynamic Set Balancing Cache (DSBC) [27] extends
the lifetime of some cache lines by exploiting the asymmetry in cache sets’
usages. Specifically, lines are shifted from sets with high local miss rates to
sets with low local miss rates where they can be found later. Once a set
reaches a saturation level (set’s miss rate hits a maximum value of 2K − 1
where K is the associativity of the cache) it requests a free (not associated yet)
underutilized set. If such a set is found, both sets, the highly pressured one
(or the source) and the underutilized one (or the destination), are associated.

6 Multi-Core Technologies: Architectures, Algorithms, & Applications

a1

a0

a3

a2

SET

0

1

2

3

L2 Bank

A

Working Set A = [a0, a1, a2, a3]

Misses (A) = 4

Hits (A) = 4

b0

a3

a1

a0

SET

0

1

2

3

L2 Bank

A

Misses (A) = 6

Hits (A) = 2

B

Misses (B) = 2

Hits (B) = 0

Statistics:

Retain Retain

(a)

Working Set A = [a0, a1, a2, a3]

Statistics:

(b)

Working Set B = [b0]

FIGURE 1.2: DSBC in operation. (a) A maps originally to set 3. The
program executes A’s references in the order of A,A. DSBC is able to
save much of A’s interference misses. (b) A and B map originally to sets
3 and 0, respectively. The program executes A’s and B’s references in the
order of A,B,A,B. DSBC is incapable of adapting to the phase change in
the program.

As long as the two sets are associated, the source is allowed to retain its lines
at the destination but not the reverse (i.e., unidirectional retention).

DSBC maintains a table with one entry per set called the Association
Table (AT). AT stores in the i-th entry AT(i).index which corresponds to the
index of the set associated with set i. Besides, AT stores a source/destination
(s/d) bit (AT(i).s/d) that indicates whether the set is associated or not. Each
AT entry can have three different values. First, if a cache set is not associated,
its corresponding AT entry stores the set’s index and s/d = 0. Second, if a set
is a source set, its corresponding AT entry stores the destination index and
s/d = 1. Lastly, if a set is a destination set, AT stores the source index and
s/d = 0. When a certain request misses at a source set, the destination set is
looked up for either a secondary hit or a definitive miss.

DSBC has a number of shortcomings. First, once a destination set, D, is
designated, it will continue receiving retained lines from a source set, S, until
the association is broken. This overlooks the fact that D’s pressure progres-
sively increases while receiving more lines from S. Nevertheless, after associa-
tion a new program phase can start where S might remain pressured (and still
associated with D) and D becomes highly pressured (due to receiving lines
not only from S but further from a new large working set which maps now
to it). As a result, S and D render competing on only D’s resources causing
significant thrashing. We illustrate this problem in an example.

Consider a 2-way set associative cache shown in Fig. 1.2. For simplicity
we represent a cache by a linear array consisting of only 4 sets. Assume first

FSB: A Flexible Set Balancing Strategy for Last Level Caches 7

a0

c2

c1

b1

b0

a2

a1

SET

0

1

2

3

L2 Bank

A

Working Set A = [a0, a1, a2]

Misses (A) = 3

Hits (A) = 3

a2

a1

a4

a3

SET

0

1

2

3

L2 Bank

A

Misses (A) = 12

Hits (A) = 0

Statistics:

Retain Retain

(a)

Working Set A = [a0, a1, a2, a3, a4]

Statistics:

(b)

Working Set B = [b0, b1]

Working Set C = [c0, c1, c2]

B

C
Misses (B) = 2

Hits (B) = 2

Misses (C) = 6

Hits (C) = 0

FIGURE 1.3: DSBC in operation. (a) The program executes A’s, B’s,
and C’s references in the order of A,B,C,A,B,C. DSBC doesn’t allow
one-from-many sharing. (b) The program executes A’s references twice.
DSBC doesn’t allow many-from-one sharing.

(Fig. 1.2(a)) that a working set A with reference pattern [a0, a1, a2, a3] maps
to set 3 and has been observed twice by a program. The sequence of references
of A can’t co-reside in set 3. Accordingly, DSBC selects an underutilized set,
say set 0, in the cache and displaces the evicted blocks from set 3 to set 0.
Fig. 1.2(a) shows the final residences of lines in the cache after the completion
of the program. A’s resultant misses and hits are, consequently, 4 and 4,
respectively (the cache is assumed to be initially empty). If the traditional
caching strategy is to be followed, 4 more misses will be incurred.

In Fig. 1.2(b), presumably at a different phase in the program, a new
working set B with reference pattern [b0] is considered and assumed to map
to set 0. As in Fig. 1.2(a), working set A still maps originally to set 3 and acts
as a source set associated with set 0 as a destination set. We assume that the
program executes A’s and B’s references in the order of A,B,A,B. The figure
shows the final residences of lines after the completion of the program. A’s
resultant misses and hits are, consequently, 6 and 2, respectively. B, on the
other hand, experienced 2 misses and got no hits. Note that DSBC didn’t even
attempt to break the association between sets 0 and 3 during the program’s
execution because there was always at least one retained block at set 0. If
DSBC would rather adapt to the phase change in the program, during the
first execution of B’s references, the evicted blocks from set 0 (i.e., a0) can be
retained at another underutilized set (say set 1) so that in the second execution
of A’s and B’s references no misses will be incurred.

We refer to the sharing policy employed by DSBC among cache sets as
one-from-one sharing. That is, a destination set is shared by only a single

8 Multi-Core Technologies: Architectures, Algorithms, & Applications

source set. Fig. 1.3(a) shows three working sets A, B, and C with reference
patterns [a0, a1, a2], [b0, b1], and [c0, c1, c2], respectively. We assume that A,
B, and C map originally to sets 3, 2, and 1, respectively. The figure demon-
strates two issuances of A’s, B’s, and C’s reference patterns in the order of
A,B,C,A,B,C. A’s lines can’t all co-reside in set 3 and DSBC selects set 0 as
a destination set for set 3. Also, C’s lines can’t all co-exist in set 1. However,
DSBC doesn’t select any destination set for set 1 because no set that is both
underutilized and not associated yet is found. As a result, C’s references will
experience zero hits during their two issuances (with this cache topology C is
said to experience far-flung reuses). The cache depicts the final residences of
all the cache lines after the completion of the program. The misses and hits
counts of A are 3 and 3, respectively. On the other hand, B’s references miss
twice and hit twice. Lastly, C’s references miss 6 times and get no hits. If
DSBC would allow set 0 to be shared by both sets, 3 and 1, C’s misses will
be avoided when issued on the second time. We refer to this kind of flexible
sharing as one-from-many sharing. That is, a single destination set can be
shared by multiple source sets.

Finally, as a consequence of the adopted one-from-one sharing strategy,
DSBC doesn’t allow a source set S to retain blocks in more than one desti-
nation set D. As such, if the working set that maps to S is large enough that
both S and D are incapable of providing enough capacity as required, many
conflict misses can be incurred. Fig. 1.3(b) assumes a working set A with ref-
erence pattern [a0, a1, a2, a3, a4] that maps to set 3. The program issues A’s
references twice. DSBC selects an underutilized set; say set 0, where evicted
lines from set 3 can be retained. The cache in the figure depicts the final resi-
dences of A’s lines after the completion of the program. The final misses and
hits counts are 12 and 0, respectively (assuming that the cache was initially
empty). In this case, DSBC didn’t provide any benefit for A. If DSBC would
allow more than one destination set to be shared by set 3; A’s misses will
be avoided when issued on the second time. We refer to this kind of flexible
sharing as many-from-one sharing. That is, many destination sets can be
shared by a single source set.

1.2.4 Our Solution

We propose Flexible Set Balancing (FSB), a caching strategy that adapts to
phase changes in programs and allows many-from-many sharing among cache
sets. The difference in this work compared to DSBC are two key insights: (1)
retention should be efficiently and dynamically allowed at any point during
the program’s execution in any direction seeking for spare space to effec-
tively minimize interference misses, (2) one-from-many and many-from-one
(i.e., many-from-many) sharing should be allowed among cache sets for high
flexibility. We demonstrate our solution with an example.

Fig. 1.4(a) demonstrates the same example shown in Fig. 1.2(b) but with
FSB being incorporated instead of DSBC. Again, A and B are assumed to map

FSB: A Flexible Set Balancing Strategy for Last Level Caches 9

b0

a1

a0

a3

a2

SET

0

1

2

3

L2 Bank

A

Misses (A) = 4

Hits (A) = 4

B

Misses (B) = 1

Hits (B) = 1

Retain

Working Set A = [a0, a1, a2, a3]

Statistics:

(a)

Working Set B = [b0]

a0

c0

c2

c1

b1

b0

a2

a1

SET

0

1

2

3

L2 Bank

A

Working Set A = [a0, a1, a2]

Misses (A) = 3

Hits (A) = 3

a1

a0

a2

a4

a3

SET

0

1

2

3

L2 Bank

A

Misses (A) = 6

Hits (A) = 6

Retain Retain

Working Set A = [a0, a1, a2, a3, a4]Working Set B = [b0, b1]

Working Set C = [c0, c1, c2]

B

C

Misses (B) = 2

Hits (B) = 2

Misses (C) = 3

Hits (C) = 3

Statistics:

(b)

Statistics:

(c)

FIGURE 1.4: Our solution. (a) The program executes A’s, and B’s ref-
erences in the order of A,B,A,B. We adapt to the phase change in the
program. (b) The program executes A’s, B’s, and C’s references in the or-
der of A,B,C,A,B,C. We allow one-from-many sharing. (c) The program
executes A’s references twice. We allow many-from-one sharing.

to sets 3 and 0, respectively. The program executes A’s and B’s references in
the order of A,B,A,B. In the first issuance of A’s references, FSB selects set 0
as a destination set for set 3. Afterwards, when B is issued, line a0, which has
been already retained at set 0, is evicted again. FSB doesn’t discard a0 but
yet retain it again at a new underutilized set, say set 1. In the second issuance
of the working sets, A’s and B’s references hit on all their cache lines. As
such, misses and hits outcomes become 4 and 4 for A, and 1 and 1 for B.
Therefore, FSB saves 3 misses as compared to DSBC. The figure shows the
final residences of all the cache lines after the program’s completion. Clearly,
this example illustrates FSB’s capability to adapt to phase changes.

Fig. 1.4(b) shows the same example illustrated in Fig. 1.3(a). Again, we
assume that A, B, and C map to sets 3, 2, and 1, respectively and that the
program observes A’s, B’s, and C’s references in the order of A,B,C,A,B,C.
FSB allows set 0 to be shared by many source sets. As such, in the first
iteration of the working sets when lines of C can’t all co-reside in set 1, FSB
retains c0 at set 0 (the current least pressured set). In the second iteration,
the references of A, B, and C hit on all their cache lines. Misses and hits
outcomes become, accordingly, 3 and 3 for A, 2 and 2 for B, and 3 and 3
for C. As compared to DSBC, FSB saves the three misses incurred by C in
Fig. 1.3(a). The cache array in the figure displays the final residences of all
the lines after the program’s completion. Clearly, this example demonstrates
FSB’s efficiency in reducing conflict misses with one-from-many sharing.

Lastly, Fig. 1.4(c) illustrates the same example demonstrated in
Fig. 1.3(b). Again, we assume that A maps to set 3 and that the program
issues A’s sequence of references twice. FSB allows many sets to be shared by
a source set. As such, in the first issuance of A, FSB selects an underutilized

10 Multi-Core Technologies: Architectures, Algorithms, & Applications

set, say set 0, and retains a1 and a0 at, then selects another underutilized
set, say set 1, and retains a2 at. In the second issuance, all references of A
hit in the cache. FSB, consequently, saves the 6 misses incurred by DSBC in
Fig. 1.3(b). Clearly, this example magnifies the potential of FSB in reducing
interference misses by employing many-from-one sharing among cache sets.

1.3 Flexible Set Balancing (FSB)

Flexible Set Balancing (FSB) regulates cache allocation by flexibly retaining
a fraction of a working set at underutilized cache sets to minimize interference
misses and maximize system performance. FSB is extensible and practical in
that it can be employed on single-core as well as multi-core architectures.
FSB is oriented towards last level caches (in our case L2). FSB requires three
main capabilities: (1) deciding upon source and destination sets, (2) retaining
working sets of source sets at destination sets in a many-from-many sharing
fashion, and (3) locating retained blocks on destination sets when requested.
We next describe each capability in turn and close with an analysis on FSB’s
hardware storage, area, energy, and latency requirements.

1.3.1 Retention Limits

FSB is a pressure-aware strategy where lines evicted from highly pressured
sets (source sets) are retained at low pressured sets (destination sets). The
pressure at a cache set can be measured in terms of cache misses or hits. In this
work we adopt cache misses as a pressure function but provide in Section 1.4
a study on a variety of pressure functions. The pressure information can be
recorded at an array embedded within the L2 controller of a cache bank. Each
cache set corresponds to an entry in the pressure array and the indexes of the
cache sets are used to index the array. Each time a miss occurs at a certain
set, the array can be updated accordingly (by incrementing the corresponding
array slot). In order to allow the array to accurately represent pressures at
sets, after every time interval, we keep only part of the pressure values (e.g.,
0.25 of values by shifting each value 2 bits to the right). That permits FSB to
adapt to undergoing phase changes in programs. The collected pressures can
be utilized to guide the retention process.

Clearly, the set that corresponds to the maximum value in the pressure
array is the most highly pressured set. In contrast, the lowest pressured set
is the one that corresponds to the minimum value in the array. In this work
we define two limits, the low pressure limit (LPL) and the high pressure limit
(HPL), to allow a range of highly pressured sets to retain their blocks at a
range of low pressured sets. A range can encompass one set or many. When
the pressure of a set is below LPL, the set is deemed to be within the limit

FSB: A Flexible Set Balancing Strategy for Last Level Caches 11

of the destination sets and can receive lines from any source set. In contrast,
when the pressure of a set is above HPL, the set is considered to be within the
limit of source sets and is permitted, accordingly, to retain its lines at multiple
destinations sets. Clearly, this allows many-from-many sharing among cache
sets. LPL and HPL are defined in equations (1) and (2). The range of source
and destination sets can be expanded or contracted by altering α. The max
and min parameters are the maximum and minimum pressures on the pressure
array.

LowPressureLimit(LPL) = min + (α × (max - min)) (1)
HighPressureLimit(HPL) = max − (α × (max - min)) (2)

1.3.2 Retention Policy

FSB maintains a small retention table (RT) per each L2 bank. Each cache set
has a corresponding RT entry. As such, the number of entries in RT equals
the number of cache sets in the L2 bank. RT can store in the i-th entry many
RT(i).index values, each pointing to a destination set with a different index.
In Section 1.4, we empirically show that four RT(i).index pointers are enough
to attain an efficient FSB. RT(i).index pointers can be used by FSB to locate
retained blocks upon future reuses (more on this shortly).

When an LRU line, L, is evicted from a set i, our retention policy proceeds
as follows:

1. We look up i’s corresponding pressure value in the pressure array, gen-
erate minimum (MIN) and maximum (MAX) values, and calculate HPL
and LPL.

2. If i’s pressure is greater than HPL, i becomes a source set and L is
deemed eligible for retention. Otherwise, L is discarded.

3. In parallel, RT(i) entry is looked up. If L is eligible for retention and
RT(i) entry has no pointers to destination sets, we check if MIN is less
than LPL. If satisfied, we retain L at the cache set corresponding to MIN
and create an equivalent RT(i).index pointer. Otherwise, we discard L.

4. If RT(i) entry, on the other hand, has pointers (or at least one pointer),
we use these pointers to index the pressure array, generate the minimum
value out of the indexed values, and compare it against LPL. If satisfied,
we retain L at the corresponding cache set and no RT(i).index pointer
is created. Otherwise, we check if an invalid RT(i).index exists.

5. If an invalid RT(i).index is found and MIN satisfies LPL, we retain L
at the corresponding set and create an equivalent RT(i).index pointer.
Otherwise, we discard L.

Note that upon retention, we insert L as the most recently used (MRU) line
in the selected destination set. The LRU line evicted at the destination set,
to make room for L, is discarded simply because the destination set doesn’t
satisfy HPL. As such, FSB avoids ripple effects.

The LRU evicted line, L, at the source set can be either native or retained.

12 Multi-Core Technologies: Architectures, Algorithms, & Applications

If L is native, FSB simply proceeds with our previously suggested retention
policy. Otherwise, we check if L is active. We define L to be active if at least
one core on the CMP platform had cached a copy of L (in its L1). This can be
easily determined from L’s associated directory bit vector. We assume that an
active L is currently in use by the caching core(s) and, accordingly, attempt
to retain it again. If L is retained and not active, we assume that it has been
kept long enough in the cache without providing a cache hit, and, as such,
avoid retaining it over again (although it is eligible for retention).

The pressure array is updated not only at a miss/hit but further when
retaining a line at a destination set. When a destination set receives a retained
line, its corresponding pressure value is incremented. This is critical so as to
reflect the progressive increasing pressure on a destination set each time it
receives a retained line. This makes FSB very flexible and attentive as it
allows selecting a different destination set once the pressure of the current
destination set surpasses LPL.

Retaining cache lines at destination sets requires extending lines’ tags. This
is due to the fact that a cache line must have a one-to-one correspondence with
a unique address. For instance, assume a line E is retained at a destination
set S and that S has a line F which has an identical tag field as E. E and F
addresses are, in fact, only distinct because they differ in their index fields.
Now E and F co-reside at S and thus become indistinguishable. Nevertheless,
this suggests a simple solution. That is, augmenting each line’s tag with the
index field. Finally, upon discarding a retained line, R, from S we match R’s
augmented index j with the augmented indexes of S’s resident lines. A “no
match” outcome means that R is the last retained line at S from the source set
j. Consequently, we index RT(j) entry and invalidate the RT(j).index pointer
that points to S.

To that end, we note that the retention process is activated in parallel
with the resolution of a definitive miss. As such, the latency required to re-
tain a cache block becomes completely hidden as resolving an L2 miss usually
takes hundreds of cycles. However, in principle, FSB’s retention policy would
require hardware to compute MAX, MIN, HPL, and LPL, which may appear
expensive. Smart implementation strategies exist. We need not, for instance,
compute upon every eviction the exact MAX and MIN values. The L2 misses
are usually infrequent and the MAX and MIN values don’t henceforth vary
much upon a single L2 miss. As an approximation, we can compute MAX and
MIN after a reasonable amount of misses (e.g., 1K L2 misses) and perform
partial comparisons incrementally. In another design, one could employ com-
parators combined with multiplexors in a tree structure as adopted in [27].
Lastly, α can be simply set to 0.25 (i.e., power of 2) (corroborated by the
sensitivity study presented in Section 1.4.4). With this setting, a multiplier
is not needed to compute HPL and LPL but a simple shifter. Section 1.3.4
describes FSB’s storage, area, energy, and latency requirements.

FSB: A Flexible Set Balancing Strategy for Last Level Caches 13

Component Bits Per Entry K Entries KB Per Tile

RT Entry 10 2 2.5
Augmented Bits Per an L2 Line 9 8 9.2

Total KBytes 11.7
% Increase of On-Chip Cache Capacity 2%

TABLE 1.1: FSB storage overhead.

1.3.3 Lookup Policy

Upon a request to a cache line, L, the cache starts always looking up the set i
that L’s index designates. RT(i) entry is also looked up concurrently. If a hit
occurs at set i, the request is satisfied and the pressure array is updated (only
if the pressure function involves hits). If, on the other hand, a miss occurs
at set i, the cache sets identified by the RT(i).index pointers (if any) are
serially looked up until either a secondary hit is acquired or a definitive miss
is proclaimed. Sets’ lookups are serialized in order to keep FSB simple, avoid
port contention, and reduce power dissipation2. Section 1.4 demonstrates that
such a serial policy doesn’t hurt performance because the gain from hits on
retained lines exceedingly offsets the loss from sequential lookups. Upon a
secondary hit, the request is satisfied and the pressure array is updated (only
if the pressure function involves hits). If a definitive miss is asserted, the
pressure array is updated at slot i (if the pressure function involves misses).
On a definitive miss, the retention policy is triggered and, in parallel, the
requested cache line is fetched from the main memory and inserted in set i.

FSB doesn’t swap retained lines upon hits to return them to their original
sets for several reasons. First, this simplifies management. Second, FSB is
oriented towards last level caches; once a hit is obtained on a retained line,
the line is moved to the upper cache where successive accesses can find it.
Third, swapping is undesirable because it requires four accesses to the tag-
store, consumes energy, and increases port contention [25].

1.3.4 FSB Cost

FSB comes at a little storage, area, latency, and energy overheads. In this
work we assume a 32 KB 2-way associative I/D L1 caches and a 512KB 16-
way associative L2 bank (512 cache sets) per each CMP tile. Section 1.4 shows
that 4 pointers per each RT entry are enough for an effectively performing
FSB. Each RT pointer requires 10 bits (1 valid bit and 9 bits to index the 512
L2 sets). Table 1.1 shows that ∼2% storage overhead is required by FSB.

To model area and energy we use CACTI v5.3 [16]. We assume a 45nm
technology. Table 1.2 demonstrates the area and energy per access required for

2Prior research has made use of serialization to increase flexibility and improve perfor-
mance in large caches [9, 12]. Existing processors have also adopted serialization for looking
up tag and data arrays seeking to reduce power dissipation [11, 32].

14 Multi-Core Technologies: Architectures, Algorithms, & Applications

Technology
Baseline FSB Baseline FSB

Energy Energy Area Area

45nm 1.23nJ 1.26nJ 5.36mm2 5.47mm2

TABLE 1.2: Baseline and FSB required energy and area in a 512KB/16-
way/64B/LRU L2 bank.

Component Parameter

Cache Line Size 64 B
L1 I/D-Cache Size/Associativity 32KB/2way

L1 Hit Latency 1 cycle
L1 Replacement Policy LRU

L2 Cache Size/Associativity 512KB per L2 bank or 8MB aggregate/16way
L2 Bank Access Penalty 12 cycles
L2 Replacement Policy LRU

Latency Per NoC Hop 3 cycles
Memory Latency 320 cycles

TABLE 1.3: System parameters

both a baseline L2 bank and an L2 bank with FSB being incorporated. The TR
table, in addition, requires 0.14 mm2 and 0.015 nJ area and energy per access,
respectively. Note that the energy savings due to reducing off-chip accesses
is not considered. Such savings are expected, in fact, to counterbalance our
calculated energy overhead and further provide advantages as chip crossings
are one of the greediest energy consumers [17]. Finally, and due to augmenting
lines’ tags by indexes, FSB incurs a negligible increase in latency (only 0.02
ns) per each L2 bank access.

Name Input

SPECJbb Java HotSpot (TM) server VM v 1.5, 4 warehouses
Bodytrack 4 frames and 1K particles (16 threads)

Fluidanimate 5 frames and 300K particles (16 threads)
Swaptions 64 swaptions and 20K simulations (16 threads)
Barnes 64K particles (16 threads)
Lu 2048×2048 matrix (16 threads)

MIX1 Hmmer (reference) (16 copies)
MIX2 Sphinx (reference) (16 copies)

MIX3
Barnes, Ocean(1026×1026 grid), Radix (3M Int), Lu,

Milc (ref), Mcf (ref), Bzip2 (ref), and Hmmer (2 threads/copies each)
MIX4 Barnes, FFT (4M complex numbers), Lu, and Radix (4 threads each)

TABLE 1.4: Benchmark programs

FSB: A Flexible Set Balancing Strategy for Last Level Caches 15

1.4 Quantitative Evaluation

1.4.1 Methodology

We present our results based on detailed full-system simulation using Vir-
tutech’s Simics 3.0.29 [31]. We use our own CMP cache modules fully devel-
oped in-house. We implement the XY-routing algorithm and accurately model
congestion for both coherence and data messages. A tiled CMP architecture
comprised of 16 UltraSPARC-III Cu processors is simulated running with So-
laris 10 OS. Each processor uses an in-order core model with an issue width of
2. The tiles are organized as a 4×4 grid connected by a 2D mesh NoC. Each
tile encompasses a switch, 32KB I/D L1 caches, and a 512KB L2 cache bank.
A distributed MESI-based directory protocol is employed. After every 20 mil-
lion instructions, we keep only 0.25 of the pressure values (see Section 1.3.1).
Table 1.3 shows our configuration’s experimental parameters.

We use a mixture of multithreaded and multiprogramming workloads to
study FSB and related designs. For multithreaded workloads we use the com-
mercial benchmark SpecJBB [30], five shared memory programs from the
SPLASH-2 suite [33] (Ocean, Barnes, Lu, Radix, and FFT), and three applica-
tions from the PARSEC suite [4] (Bodytrack, Fluidanimate, and Swaptions).
We composed multiprogramming workloads using the considered SPLASH-2
benchmarks and five other applications from SPEC2006 [30] (Hmmer, Sphinx,
Milc, Mcf, and Bzip2). Table 1.4 shows the data sets and other important fea-
tures of the simulated workloads. Lastly, the programs are fast forwarded to
get past of their initialization phases. After various warm-up periods, each
SPLASH-2 and PARSEC benchmark is run until the completion of its main
loop, and each of SpecJBB, MIX1, MIX2, MIX3, and MIX4 is run for 8 billion
user instructions.

1.4.2 Comparing FSB against Shared Baseline

Let us first compare FSB against the baseline shared (S) scheme. Fig. 1.5 (a)
shows the L2 miss rates of S and four FSB configurations normalized to S.
We denote FSB with retention tables (RT) storing 1, 2, 4, and 8 RT(i).index
pointers per each entry i as FSB-1, FSB-2, FSB-4, and FSB-8, respectively.
Furthermore, we assume a low pressure limit (LPL) and a high pressure limit
(HPL) each with α = 0.2. Section 1.4.4 offers a sensitivity study on different
α values. We adopt cache misses as a pressure function but Section 1.4.3 pro-
vides a study on a variety of other functions. The figure demonstrates that as
the number of pointers per an RT entry increases, FSB achieves higher L2 miss
rate reductions. This behavior is apparent on all the examined benchmark pro-
grams. FSB centers around the flexible many-from-many sharing policy. More
pointers indicate more exploitation to the many-from-many sharing strategy

16 Multi-Core Technologies: Architectures, Algorithms, & Applications

(a)

(b)

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)*+,-..")/0*1234" .256780,9" :;<=503=>07+" .083+4" ?@" ABC(" ABC$" ABCD" ABC%" EFG#"

H
2
8>

0
;=
I+
5
"?
$
"A

=4
4"
J
0
7+
"

.+3,K>0894"

)" :).L(" :).L$" :).L%" :).L'"

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)*+,-..")/0*1234" .256780,9" :;<=503=>07+" .083+4" ?@" ABC(" ABC$" ABCD" ABC%" EFG#"

H
2
8>

0
;=
I+
5
"J
K+
,<
1
2
3
"L
=>

+
"

.+3,M>0894"

)" :).N(" :).N$" :).N%" :)N'"

FIGURE 1.5: L2 miss rates and execution times of the baseline shared
scheme (S), FSB-1, FSB-2, FSB-4, and FSB-8 (all normalized to S).

and, consequently, more alleviation to the imbalance across sets. On average,
FSB-1, FSB-2, FSB-4, and FSB-8 accomplish average miss rate reductions of
14.6%, 23.9%, 36.6%, and 48.7%, respectively.

FSB strategy adopts a serial lookup policy (see Section 1.3.3 for more
details). Upon a miss on the original set i, RT(i).index pointers (if any) are
utilized to serially index and lookup corresponding L2 cache sets. Only the
tag-stores are looked up until either a secondary hit is obtained or a definitive
miss is asserted. Each tag-store access takes less than 0.68 ns, estimated by
CACTI v5.3 [16] assuming a 45nm technology. This incurs a higher latency
per each L2 access that misses at the original set. As such, although more
RT(i).index pointers result in more L2 miss rate reductions, a latency cost is
to be paid. Fig. 1.5 presents the execution times of S, FSB-1, FSB-2, FSB-4,
and FSB-8 normalized to S. A main observation is that as we proceed through
FSB configurations (FSB-1 to FSB-8), the performance of each application
monotonically improves until FSB-8 is knocked. Under FSB-8 the case changes
and programs are split into three categories: (1) no benefit is accomplished
(e.g., SpecJBB), (2) a benefit is achieved (e.g., Fluidanimate, Barnes, Lu,
MIX1, MIX2, and MIX3), and (3) a degradation is observed versus FSB-4
(e.g., Swaptions, Bodytrack, and MIX4).

FSB: A Flexible Set Balancing Strategy for Last Level Caches 17

!"

#"

$"

%"

&"

'"

("

)"

*"

+"

,-./#" ,-./$" ,-./&" ,-./*"

0
12
3"4
"5
6"
-7
89
"-
7:
;<
=
7>

"

-8;:872?"

-@7<A.."

-B:@C5D9"

.5>?8;:<E"

,FGH>:DHI:87"

.:;D79"

JK"

LMN#"

LMN$"

LMN%"

LMN&"

FIGURE 1.6: The average number of L2 cache sets searched under FSB-
1, FSB-2, FSB-4, and FSB-8.

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

,-./011" ,23-4567" 1589:;3/<" =>?@836@A3:." 13;6.7" BC" DEF#" DEF$" DEF%" DEF&" GHIJ"

K
"5
L"
M
@:
7"
5
6
"N
.
:3
@6
.
8
"1
>5
/<
7"

1.6/OA3;<7"

=,1P#" =,1P$" =,1P&" =,1P*"

FIGURE 1.7: The percentage of hits on retained cache lines under FSB-1,
FSB-2, FSB-4, and FSB-8.

Two factors define the eligibility of applications for accomplishing higher
or lower performance when switching in between FSB’s configurations: (1) the
gain, G, from miss rate reduction and (2) the loss, L, from increased access
latency. Let 4i be defined as G − L for FSB-i. When 48 exceeds 44, the
performance of the application improves by switching from FSB-4 to FSB-8,
otherwise, it degrades. Swaptions, Bodytrack, and MIX4 achieve miss rate
reductions of 6.1%, 7%, and 7%, respectively after increasing RT pointers
from 4 to 8. In fact, under FSB-8, these three applications reduce the L2 miss
rates the least as compared to the other examined programs (see Fig. 1.5 (a)).
Clearly, 44 of each of Swaptions, Bodytrack, and MIX4 overpasses 48, thus
they degrade under FSB-8 in comparison to FSB-4. FSB-1, FSB-2, FSB-4, and
FSB-8 outperform S by averages of 4.3%, 8.8%, 13%, and 18.6%, respectively.
Although FSB-8, on average, surpasses the remaining FSB’s configurations,
we consider FSB-4 more desirable for two main reasons. First, FSB-4 doesn’t

18 Multi-Core Technologies: Architectures, Algorithms, & Applications

!"

#!!!!"

$!!!!!"

$#!!!!"

%!!!!!"

%#!!!!"

&!" &$" &%" &'" &(" &#" &)" &*" &+" &," &$!" &$$" &$%" &$'" &$(" &$#"

-
".
/"
0
%
"1

23
3
4
3
"

0%"&5673"

89:;<&&"

1=>"84?"@8A" 1BC"84?"@8A" 1=>"84?"@D8&E(A" 1BC"84?"@D8&E+A"

!"

#!!!!"

$!!!!!"

$#!!!!"

%!!!!!"

&!" &$" &%" &'" &(" &#" &)" &*" &+" &," &$!" &$$" &$%" &$'" &$(" &$#"

!
"#
$"
%
&
"'

()
)
*
)
"

%&"+,-.)"

'/01"

'20"3*4"536" '/7"3*4"536" '20"3*4"583+9:6" '/7"3*4"583+9:6"

FIGURE 1.8: The number of L2 misses experienced by cache sets at
different L2 banks for SpecJBB and MIX3 programs under the baseline
shared scheme (S) and FSB-4. Only the sets that exhibit the maximum
(MAX Set) and the minimum (Min Set) misses are shown.

observe any degradation in performance for any application when compared
against the preceding configurations. Second, FSB-4 offers a better tradeoff
between hardware complexity, power dissipation, and performance.

To that end, Fig. 1.6 depicts the average number of L2 cache sets searched
for all the applications under FSB-1, FSB-2, FSB-4, and FSB-8. Furthermore,
Fig. 1.7 displays the percentage of hits on retained cache lines for each pro-
gram. In fact, the latter figure explores FSB’s efficiency in satisfying far-flung
reuses after retaining some fraction of the working set at underutilized sets.
With FSB-4, more than half of hits are satisfied by retained lines. On average,
the percentage of hits on retained lines provided by FSB-1, FSB-2, FSB-4, and
FSB-8 are 25%, 35.8%, 52.6%, and 62.8%, respectively. Finally, Fig. 1.8 ex-
plores FSB’s effectiveness in mitigating non-uniformity across sets by showing
the number of misses experienced by cache sets at different L2 banks for two
benchmarks, a multithreading one (i.e., SpecJBB) and a multiprogramming
one (i.e., MIX3). We present only the sets that exhibit the maximum and the
minimum misses for the baseline shared, S, and FSB-4.

1.4.3 Sensitivity to Different Pressure Functions

In the previous section we utilized cache misses as a pressure function. We
tested other functions that can be used to measure pressures at cache sets.
Fig. 1.9 plots the results for only three functions F1, F2, and F3 which denote
functions with misses only, hits only, and spatial hits, respectively. We assume
a low pressure limit (LPL) and a high pressure limit (HPL) each with α =
0.2. The spatial hits function simply updates the pressure array with different
values upon hits depending on lines’ frames. That is, upon a hit on a line,
Lmru, which exists at the MRU position, the function increments the bucket
that corresponds to Lmru’s set by 1. However, upon a hit on a line, Lmru

−1, next to Lmru, the function increments the corresponding bucket by 2,
and so on. The idea stems from the fact that a single highly contended line

FSB: A Flexible Set Balancing Strategy for Last Level Caches 19

(a) (b)

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)(")$")*"

+
,
-
./
0
-
"1
$
"2

34
4
"5
/
6-
"

7.-448.-")89:;<94"

=")=>?(")=>?$")=>?%")=>?'"

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)(")$")*"

+
,
-
./
0
-
"1
2
-
3
4
5
6
7
"8
9:

-
"

;.-<<4.-")473567<"

=")=>?(")=>?$")=>?%")=>?'"

FIGURE 1.9: Average L2 miss rates and execution times of all the
benchmark programs under the baseline shared scheme (S), FSB-1, FSB-
2, FSB-4, and FSB-8 (all normalized to S) (F1, F2, and F3 are pressure
functions that involve misses, hits, and spatial hits, respectively).

(say a lock) could result in a very high hit count at a particular set when,
in fact, the pressure of lines competing for that set is very low. As depicted
in Fig. 1.9 (b), on average, F2 produces performance improvements of 2.4%,
4.4%, 4.1%, and 5.4% for FSB-1, FSB-2, FSB-4, and FSB-8 over the baseline
shared (S) scheme, respectively. F3, on the other hand, offers average perfor-
mance improvements of 2.7%, 2.6%, 4.8%, and 6% for FSB-1, FSB-2, FSB-4,
and FSB-8 over S, respectively. Lastly, F1 surpasses both, F2 and F3, and
provides average performance improvements of 4.3%, 8.8%, 13%, and 18.6%
for FSB-1, FSB-2, FSB-4, and FSB-8 versus S, respectively. For the examined
benchmarks, we conclude that cache misses is preferable among the tested
functions to represent pressures at cache sets. More comprehensive functions
can be considered in a future work.

1.4.4 Sensitivity to LPL and HPL

So far, we have been using α = 0.2 for the low and the high pressure limits,
LPL and HPL. As Section 1.3.1 describes, by altering α, the range of source
and destination sets can be expanded or contracted. We tested FSB-1, FSB-
2, FSB-4, and FSB-8 with two more α values, particularly 0.1 and 0.3 for
both LPL and HPL. Fig. 1.10 shows the results. RL1, RL2, and RL3 denote
the retention limits (i.e., LPL and HPL) with α values of 0.1, 0.2, and 0.3,
respectively. As demonstrated in Fig. 1.10(a), on average, RL1 provides L2
miss rate reductions of 14.4%, 21.3%, 35%, and 48.3% for FSB-1, FSB-2,
FSB-4, and FSB-8 against the baseline shared (S) scheme, respectively. RL2,
on the other hand, offers a little more enhancement and produces 14.6%,
23.9%, 39.4%, and 48.7% L2 miss rate reductions for FSB-1, FSB-2, FSB-4,
and FSB-8 versus S, respectively. Finally, RL3 achieves 15.2%, 24.3%, 36.2%,

20 Multi-Core Technologies: Architectures, Algorithms, & Applications

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)*(")*$")*+"

,
-
.
/0
1
.
"*
$
"2

34
4
")
0
5.
"

).5.6786"*39354"

!" #!$%&" #!$%'" #!$%(" #!$%)"

(a) (b)

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)*(")*$")*+"

,
-
.
/0
1
.
"2
3
.
4
5
6
7
8
"9
:;

.
"

).<.8678"*:;:<="

>" ?>@A(" ?>@A$" ?>@A%" ?>@A'"

FIGURE 1.10: Average L2 miss rates and execution times of all the
benchmark programs under the baseline shared scheme (S), FSB-1, FSB-
2, FSB-4, and FSB-8 (all normalized to S) (RL1, RL2, and RL3 are the
Retention Limits- HPL and LPL- with α = 0.1, α = 0.2, and α = 0.3,
respectively).

and 49.8% miss rate reductions for FSB-1, FSB-2, FSB-4, and FSB-8 over S,
respectively. Fig. 1.10 (b) depicts the performance outcome. For the simulated
benchmarks, we conclude that FSB shows low sensitivity to the examined α
values.

1.4.5 Impact of Increasing Cache Size and Associativity

We can improve cache performance not only by efficient cache management
but also via increasing cache size and associativity. We note that increasing
cache associativity is not equivalent to FSB. First, larger associativity re-
sults in fewer sets, which don’t help much if the conflict on the sets varies
widely. Second, increasing cache associativity equates to merging sets in an
indiscriminate way [27]. That is, which sets to merge is not an option. FSB,
however, attempts to controllably and selectively increase the associativity of
the sets that experience extensive conflicts without decreasing the number of
sets (effectively decreasing associativity for underutilized sets).

In this section, we consider only FSB-4 (see Section 1.4.2 for a discussion on
FSB’s configurations). FSB-4 requires 11.5KB storage overhead per tile (see
Table 1.1). To justify FSB-4’s incurred overhead, we optimistically augment
each cache set of the baseline shared scheme, S, with two more ways. In
total, this adds to each L2 bank a 64KB more capacity. We refer to this
configuration as S(2W). Moreover, we examine S with a double sized cache
(i.e., 1MB instead of 512KB). We denote this latter configuration by S(D).
Fig. 1.11 shows the L2 miss rates of S, S(2W), S(D), and FSB-4 normalized
to S. The figure demonstrates that doubling the size of the cache results in a
greater miss reduction than increasing associativity by two ways. Nonetheless,

FSB: A Flexible Set Balancing Strategy for Last Level Caches 21

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)*+,-..")/0*1234" .256780,9" :;<=503=>07+" .083+4" ?@" ABC(" ABC$" ABCD" ABC%" EFG#"

H
2
8>

0
;=
I+
5
"?
$
"A

=4
4"
J
0
7+
"

.+3,K>0894"

)")L$MN")LON" :).P%"

FIGURE 1.11: L2 miss rates of the baseline shared scheme (S), S with
two more ways added (S(2W)), S with double sized cache (S(D)), and
FSB-4 (all normalized to S).

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)*+,-..")/0*1234" .256780,9" :;<=503=>07+" .083+4" ?@" ABC(" ABC$" ABCD" ABC%" EFG#"

H
2
8>

0
;=
I+
5
"J
K
+
,
<
1
2
3
"L
=>

+
"

.+3,M>0894"

!" #$" %!&'("

FIGURE 1.12: Execution times of the baseline shared scheme (S), victim
cache (VC), and FSB-4 (all normalized to S).

FSB-4 surpasses S(D) for all the examined programs except Lu. On average,
S(2W), S(D) and FSB-4 achieve L2 miss rate reductions of 5.1%, 15.6%, and
36.6%, respectively. We conclude that FSB-4 is quite attractive as with small
design and storage overhead it provides more than 2× miss rate reduction
over S(D) which incurs 88.8% increase in the on-chip cache capacity.

1.4.6 FSB versus Victim Caching

In this section we compare FSB against victim cache (VC) [20]. Again, we
contrast only against FSB-4. VC effectively extends the associativity of hot
sets in the cache to reduce conflict misses. For a fair comparison, we consider
a fully associative 16KB VC per tile to approximately match the storage
overhead incurred by FSB-4. We, furthermore, optimistically assume only a 6
cycle access time to VC after each miss on an L2 bank. Fig. 1.12 depicts the

22 Multi-Core Technologies: Architectures, Algorithms, & Applications

(a)

(b)

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)*+,-..")/0*1234" .256780,9" :;<=503=>07+" .083+4" ?@" ABC(" ABC$" ABCD" ABC%" EFG#"

H
2
8>

0
;=
I+
5
"?
$
"A

=4
4"
J
0
7+
"

.+3,K>0894"

)" LMNEO" P).Q" :).M%"

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)*+,-..")/0*1234" .256780,9" :;<=503=>07+" .083+4" ?@" ABC(" ABC$" ABCD" ABC%" EFG#"

H
2
8>

0
;=
I+
5
"J
K
+
,
<
1
2
3
"L
=>

+
"

.+3,M>0894"

)" NOPEQ" R).S" :).O%"

FIGURE 1.13: L2 miss rates and execution times of the baseline shared
scheme (S), variable-way set associative cache (V-WAY), dynamic set
balancing cache (DSBC), and FSB-4 (all normalized to S).

execution times of S, VC, and FSB-4 normalized to S. VC outperforms S by
an average of 6.3%. In contrast, FSB-4 improves upon S and VC by averages
of 13% and 7.2%, respectively.

1.4.7 FSB versus DSBC and V-WAY

In addition to comparing with victim caching, we compare FSB against the
closely related dynamic set balancing cache (DSBC) [27] and variable-way set
associative cache (V-WAY) [25] designs. Similar to FSB, both DSBC and V-
WAY are directly extensible to CMPs. Section 1.2.3 details DSBC. V-WAY
addresses the problem of workload imbalance among sets via varying the as-
sociativity of a cache by increasing the number of tag-store entries relative to
the number of data lines. The tag and data stores are decoupled. The data-
store is structured as one large piece and a global frequency based replacement
policy, referred to as Reuse Replacement is employed in order to achieve bet-
ter replacements. In reverse, the tag-store keeps a conventional set granular
(local) replacement strategy (e.g., LRU).

For the reuse replacement policy, V-WAY associates each data line in the

FSB: A Flexible Set Balancing Strategy for Last Level Caches 23

cache with a reuse counter. A reuse count is defined as the number of L2
accesses to a cache line after its initial fill. Upon replacement, a line with a
reuse counter equals to zero is replaced. To decide upon the number of bits
required for reuse counters, we conducted a study to scrutinize the distribution
of reuse counts for all evicted L2 cache lines from our benchmark programs.
We observed that 99% of L2 cache lines are reused three or fewer times.
Consequently, we choose to use two-bit saturating reuse counters.

Fig. 1.13(a) depicts the L2 miss rates of S, V-WAY, DSBC, and FSB-4
normalized to S. On average, V-WAY and DSBC achieve miss rate reductions
of 14.7% and 11.3%, respectively. FSB-4 surpasses V-WAY and DSBC by
averages of 27.2% and 29.2%, respectively. Fig. 1.13(b) shows the execution
time results. V-WAY and DSBC outperform S by averages of 5.9% and 5%,
respectively. FSB-4, however, improves upon V-WAY and DSBC by averages
of 7.8% and 8.8%, respectively.

1.5 Related Work

Much work has been done to effectively minimize conflict misses in conven-
tional cache designs. It is, in fact, quite impossible to do justice to this large
body of work in this short article. As such, we briefly describe the proposals
that are most relevant to FSB. The closest proposals to FSB are the dynamic
set balancing cache (DSBC) [27] and the variable-way set associative cache
(V-WAY) [25] designs. Sections 1.2.3 and 1.4.7 describe DSBC and V-WAY
in detail and Section 1.4.7 compares against them.

Many proposals suggest alternative indexing functions to achieve a more
uniform distribution of memory accesses. Predictive Sequential Associative-
Cache [5], Column Associative Cache [2], and Hash-Rehash [1] are proposed in
the context of direct-mapped caches. They provide the capability of mapping
a cache line at an alternative pre-determined (using different hash functions)
cache frame in order to provide performance similar to that of 2-way caches
(schemes referred to as skewed caches). Rolán et al. [27] suggested a skewed
set associative cache, denoted as static set balancing cache (SSBC), and found
it impractical. Consequently, they proposed DSBC as a superior scheme. Our
work simply promotes FSB over DSBC.

Adaptive Group-Associative Cache (AGAC) [22] identifies underutilized
cache frames and attempts to utilize them to approximate a global LRU pol-
icy while maintaining the fast access in direct-mapped caches. Indirect Index
Cache (IIC) [12] suggests a fully associative, software managed secondary
cache system. IIC employs a generational replacement policy run by software.
Simulation results in [25] manifested the outperformance of V-WAY versus
AGAC. Besides, [25] shows that the miss reduction provided by V-WAY is

24 Multi-Core Technologies: Architectures, Algorithms, & Applications

comparable to that of IIC. In Section 1.4.7 we demonstrate the outperfor-
mance of FSB against V-WAY.

Utility Based Cache Partitioning (UCP) [24] partitions at a way-
granularity the last level shared cache among concurrently running applica-
tions depending on how much each application is likely to benefit from the
cache (i.e., utility) rather than the application’s demand for the cache. Dy-
namic Insertion Policy (DIP) [23] makes a key observation that a large number
of cache lines become dead on arrival. Thus, a Bimodal Insertion Policy (BIP)
is proposed to insert incoming lines frequently in the LRU positions and infre-
quently (with a low probability) in the MRU positions. Lines inserted at the
LRU positions are only promoted to the MRU positions upon hits while re-
siding in the LRU positions. For LRU-friendly workloads (i.e., favoring MRU
insertions), however, the changes to the insertion policy might become detri-
mental to cache performance. As such, a Set Dueling mechanism is proposed
to select among BIP and LRU depending on which policy incurs fewer misses.
Simulation results in [27] demonstrated the outperformance of DSBC versus
DIP. As shown in Section 1.4.7, FSB surpasses DSBC .

DIP uses a single policy (LRU or BIP) for all the concurrently running ap-
plications. A subsequent proposal, namely Thread-Aware Dynamic Insertion
Policy (TADIP) [19], extends DIP to use a single policy for each application.
Promotion/Insertion Pseudo-Partitioning (PIPP) [34] combines dynamic in-
sertion and probabilistic promotion policies to provide the benefits of cache
partitioning, adaptive insertion, and capacity stealing all with a single mecha-
nism. Adaptive Set Pinning (ASP) [29] associates processors to cache sets and
solely grants them permissions to evict blocks from their sets on cache misses.
Therefore, references that may potentially cause inter-processor misses are no
more allowed to interfere with each other even if they index to the same set.

Pseudo-Last-In-First-Out (Pseudo-LIFO) [8] proposes a family of replace-
ment policies that manages each cache set as a fill stack. The replacement
activities are restrained within a set to the upper part of the fill stack as much
as possible. The lower part of the fill stack is left undistributed to extend the
lifetime of the resident blocks. Among three members of the Pseudo-LIFO
family, namely dead block prediction LIFO (dbpLIFO), probabilistic escape
LIFO (peLIFO), and probabilistic counter LIFO (pcounter-LIFO), peLIFO
is central. peLIFO synergistically learns the probabilities of experiencing hits
beyond each of the fill stack positions and a set of highly preferred eviction
positions is then deduced (based on this probability function) in the upper
part of the fill stack.

Finally, Scavenger [3] partitions the total storage budget at the last level
cache (LLC) into a conventional cache and a novel victim file (VF). Block
addresses missing at the LLC are prioritized based on the number of times
they have been observed in the LLC miss stream. If a block is evicted from the
conventional part of the cache and indicates a high priority (i.e., frequently
missed in the recent past), it gets stored in the VF.

FSB: A Flexible Set Balancing Strategy for Last Level Caches 25

1.6 Conclusions and Future Work

Memory accesses are not evenly distributed across cache sets. Such a skew
in sets’ usages reduces the effectiveness of the conventional cache designs and
cache lines become less likely to be re-referenced before eviction. We propose
Flexible Set Balancing (FSB), a strategy that exploits the demand imbalance
across sets to retain cache lines evicted from highly pressured sets at under-
utilized sets so as to satisfy far-flung reuses. FSB adapts to phase changes
in programs and promotes a very flexible sharing among cache sets. An un-
derutilized set is allowed to share its space by any stressed set during any
point in a program’s execution, a policy that we refer to as one-from-many
sharing. Besides, many sets are allowed to share their capacities with a highly
utilized set, a policy that we refer to as many-from-one sharing. FSB incurs a
little storage, area, and energy overheads. FSB achieves an average miss rate
reduction of 36.5% versus a shared CMP cache organization for the tested
benchmarks. This produces an average execution time improvement of 13%.
Furthermore, evaluations manifested the outperformance of FSB over some
relevant designs including DSBC [27] and V-WAY [25].

FSB is extensible and practical in that it can be applied to single-core
as well as multi-core architectures. In this work we evaluated FSB on a 16-
way tiled CMP platform. FSB retains lines only at a bank granularity (intra-
tile retention). When an L2 bank can’t absorb anymore the working set of
a running program, the lines selected for replacements are simply discarded.
In fact, in the meantime other L2 banks might indicate the presence of some
underutilized sets. As such, one may benefit from retaining lines across L2
banks (inter-tile retention), rather than only within a single L2 bank, so as to
satisfy even more far-flung reuses. Exploring the promise of such a strategy is
set as a main future direction.

Bibliography

[1] A. Agarwal, J. Hennessy, and M. Horowitz. “Cache performance of oper-
ating systems and multiprogramming,” In ACM Transactions on Computer
Systems, 6, Nov 1988.

[2] A. Agarwal and S. D. Pudar. “Column-associative caches: A technique for
reducing the miss rate of direct-mapped caches,” ISCA, May 1993.

[3] A. Basu, N. Kirman, M. Chaudhuri, and J. F. Mart́ınez. “Scavenger: A
New Last Level Cache Architecture with Global Block Priority,” MICRO,
2007.

26 Multi-Core Technologies: Architectures, Algorithms, & Applications

[4] C. M. Bienia, S. Kumar, J. P. Singh, and K. Li. “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” PACT, Oct. 2008.

[5] B. Calder, D. Grunwald, and J. S. Emer. “Predictive sequential associative
cache,” HPCA, Feb. 1996.

[6] L. Censier and P. Feautrier. “A New Solution to Coherence Problems in
Multicache Systems,” IEEE Trans. Comput. C-27 (12): 1112- 1118, Dec.
1978.

[7] J. Chang. “Cooperative Caching for Chip Multiprocessors,” PhD thesis,
University of Wisconsin-Madison, 2007.

[8] M. Chaudhuri. “Pseudo-LIFO: The Foundation of a New Family of Re-
placement Policies for Last-level Caches,” MICRO, Dec. 2009.

[9] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. “Distance associativ-
ity for high-performance energy-efficient non-uniform cache architectures,”
MICRO, 2003.

[10] S. Cho and L. Jin “Managing Distributed Shared L2 Caches through
OS-Level Page Allocation,” MICRO, Dec 2006.

[11] Digital Equipment Corporation, Hudson, MA. “Digital Semiconduc-
tor 21164 AlphaMicroprocessor Product Brief,” Technical Document EC-
QP97D-TE, Mar. 1997.

[12] E. G. Hallnor and S. K. Reinhardt. “A fully associative software managed
cache design,” ISCA, 2000.

[13] M. Hammoud, S. Cho, and R. Melhem. “ACM: An Efficient Approach
for Managing Shared Caches in Chip Multiprocessors ,” HiPEAC, Jan.
2009.

[14] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. “Reactive
NUCA: Near-Optimal Block Placement and Replication in Distributed
Caches,” ISCA, June 2009.

[15] S. Harris. “Synergistic Caching in Single-Chip Multiprocessors,” PhD
thesis, Stanford University, 2005.

[16] HP Labs. “http://www.hpl.hp.com/research/cacti/”

[17] H. Huang, K. G. Shin, C. Lefurgy, and T. Keller. “Improving Energy
Efficiency by Making DRAM Less Randomly Accessed,” ISLPED, August
2005.

[18] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler. “A
NUCA Substrate for Flexible CMP Cache Sharing,” ICS, June 2005.

FSB: A Flexible Set Balancing Strategy for Last Level Caches 27

[19] A. Jaleel, W. Hasenplaugh, M. K. Qureshi, J. Sebot, S. Steely Jr., and J.
Emer. “Adaptive Insertion Policies for Managing Shared Caches,” PACT ,
2008.

[20] N. P. Jouppi. “ Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-Associative Cache and Prefetch Buffers,” ISCA,
1990.

[21] P. Kongetira, K. Aingaran, and K. Olukotun. “Niagara: A 32-Way Mul-
tithreaded Sparc Processor,” IEEE Micro, March-April 2005.

[22] J. Peir, Y. Lee, and W. Hsu. “Capturing Dynamic Memory Reference
Behavior with Adaptive Cache Topology,” ASPLOS, 1998.

[23] M. K. Qureshi, A. Jaleel, Y. N. Patt, and S. C. Steely Jr.. “Adaptive
Insertion Policies for High Performance Caching,” ISCA, June 2007.

[24] M. K. Qureshi and Y. N. Patt. “Utility-Based Cache Partitioning: A
Low-Overhead, High-Performance,” MICRO, Dec. 2006.

[25] M. K. Qureshi, D. Thompson, and Y. N. Patt. “The V-WAY Cache:
Demand-Based Associativity via Global Replacement,” ISCA, June 2005.

[26] Research at Intel. “Introducing the 45nm Next-Generation Intel CoreTM

Microarchitecture,” White Paper.,

[27] D. Rolán, B. B. Fraguela, and R. Doallo “Adaptive line placement with
the set balancing cache,” MICRO, Dec. 2009.

[28] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B.
Joyner. “POWER5 System Microarchitecture,” IBM J. Res. & Dev., July.
2005.

[29] S. Srikantaiah, M. Kandemir, and M. J. Irwin. “Adaptive Set Pinning:
Managing Shared Caches in Chip Multiprocessors,” ASPLOS, March 2008.

[30] Standard Performance Evaluation Corporation.
http://www.specbench.org.

[31] Virtutech AB. Simics Full System Simulator “http://www.simics.com/”

[32] D. Weiss, J. J. Wuu, and V. Chin. “The on-chip 3-mb subarray-based
third-level cache on an itanium microprocessor,” In IEEE journal of solid
state circuits, Nov. 2002.

[33] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. “The
SPLASH-2 Programs: Characterization and Methodological Considera-
tions,” ISCA, 1995.

[34] Y. Xie and G. H. Loh. “PIPP: Promotion/Insertion Pseudo-Partitioning
of Multi-core Shared Caches,” ISCA, June 2009.

28 Multi-Core Technologies: Architectures, Algorithms, & Applications

[35] M. Zhang and K. Asanović. “Victim Replication: Maximizing Capacity
while Hiding Wire Delay in Tiled Chip Multiprocessors,” ISCA, June 2005.

