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ABSTRACT
The Resource Description Framework (RDF) and SPARQL query
language are gaining wide popularity and acceptance. In this pa-
per, we present DREAM, a distributed and adaptive RDF system.
As opposed to existing RDF systems, DREAM avoids partitioning
RDF datasets and partitions only SPARQL queries. By not partition-
ing datasets, DREAM offers a general paradigm for different types
of pattern matching queries, and entirely averts intermediate data
shuffling (only auxiliary data are shuffled). Besides, by partition-
ing queries, DREAM presents an adaptive scheme, which automat-
ically runs queries on various numbers of machines depending on
their complexities. Hence, in essence DREAM combines the advan-
tages of the state-of-the-art centralized and distributed RDF systems,
whereby data communication is avoided and cluster resources are
aggregated. Likewise, it precludes their disadvantages, wherein sys-
tem resources are limited and communication overhead is typically
hindering. DREAM achieves all its goals via employing a novel
graph-based, rule-oriented query planner and a new cost model. We
implemented DREAM and conducted comprehensive experiments
on a private cluster and on the Amazon EC2 platform. Results show
that DREAM can significantly outperform three related popular RDF
systems.

1. INTRODUCTION
The Resource Description Framework (RDF) is gaining widespread
momentum and acceptance among various fields, including science,
bioinformatics, business intelligence and social networks, to men-
tion a few. For instance, Semantic-Web-style ontologies and knowl-
edge bases with millions of facts from DBpedia [5], Probase [39],
Wikipedia [30] and Science Commons [40] are now publicly avail-
able. In addition, major search engines (e.g., Google, Bing and Ya-
hoo!) are offering a better support for RDF [25, 41]. In short, Web
content RDF-based management systems are proliferating in numer-
ous communities all around the world [41].

RDF is designed to flexibly model schema-free information for the
Semantic Web [24, 40, 30]. It structures data items as triples, each
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Figure 1: Current RDF systems (Dataset, D = {d1, d2, d3}). (a)
Centralized, and (b) Distributed schemes (SPARQL Query,Q, is
not necessarily sent unsliced to each machine).

of the form (S, P , O), where S stands for subject, P for predicate
and O for object. A triple indicates a relationship between S and
O captured by P . Consequently, a collection of triples can be mod-
eled as a directed graph, with vertices denoting subjects and objects,
and edges representing predicates. Triples can be stored using dif-
ferent storage organizations, including relational tables [9], bitmap
matrices [4] and native graph formats [17], among others. All RDF
stores can be searched using SPARQL queries that are composed of
triple patterns. A triple pattern is much like a triple, except that S, P
and/or O can be variables or literals (S, P and O in triples are only
literals). Similar to triples, triple patterns can be modeled as directed
graphs. Accordingly, satisfying a SPARQL query is framed usually
as a sub-graph pattern matching problem [25].

The wide adoption of the RDF data model calls for efficient and
scalable RDF schemes. As a response to this call, many centralized
RDF systems have already been suggested [1, 37, 9, 30, 40]. A main
property of such systems is that they do not incur any communication
overhead (i.e., they process all data locally). On the other hand, they
remain limited by the capacities of computational resources of single
machines (see Fig. 1 (a)). Specifically, with billions of RDF triples,
tens or hundreds of gigabytes of main memory and a high-degree of
parallelism will be required to rapidly satisfy the demands of com-
plex SPARQL queries (i.e., queries with large numbers of triple pat-
terns and joins) that are currently available only to high-end servers
with steep prices [6, 27]. Nonetheless, a single machine with a mod-
ern disk can still fit any current RDF dataset (i.e., a dataset with
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Figure 2: The four different paradigms for building RDF query-
ing systems.

millions or billions of triples)1, but will result in severe thrashing to
main memory and frequent accesses to disk. Clearly, this can lead to
unacceptable performance degradation. As a result, executing com-
plex queries on a single machine might render infeasible, especially
when the machine’s main memory is dwarfed by the dataset size. To
overcome this problem, recent work in literature proposed using dis-
tributed RDF systems rather than centralized ones [16, 34, 25, 41,
32].

With distributed systems, RDF data is typically partitioned among
clustered machines using various partitioning algorithms such as hash
or graph partitioning. Fig. 1 (b) depicts a distributed scheme, whereby
a dataset, D, is divided into multiple partitions {d1, d2, d3} and
placed at different machines. As opposed to centralized systems,
distributed RDF systems are characterized by larger aggregate mem-
ory capacities and higher computational power. On the flip side,
they might incur huge intermediate data shuffling when satisfying
(complex) SPARQL queries, especially if the queries span multi-
ple disjoint partitions. In principle, intermediate data shuffling can
greatly degrade query performance. Hence, reducing intermediate
data shuffling is becoming one of the major challenges in designing
distributed RDF systems [25, 41].

As shown in Fig. 1, current state-of-the-art centralized and dis-
tributed systems promote entirely opposite paradigms for managing
RDF data. More precisely, while centralized RDF systems avert
intermediate network traffic altogether, they suffer from low com-
putational power and limited memory capacities. In contrary, dis-
tributed RDF systems offer higher computational power and larger
memory capacities, but incur (high) communication overhead. To
our knowledge, RDF systems have not yet attempted to combine the
benefits and preclude the shortcomings of both paradigms. To elab-
orate, our investigation of the RDF management problem suggests
that RDF systems can be built in four different ways as portrayed
in Fig. 2. All existing RDF systems lie under Quadrants I, II and
III, wherein they either store an input RDF dataset, D, unsliced at
a single machine and do not partition2 a SPARQL query, Q (i.e.,

1A very large, Web-scale dataset that appeared recently in [32] in-
cludes 13.8 billion triples, which equates to only 2.5 TB. Physical
hard drives with 4∼6 TB are inexpensively available nowadays (e.g.,
Seagate recently announced a 6 TB hard drive [23]). Let alone that
Amazon EC2 currently offers instances with 24×2048 GB of disks.
See Section 2 for more details.
2By partitioning a SPARQL query, Q, we mean decomposing Q
into multiple sub-queries and distributing them across clustered ma-

Quadrant-I or centralized), or partition D and/or Q (i.e., Quadrants
II and/or III). Interestingly, there is no RDF system yet that falls un-
der Quadrant-IV. With Quadrant-IV, D is maintained as is at each
machine while Q is partitioned. Consequently, data shuffling can be
completely avoided (i.e, each machine has all data) while computa-
tional power and memory capacities can be escalated, thus offering
a hybrid paradigm between centralized and distributed schemes.

In this paper, we present DREAM, a Distributed RDF Engine with
Adaptive query planner and Minimal communication. DREAM is a
Quadrant-IV citizen and the first in its breed. Accordingly, it retains
the advantages of centralized and distributed RDF systems and ob-
viates their disadvantages. DREAM stores a dataset intact at each
cluster machine and employs a query planner that effectively parti-
tions any given SPARQL query, Q. Particularly, the query planner
transforms Q into a graph, G, decomposes G into many sets of sub-
graphs, each with a basic two-level tree structure, and maps each set
to a separate machine. Afterwards, all machines process their sets
of sub-graphs in parallel and coordinate with each other to produce
the final query result. No intermediate data is shuffled whatsoever
and only minimal control messages and meta-data3 (which we re-
fer to both of them, henceforth, as auxiliary data) are exchanged.
To decide upon the number of sets (which dictates the number of
machines) and their constituent sub-graphs (i.e., G’s graph plan),
the query planner enumerates various possibilities and selects a plan
that will expectedly result in the lowest network and disk costs for
G. This is achieved through utilizing a new cost model, which relies
on RDF graph statistics. In the view of that, different numbers of
machines for different query types are pursued by DREAM, hence,
rendering it adaptive.

In particular, we summarize the main contributions of this paper
as follows:
• We present DREAM, the first RDF system that attempts the

Quadrant-IV paradigm shown in Fig. 2. Consequently, DREAM
achieves minimal intermediate data communication (i.e., only
auxiliary data are transferred).
• DREAM adaptively selects different numbers of machines for

different SPARQL queries (depending on their complexities).
This is accomplished via a novel query planner and a new cost
model.
• We thoroughly evaluated DREAM using different benchmark

suites over a private cluster and the Amazon EC2 platform. We
further empirically compared DREAM against a popular cen-
tralized scheme [30] and two related distributed systems [25,
32]. Results show that DREAM can always adaptively select
the best numbers of machines for the tested queries, and sig-
nificantly outperform systems in [30], [25] and [32].

The rest of the paper is organized as follows. We motivate the case
for the Quadrant-IV paradigm in Section 2. Details of DREAM, in-
cluding its architecture and query planner, are discussed in Section 3.
We present the evaluation methodology and results in Section 4. A
summary of prior work is provided in Section 5 before we conclude
in Section 6.

2. THE QUADRANT-IV PARADIGM
As pointed out in Section 1, with distributed systems, RDF data is
typically partitioned across cluster machines using different parti-
tioning methods like hash partitioning by subject, object or predi-
cate, or graph partitioning by vertex. In reality, the choice of the par-
titioning algorithm largely impacts the volume of intermediate data

chines. Many current RDF systems decompose queries within a sin-
gle machine (for optimization reasons), but do not distribute con-
stituent sub-queries across machines.
3In DREAM we use RDF-3X [30] at each slave machine and com-
municate only triple ids (i.e., meta-data) across machines. Locating
triples using triple ids in RDF-3X is a straightforward process.

2



Brazil

South_America

2014_FIFA_WC

2018_FIFA_WC

2022_FIFA_WC

Hot_Subtropical

Humid_Continental

Tropical

Football

Qatar

Russia

Amazon_River

Amzon.com

Contains

Named-After

Climate

Was-Awarded

Type

Was-Awarded

Climate

Was-Awarded

Type

Type

Climate
Cloud_Services

Provided-By

20

Version

Amazon_EC2

Type

Figure 3: A sample RDF graph.
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Figure 4: Four sample SPARQL queries.

results. To exemplify, consider the sample RDF graph and SPARQL
queries in Figures 3 and 4, respectively. For instance, Q1 in Fig-
ure 4 returns all the countries that are located in South America and
are champions in Football (i.e., they won the FIFA World Cup at
least once). If data is hash partitioned by subject (i.e., Country), it
is guaranteed that all triples related to a particular country will be
stored at the same machine. Thus, if Q1 is submitted to every ma-
chine, it will be satisfied in an embarrassingly parallel fashion and
no communication of intermediate data will be incurred (of course,
except at the very end upon aggregating all partial results). The an-
swer of Q1 is {Brazil}. In fact, the type of Q1 is referred to as
star-shaped, whereby many triple patterns are joined on a common
column. Star-shaped queries are known to work quite well with hash
partitioning [40, 25].

As opposed toQ1,Q2 in Fig. 4 returns all the countries that are lo-
cated in the continent that contains the Amazon River. If we assume
again that data is hash partitioned by subject, satisfying Q2 will
likely result in intermediate data shuffling because the set of bindings
of ?Country and ?Continent will be potentially hashed to dif-
ferent machines. The answer ofQ2 is {Brazil}. With queries like
Q2, where multiple triple patterns are joined on different columns,
hash partitioning can greatly degrade performance due to communi-
cation overhead. We refer to this type of queries as chained queries.

To address the problem of chained queries, a recent work [25]
suggested using graph partitioning by vertex instead of hash parti-
tioning by subject, predicate or object. Specifically, the METIS par-
titioner [19] was employed in order for vertices that are nearby to
be collocated on the same partition (except the ones at the bound-
ary of the partition) and, subsequently, placed at the same machine.
As an example, Fig. 3 demonstrates two possible partitions, sepa-
rated by a dotted line. Clearly, Q2 in Fig. 4 can now be satisfied
without causing any intermediate data shuffling. In contrast, Q3 in
the same figure will still induce intermediate network traffic. Q3
returns all the companies that are named after the Amazon River
and which provide Cloud Computing services. The answer of Q3

is {Amazon.com}. In principle, queries that span multiple parti-
tions at different machines (like Q3) will always incur communica-
tion overhead and potentially degrade performance.

To reduce communication overhead, the work in [25] proposed an
additional mechanism denoted as n-hop guarantee, which guaran-
tees that any query involving n edges (or hops) from any vertex in a
partition can be satisfied without communicating intermediate data.
This is achieved via replicating vertices across partitions. Queries
that are beyond n hops, however, still incur communication over-
head and are handled using costly Hadoop jobs [20]. For instance,
with 1-hop guarantee,Q3 in Fig. 4 can be executed without shuffling
intermediate data. On the other hand, with 1-hop guarantee, Q4 in
the same figure will still generate intermediate network traffic. Q4
returns all the companies that provide Cloud Computing services and
are named after a river, which is found in the continent where Brazil
is located. The answer to Q4 is {Amazon.com}.

Of course, n can be increased to 2 or more, and Q4 in Fig. 4
can be, accordingly, satisfied without transferring intermediate data.
Nonetheless, several factors must be considered. First, RDF graphs
with the power-law distribution4 can cause major problems for graph
partitioning and the n-hop guarantee mechanism. In particular, the
degrees of vertices in such graphs can vary greatly and, thereby, re-
sult in severe skewed replications at different partitions when n-hop
guarantee is applied. Obviously, this can create load imbalance and
degrade query performance. As such, adopting an auxiliary mech-
anism which can equalize partitions might become necessary. Sec-
ond, if queries are not partitioned (i.e., each query is sent to all cluster
machines as is), a further mechanism for avoiding duplicate results
must be incorporated. Third, the more the RDF graph is connected,
the harder it is to partition. Hence, a strategy for reducing the con-
nectivity of a given graph (e.g., removing triples whose predicate
is rdf:type) shall be involved. Lastly, since star-shaped queries are
common in SPARQL, graph partitioning is typically pursued by ver-
tex and not by edge [25]. This entails employing a specific placement
mechanism to decide which triple goes to which partition, during (or
after) partitioning. Overall, a great deal of overhead will be ensued
by partitioning and replicating the vertices of RDF graphs, even at
medium-scale (i.e., for graphs with less than a billion vertices)5.

In summary, we note two main points. First, partitioning (which is
theoretically NP-hard [14]) and preprocessing RDF graphs can ren-
der extremely intricate and expensive. In essence, the larger and the
more twisted the RDF graphs are, the harder graph partitioning al-
gorithms turn out. Besides, the more complex SPARQL queries are,
the less effective the n-hop guarantee mechanism becomes, espe-
cially when queries exceed n hops during execution (see Section 4
for empirical evidences). Second, as discussed through queries Q1,
Q2, Q3 and Q4 in Fig. 4, different partitioning algorithms suit dif-
ferent queries. Thus, there is no one-size-fits-all partitioning algo-
rithm. Indeed, any partitioning algorithm will result in intermediate
data shuffling for some query workloads. Our objective is to en-
tirely overcome these two problems and attain minimal intermedi-
ate data communication. A simple and effective approach to meet
such an objective is to store each dataset unsliced at each cluster ma-
chine and, thereby: (1) preclude the complexity of partitioning and
preprocessing algorithms altogether, and (2) offer a one-size-fits-all
paradigm for all sorts of SPARQL queries (e.g., simple and complex

4In fact, many real-life RDF graphs are scale-free, whose vertex de-
grees follow the power-law distribution [41].
5To quantify the overhead of applying some of the above mecha-
nisms, we measured the times the scheme at [25] takes to parti-
tion and apply the 2-hop guarantee for two standard datasets. We
found that for an LUBM [22] dataset with 1 billion triples and a
YAGO2 [18] dataset with 320 million triples, the scheme took 4.45
and 2.38 hours, respectively. With graphs at larger scales and n>2,
these times are expected to grow exponentially.
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with variances). We refer to this novel paradigm as Quadrant-IV (see
Fig. 2).

To this end, the authors in [27] observed that Big Graphs are not
Big Data, indicating the feasibility of the Quadrant-IV paradigm.
To put this in perspective, the largest RDF dataset that we know of
nowadays consists of 13.6 billions of triples, which evaluates to only
2.5 TB [32]. Modern physical disks can fit 6 TB [23]. Furthermore,
on Amazon EC2, users can provision EC2 instances with disk sizes
of 24×2048 GB. Let alone that a user can attach multiple (e.g., 24)
Amazon Elastic Block Storage (EBS) volumes to a single EC2 in-
stance, each with a capacity of 1 TB. In Section 4, we test DREAM
with 7 billion triples (or 1.2 TB) on Amazon EC2 using r3.2xlarge in-
stance type and EBS volumes. Results demonstrate the effectiveness
of DREAM. We next detail how DREAM implements the Quadrant-
IV paradigm.

3. DREAM
3.1 Architecture
DREAM adopts a master-slave architecture shown in Fig. 5. Each
slave machine can, in principle, encompass any centralized RDF
store, including current relational-based [1, 9] and graph-based [3, 8,
17] stores (among others). Accordingly, DREAM offers a general-
purpose scheme, whereby it does not impose any specific data model
and can be easily tailored to incorporate any desired storage layout.
Assuming an input RDF dataset, D, each slave machine in DREAM
stores D unsliced, thus employing the Quadrant-IV paradigm. On
the contrary, the master machine involves a query planner, detailed
in Section 3.2. A client can submit any6 SPARQL query, Q, to the
master machine which, in turn, transforms it into a graph, G, and
feeds it to the query planner. The query planner partitions G into
a set of sub-graphs, GP = {SG1, ..., SGM}, where M is less than
or equal to the number of slave machines. Subsequently, the master
places each sub-graph SGi (1≤i≤M ) at a single slave machine, and
all machines (if M >1) are executed in parallel (M could evaluate
to 1, and, thereby, only 1 machine will be used- see Section 3.2.5).
During execution, slave machines exchange intermediate auxiliary
data, join intermediate data and produce the final query result.

Since D is maintained as a whole at each machine, DREAM does
not shuffle intermediate data whatsoever and only communicates
identifiers of triples (i.e., auxiliary data). Besides, as slave machines
can include any centralized RDF store (e.g., RDF-3X [30]), each
sub-graph executed at each machine can be further optimized using
6By any in this DREAM version we mean SPARQL queries that in-
volve only searches (i.e., no updates). Supporting updates is beyond
the scope of this work and is set for future exploration. Indeed, all
the related distributed RDF systems (see Section 5) do not support
updates as well.

SELECT ?Country ?Tournament

WHERE{

?Country Located-In ?South_America .

?Country Champions-In Football .

?Country Was-Awarded ?Tournament .

?Tournament Type Football . 

?Tournament Version 20 . }
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Figure 6: A SPARQL query, Q5, and its corresponding query
graph, G1. {q1, q2, q3, q4, q5} are basic sub-queries and {g1, g2,
g3, g4, g5} are their respective basic sub-graphs.

the store’s query optimizer (if any). Lastly, since any query graph,
G, can be partitioned into many sub-graphs or kept as is, DREAM
can run in a distributed or a centralized manner. This is dictated by
the query planner which generates a graph plan, GP (i.e., the set of
partitioned sub-graphs), for each G that maximizes parallelism and
minimizes network traffic. We next discuss how DREAM partitions
G, generates and executes GP , and produces GP ’s final result.

3.2 Query Planner
3.2.1 Partitioning SPARQL Queries

As compared to existing RDF systems, DREAM partitions SPARQL
queries rather than partitioning RDF datasets. This is achieved via
firstly modeling any given SPARQL query, Q, as a directed graph,
G. G is defined as G = {V , E}, where V is the set of vertices
and E is the set of edges. Vertices in V and edges in E represent
subjects/objects and predicates of triple patterns, respectively. For
instance, Fig. 6 depicts a SPARQL query Q5 and its corresponding
directed graphG1. Q5 consists of five basic sub-queries {q1, q2, q3,
q4, q5} which are reflected in G1 as basic sub-graphs {g1, g2, g3,
g4, g5}. A basic sub-query is a single triple pattern, or the smallest
possible query structure. A basic sub-graph is the smallest possible
graph structure, which corresponds to a basic sub-query. A basic
sub-graph is modeled as two vertices connected by a directed edge.
The two vertices represent the subject and the object of the respective
basic sub-query, and the directed edge captures the relationship (or
the predicate) between them.

After translating a SPARQL query Q to a directed graph G, the
query planner partitions G into multiple sub-graphs. In particular,
the query planner locates the vertices in G with degrees (i.e., in
and out degrees) greater than 1. For instance, the degree of ver-
tex ?Tournament in Fig. 6 (b) is 3 (i.e., out-degree is 2 and in-
degree is 1). We call a vertex with a degree greater than 1 a join
vertex. As shown in Fig. 6 (b), in addition to ?Tournament, ver-
tices ?Country and Football are join vertices. After locating
join vertices, the query planner creates many empty sets SJV s for
every join vertex, JV , and populates them with specific sub-graphs
from G, using a rule-based strategy (as discussed shortly). Eventu-
ally, only one set for each join vertex will be selected and mapped to
a separate slave machine (see Section 3.2.4). Afterwards, all sets will

4
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run in parallel and exchange auxiliary data as necessary to produce
the final result of Q.

Before discussing how the query planner populates each set SJV

with sub-graphs, we classify basic sub-graphs as either exclusive or
shared. An exclusive basic sub-graph is a basic sub-graph with only
one join vertex, while a shared basic sub-graph is a basic sub-graph
with two join vertices (recall that any basic sub-graph has a maxi-
mum of two vertices). For example, g1 in Fig. 6 (b) is an exclusive
basic sub-graph, while g2 is a shared one. To this end, the query plan-
ner walks through the directed graphG as if it is undirected (starting
at a random vertex), locates exclusive and shared basic sub-graphs
and assigns them to sets SJV s according to the following four rules:
• Rule 1: A basic sub-graph, gi, can be assigned to a set SJV

if gi is directly connected to the join vertex JV . For instance,
the exclusive basic sub-graph g1 in Fig. 6 (b) can be assigned
to set S?Country , but not to set S?Tournament, as it is directly
connected to ?Country but not to ?Tournament.
• Rule 2: An exclusive basic sub-graph, gi, which is directly

connected to join vertex JV , should be assigned to only set
SJV . For example, the exclusive basic sub-graph g1 in Fig. 6
(b) should be assigned to only set S?Country (hence, the name
exclusive).
• Rule 3: A shared basic sub-graph, gi, which is directly con-

nected to join vertices JV 1 and JV 2, should be assigned to
only set SJV 1 or set SJV 2 or both. For instance, the shared
basic sub-graph g3 in Fig. 6 (b) should be assigned to only
set S?Country or set S?Tournament or both (hence, the name
shared).
• Rule 4: Any set SJV should include at least two directly

connected basic sub-graphs, referred to as TD-CONN. As an
example of a TD-CONN, {g1, g2} in Fig. 6 (b) form a TD-
CONN, while {g1, g4} do not.

Clearly, Rule 2 implies that an exclusive basic sub-graph should be
assigned to exactly one set of a join vertex. In contrary, Rule 3 entails
that a shared basic sub-graph should be assigned to either one set of
a join vertex or two sets of join vertices (not less, not more). Besides,
Rule 2 and Rule 3 together guarantee that all basic sub-graphs will
appear in the created sets of join vertices, thus covering the original
query graph G7. Lastly, Rule 4 suggests TD-CONN (and not a sin-
gle basic sub-graph) as a mandatory unit structure for any set of a
join vertex. In fact, traditional graph processing systems attempt to
break graphs into large unit structures as well, when pursuing graph
analytics (see for example [36]). Our rationale behind Rule 4 is
two-fold: (1) to avoid generating and communicating a large amount
of superfluous intermediate results, and (2) to effectively prune the
space of all possible sets of join vertices. We illustrate both objec-
tives through examples.

Fig. 7 shows a query graph G2 with only one TD-CONN {g′1,
g′2}, and a sample dataset D (recall that an RDF dataset can also be

7This applies to any input query graph of any type (e.g., star or
chained) since it consists of only exclusive and/or shared basic sub-
graphs, which are guaranteed by Rule 2 and Rule 3 to appear collec-
tively in any generated sets of join vertices.

modeled as a directed graph). The vertex ?v2 in G2 is a variable,
while v1 and v3 are literals. The bindings of ?v2 in D are v′2, v′′2 ,
and v′′′2 . If the basic sub-graphs g′1 and g′2 are segregated and ex-
ecuted at two different machines, v′2, v′′2 and v′′′2 will be generated
and communicated8 (either all or some) as intermediate results. Suc-
cessively, g′1 and g′2 will be joined and only v′2 will be returned as a
final result. Therefore, the generation of v′′2 and v′′′2 was superfluous
since they were not part of the final result. On the flip side, if g′1 and
g′2 are kept together (forming, thereby, a TD-CONN) and satisfied at
the same machine, only v′2 will be output and no network traffic will
be incurred. Of course, in essence we can map any SPARQL query
as is (i.e., without partitioning) to only a solo machine and preclude
communication altogether. However, this makes DREAM a pure
centralized system. Our objective is rather to offer an adaptive hy-
brid system, which expedites query processing via leveraging maxi-
mal parallelism and minimal communication. This suggests running
DREAM either centralized or distributed, with various numbers of
machines, depending on the complexities of the given queries (more
on this in Section 3.2.5).

Table 1: Possible sets of join vertices of G1 (Fig. 6 (b)).
Join Vertex Possible Set(s)
?Country S?Country = {g1, g2} or {g1, g3} or {g1, g2, g3}

?Tournament S?Tournament = {g5, g3} or {g5, g4} or {g5, g4, g3}
Football S?Football = {g2, g4}

Now to illustrate how TD-CONN serves in pruning the space of
alternative sets of join vertices, Table 1 shows all the possible sets of
join vertices produced by the query planner for the query graph G1
in Fig. 6 (b). As a specific example, for the join vertex ?Country
in G1, the query planner generates three possible sets {g1, g2}, {g1,
g3}, and {g1, g2, g3}. First, g4 and g5 are not part of any set of
?Country, abiding by Rule 1. Second, g1 is an exclusive basic sub-
graph and, according to Rule 2, it should appear in every possible set
of ?Country. Third, g2 and g3 are shared basic sub-graphs and, as
dictated by Rule 3, can be included in any set of ?Country. Con-
sequently, the query planner can assign only g3, or only g2, or both
to any set of ?Country (as in S?Country = {g1, g3}, S?Country =
{g1, g2} or S?Country = {g1, g2, g3}). Finally, according to Rule
4, any set of ?Country should contain at least one TD-CONN.
This is satisfied in S?Country = {g1, g3} through TD-CONN {g1,
g3}, in S?Country = {g1, g2} through TD-CONN {g1, g2}, and
in S?Country = {g1, g2, g3} though TD-CONN {g1, g2}, or {g1,
g3}, or {g2, g3}. In contrast, if TD-CONN is not obligatory (i.e.,
Rule 4 does not exist), all combinations of g1, g2 and g3 will morph
into possible sets of ?Country (e.g., {g1} becomes a possible set).
Clearly, this increases the space of alternative sets of join vertices
and, potentially, escalates communication overhead (as shown in the
example of Fig. 7)9.

3.2.2 Generating Graph Plans
After creating all the sets of join vertices for a query graph G, the
query planner generates a respective directed set graph, G′. G′ is
defined as G′ = {V ′, E′}, where V ′ is the set of vertices and E′

is the set of directed edges. Each vertex, v′, in V ′ represents a set
of join vertex SJV created out of G, and each edge, e′, in E′ cor-
responds to an edge in G. Specifically, for every directed edge, e,
in G connecting two join vertices JV 1 and JV 2, there will be a
directed edge, e′, in G′ connecting two vertices, v′1 and v′2, which
represent the sets, SJV 1 and SJV 2, of join vertices JV 1 and JV 2.

8More precisely, only auxiliary data will be communicated (see Sec-
tion 3.2.2).
9As known, pruning the space of alternative query plans is common
in traditional relational databases. We share this objective with rela-
tional databases and attempt to avoid rapid increase in possible sets
as the number of join vertices is increased.
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Figure 8: A set graph,G′, which corresponds to the query graph,
G1, in Fig. 6 (b). GP1’ and GP2” are two possible graph plans
for G′.

To exemplify, Fig. 8 (a) portrays a directed set graph G′ for graph
G1 in Fig. 6 (b). As shown in Table 1, the query planner cre-
ates three sets of join vertices out of G1, hence, G′ contains three
pertaining vertices, S?Country , S?Tournament and SFootball. The
directed edges between S?Country and SFootball, S?Country and
S?Tournament, and S?Tournament and SFootball correspond to the
directed edges between ?Country and Football, ?Country
and ?Tournament, and ?Tournament and Football in G1.

After generating a directed set graph G′ for a query graph G, the
query planner constructs many graph plans, G′P s for G′. A graph
planG′P is structurally identical toG′, but with different sets of sub-
graphs assigned to each vertex in G′P . In particular, to construct
G′P , the query planner assigns to each vertex, SJV , in G′ (which
corresponds to join vertex JV in G), a unique set of sub-graphs,
from among many possible sets of sub-graphs. For instance, the
query planner can assign {g1, g2} or {g1, g3} or {g1, g2, g3} from
Table 1 to vertex S?Country in G′ shown in Fig. 8 (a). Similarly,
the query planner can assign {g5, g3} or {g5, g4} or {g5, g4, g3},
and {g2, g4} from Table 1 to vertices S?Tournament and SFootball

in G′, respectively. Fig. 8 (b) and Fig. 8 (c) depict two possible
graph plans, G′P1 and G′P2, for G′. In theory, for k join vertices in
G′, the query planner can generate n1×n2×...×nk possible graph
plans, where nj (1≤j≤k) is the number of possible sets of sub-
graphs of join vertex j. For example, the join vertices, S?Country ,
S?Tournament and SFootball in G′ have 3, 3 and 1 possible sets of
sub-graphs, respectively (see Table 1). Accordingly, there are a total
of 9 (i.e., 3×3×1) possible graph plans for G′.

3.2.3 Executing a Selected Graph Plan
After enumerating many possible graph plans for a set graph G′, the
query planner chooses only one graph plan, G′P , which is typically
the lowest-cost plan for G′. We discuss in Section 3.2.4 how the
query planner estimates costs of graph plans and selects G′P . As for
now, after picking G′P , the query planner maps each of its vertices
to a single slave machine in DREAM. Consecutively, all slave ma-
chines satisfy G′P ’s vertices in parallel, communicate intermediate
auxiliary data as implied by G′P ’s directed edges, join intermediate
data and produceG′P ’s final result (done by only one slave machine).
To illustrate, let us assume that G′P1 in Fig. 8 (b) is the lowest-cost
plan of the set graph G′ in Fig. 8 (a). Let us further assume that
S?Country = {g1, g2}, S?Tournament = {g5, g3} and SFootball =
{g2, g4} are mapped to slave machines, M1, M2 and M3, respec-
tively. As indicated by the directed edges in G′P1, once M1 is done
with executing g1 and g2, it sends auxiliary data about its interme-
diate triples to M2 and M3. Next, M2 and M3 use the received
auxiliary data to locate the relevant triples from their RDF stores and
join them with their locally generated intermediate results. Finally,
M2 sends auxiliary data about its latest intermediate data to M3,
which, in turn, reads the corresponding triples, joins them with its
most recent intermediate data, and outputs G′P1’s final result.

3.2.4 Estimating Costs of Graph Plans
As discussed in Section 3.2.2, the query planner can generate mul-
tiple graph plans for any input query graph. The natural question

that follows is: which of these graph plans should the query plan-
ner choose? As pointed out, the query planner estimates the cost of
each possible graph plan and selects the one with the minimum cost.
Before we delve into more details about how this is done, we de-
fine three types of vertices, start-vertex, mid-vertex and end-vertex.
A start-vertex is a vertex with outgoing but no incoming edges. A
mid-vertex is a vertex with incoming and outgoing edges. An end-
vertex is a vertex with incoming but no outgoing edges. For instance,
in G′P1 (Fig. 8 (b)), S?Country is a start-vertex, S?Tournament is a
mid-vertex and SFootball is an end-vertex. Furthermore, we distin-
guish between two types of intermediate results: local and remote.
For any vertex type, local intermediate results are intermediate data
generated locally, while remote intermediate results are intermedi-
ate data located locally after receiving corresponding auxiliary data
from neighboring vertices.

In principle, we define: (1) the time spent at any vertex, V , to
generate local results as T l

V , (2) the time to transmit remote auxil-
iary data from a sending vertex, V 1, to a receiving vertex, V 2, as
T r
V 1−V 2, and (3) the time to join local and remote intermediate data

at a mid-vertex or an end-vertex, V 1, as T j
V 1−V 2, assuming remote

auxiliary data are sent by vertex, V 210. We note that start-vertices
do not join local and remote intermediate data because they do not
receive remote auxiliary data (i.e., they have no incoming edges).
In addition, although all types of vertices are initially run in paral-
lel, a mid-vertex or an end-vertex cannot start joining local and re-
mote intermediate results before finishing local data generation and
receiving remote auxiliary data. Consequently, any mid-vertex or
end-vertex, V 1, with a neighboring sender vertex, V 2, cannot join
intermediate results before time Twait

V 1−V 2 = max{(T l
V 2 + T r

V 2−V 1),
T l
V 1}. Hence, the total time needed by V 1 to complete joining in-

termediate data becomes T total
V 1−V 2 = Twait

V 1−V 2 + T j
V 1−V 2.

Given the above definitions, we exemplify how the query planner
estimates the cost (in time) required to satisfy any generated graph
plan. To streamline discussion, we consider again the graph plan
G′P1 in Fig. 8 (b), which incorporates one start-vertex, one mid-
vertex, and one end-vertex. Graph plans with multiple mid-vertices,
but single start-vertex and single end-vertex are common. On the
other hand, graph plans with multiple start-vertices, mid-vertices and
end-vertices are still possible (e.g., we observed some in the YAGO2
benchmark suite [18, 7]) and our query planner handles them all. For
simplicity, we further denote the three vertices S?Country = {g1,
g2}, S?Tournament = {g5, g3} and SFootball = {g2, g4} in Fig. 8
(b) as Country, Tournament and Football, respectively.

Initially, DREAM triggers the three vertices, Country, Tourna-
ment and Football in Fig. 8 (b) concurrently. After Country is done,
it sends its intermediate auxiliary data to Tournament and Football.
Subsequently, both vertices, Tournament and Football, execute in
parallel and join intermediate results. Clearly, Tournament and Foot-
ball will complete this step after times T total

Tournament−Country and
T total
Football−Country , respectively. Lastly, Tournament sends its inter-

mediate auxiliary data to Football, which, in turn, joins their corre-
sponding triple data with its local intermediate data and emits the
final result. Of course, Football cannot apply a concluding join and
produce the query result before finishing its intermediate data gen-
eration and receiving intermediate auxiliary data from Tournament.
Therefore, the time needed by Football to generate the final result,
which is essentially composed by the query planner as an Estimated
Time Equation (ETE), becomes:

ETE = max{T total
Football−Country , (T total

Tournament−Country +

T r
Tournament−Football)} + T j

Football−Tournament (1)

10As mentioned earlier, slave machines exchange only triple ids. The
time to locate actual triples using triple ids is part of the join time.
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The time spent at any slave machine, M , to generate local results
is a measure of cost and is estimated as a function of the size of
triples visited in M ’s RDF store. In contrast, the time spent by M to
transmit intermediate auxiliary data is a measure of selectivity and is
estimated as a function of the size of auxiliary data shuffled. To join
intermediate results, we use a hash-based join algorithm and, akin to
relational query optimizers, add a disk cost of 3 ×(K+L) per a join
operation, where K and L are the numbers of pages encompassing
local and remote triples, respectively [33].

Collecting statistics for the estimated numbers of triples (or pages)
visited and generated per a graph plan, G′P , is a straightforward pro-
cess in DREAM. In particular, our query planner simply relies on
RDF-3X [30], which is employed at each slave machine. To elabo-
rate, the query planner sends each vertex in G′P to a different slave
machine,M , alongside a statistics collection request. RDF-3X atM
collects statistics for the received G′P ’s vertex via using either con-
ventional join estimation techniques or mining frequent join paths
(see [30] for more details). Afterwards,M filters the collected statis-
tics and sends only the estimated numbers of visited and generated
triples to the master node. The query planner at the master node re-
ceives all the estimated numbers from slave machines, converts them
to numbers of pages of data and auxiliary data11, and evaluates the
Estimated Time Equation, ETE (see Equation (1)), of G′P accord-
ingly.

3.2.5 Adaptive DREAM
The lowest-cost planG′P generated by the query planner can encom-
pass more than one join vertex. As discussed in Section 3.2.3, the
number of join vertices inG′P dictates the number of slave machines
needed to execute G′P . Some SPARQL queries, however, might not
need a distributed system with a number of machines amounting
to the number of join vertices. Moreover, some SPARQL queries
are even very simple and might not necessitate a distributed sys-
tem whatsoever (i.e., a solo machine suffices). In principle, what
should dictate the number of machines for G′P are the system re-
sources (mainly memory) needed by G′P , and not its number of join
vertices. Hence, to effectively satisfyG′P , we suggest examining the
prospect of having a number of machines less than G′P ’s number of
join vertices, assuming a number of join vertices greater than one (if
G′P ’s number of join vertices equals to 1, a single machine will be
utilized directly). For instance, if G′P has 5 join vertices, we check
whether using 1, 2, 3, or 4 machines is better than using 5 machines
for satisfying G′P . That is, we always explore the full continuum
of potential numbers of machines, N , where 1 ≤ N ≤ maximum
number of join vertices in G′P , and select the number of machines
that will expectedly result in the best performance.

We materialize our proposal via compacting the lowest-cost plan
G′P of a query graph G gradually, all the way until getting a sin-
gle join vertex. Specifically, if the number of join vertices in G′P is
greater than one, we treatG′P as a new query graph and input it to the
query planner. Subsequently, the query planner compacts G′P (i.e.,
merges two of its join vertices) and generates a new respective graph
plan, G′′P , which exhibits the minimum cost12. Again, if the number
of join vertices in G′′P is still greater than one, G′′P is input to the
query planner, which, in turn, compacts it and generates a pertaining
lowest-cost plan G′′′P . The process continues until a graph plan with
only a single join vertex is obtained. Finally, the graph plan with

11The query planner assumes T time to read a page and α× T time to
shuffle a page. The α parameter is usually assigned a value >1, be-
cause communication time is typically larger than disk time in most
systems. Like traditional relational query optimizers, we only focus
on disk and network times, and ignore computation time.

12We note here that a single join vertex can be merged with one or
many directly connected join vertices.

Table 2: Our employed datasets.
Dataset Number of Triples Size

LUBM 20K 1 X 109 450 GB
LUBM 30K 3 X 109 700 GB
LUBM 40K 5 X 109 950 GB
LUBM 50K 7 X 109 1.2 TB

YAGO2 320 X 106 50 GB

the minimum estimated cost is selected (from among all the gen-
erated lowest-cost plans) and executed. This way, DREAM adap-
tively elects either centralized or distributed system (with potentially
different numbers of machines for different queries), depending on
which system would essentially suit better the given SPARQL query
graph, G.

4. EXPERIMENTS
4.1 Methodology
We fully implemented DREAM13 using C and MPICH 3.0.414. As
an RDF store per each slave machine we utilized RDF-3X 0.3.715.
In this section, we thoroughly evaluate DREAM and compare it
against three closely related systems, namely RDF-3X [30], Huang
et al. [25] and H2RDF+ [32]. We refer, henceforth, to the system
proposed by Huang et al. as GP (which stands for Graph Partitioning,
employed by the system). RDF-3X is a centralized scheme and lies
under Quadrant-I, while GP and H2RDF+ are distributed systems
and lie under Quadrants II and III, and Quadrant-II, respectively. GP
applies replication and leverages RDF-3X, while H2RDF+ shares
the adaptivity objective with DREAM. Sections 2 and 5 describe
the relevance and differences of RDF-3X, GP and H2RDF+ ver-
sus DREAM. We use the open-source codes of RDF-3X 0.3.7 and
H2RDF+ 0.216. We faithfully implemented and verified GP using
undirected 2-hop guarantee (as described in [25]), Java 1.7u51, METIS
5.1.0 [19] and Hadoop 2.2.0 [20].

We conduct all our experiments on a private cluster and on the
Amazon EC2 platform. Our private physical cluster is composed of
10 Dell PowerEdge rack-mounted servers with identical hardware,
software and network capabilities. Each server incorporates 2×3.47
GHz X5690 6-core Xeon CPUs, 144 GB of RAM, 2×10 GbE, and
2×900 GB 10k rpm SAS storage (RAID 1) and runs ESXi 5.0 hy-
pervisor. The physical cluster is managed with VMware vSphere 5.0
and a virtual cluster of 10 Virtual Machines (VMs) is provisioned to
run the experiments. Each VM is located on a separate physical host
and configured with 4 vCPUs, 48 GB of RAM and 320 GB of local
disk17. The major software on each VM is 64-bit Fedora 13 Linux,
MPICH 3.0.4, Apache Hadoop 2.2.0, and Oracle JDK 7u51.

We use two standard and popular benchmark suites, LUBM [22]
(which is synthetic) and YAGO2 [18] (which is real). LUBM of-
fers an ontology for academic information (e.g., universities), RDF
datasets that can be generated with different sizes via controlling the
number of universities, and fourteen extensional queries. YAGO2 is
derived from Wikipedia, WordNet and GeoNames, and features nine
queries representing a variety of properties [7]. For LUBM, we gen-
erated four datasets with 20K, 30K, 40K, and 50K universities (the
latter three are used in a scalability study), resulting in 1, 3, 5 and

13All DREAM material, including code can be found at: http://
www.qatar.cmu.edu/˜mhhammou/DREAM/.

14http://www.mpich.org/
15https://code.google.com/p/rdf3x/
16https://code.google.com/p/h2rdf/
17Note that this disk size was enough to fit a 450 GB dataset (see
Table 2) using RDF-3X due to the exhaustive compression that RDF-
3X applies internally.
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Table 3: Our adopted SPARQL queries.
LUBM # of Join Vertices YAGO2 # of Join Vertices

L2 3 A1 4
L4 1 A2 5
L7 2 B1 5
L8 2 B2 3
L9 3 C2 3
L12 2 N/A N/A
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Figure 9: Runtime results for fast queries.

7 billions of triples, or 450, 700, 950 and 1.2× 103 GB of data, re-
spectively. We also tested the benchmarked systems with a represen-
tative set of queries from LUBM, namely 2, 4, 7, 8, 9 and 12, which
we denote as L2, L4, L7, L8, L9 and L12, respectively (the rest of
the queries exhibit similar characteristics, thus were discarded). For
YAGO2, we extracted 320 millions of triples, or 50 GB. Likewise,
we selected A1, A2, B1, B2, and C2 as a representative mixture of
queries. Tables 2 and 3 summarize our employed datasets and query
workloads.

4.2 DREAM Versus Related RDF Systems
We start by discussing performance results in Figures 9 and 10. First,
we classify LUBM and YAGO2 queries into two categories, fast and
slow queries. Queries that finish in less than 1 second on RDF-3X
are categorized as fast, while the rest are classified as slow. Based
on this categorization, queries L4, L7, L8, L12, A1, A2 and C2 are
classified as fast, while queries L2, L9, B1 and B2 are classified as
slow. Fast queries are fast on RDF-3X because they usually use few
index lookups and avoid full scans of the RDF dataset, thus, circum-
venting memory thrashing. For this type of queries, a centralized
scheme like RDF-3X is generally expected to perform well. On the
other hand, a distributed system can still perform well, but only if
the gain from distributed execution and aggregate memories is not
offset by the loss from communication and other lateral processing
units (e.g., extra joins, Hadoop and/or HBase).

Table 4 shows that DREAM ran A1 and A2 as distributed using 4
machines for each of them. As discussed in Section 3.2.5, DREAM
can judiciously estimate the costs of running a query using different
settings and adaptively select the sweet (or lowest-cost) configura-
tion, which minimizes communication and maximizes parallelism.
As illustrated in Table 4, very small communication traffic are im-
posed by A1 and A2, hence, the loss from communication overhead
is not expected to offset the gain from distributed execution and ag-
gregate memories. Consequently, DREAM chose sweet graph plans
with 4 join vertices for both, A1 and A2 and, subsequently, outper-
formed RDF-3X by 27.1% and 18.6%, respectively (see Fig. 9). On
the flip side, Table 4 shows thatL4, L7, L8, L12 andC2 were all run
by DREAM as centralized. A special case is L4 which incorporates
only a single join vertex, hence, DREAM irrespectively executes it as
centralized because it can be maximally run on a solo machine (recall

that each join vertex in a graph plan is mapped to a single machine-
see Section 3.2.3). In contrast, L7, L8, L9, L12 and C2 exhibit 2,
2, 3, 2 and 3 join vertices, respectively. For these queries, DREAM
selected sweet graph plans with 1 vertex. Accordingly, DREAM
demonstrated comparable results to RDF-3X as depicted in Fig. 9,
with an average degradation of 14.8%. We note that DREAM does
not seek to outperform RDF-3X when runs centralized, but rather
seeks to run centralized using RDF-3X when a query is better suited
for centralized execution. The degradation experienced by DREAM
when runs centralized is due to the little time spent by the query
planner to generate and activate sweet graph plans. For instance, C2
is very short (it takes only 0.2 seconds on RDF-3X) and the query
planner takes 0.024 seconds to generate its sweet graph plan, thus
making the degradation somehow noticeable.

Table 4: Network traffic results (in Bytes) for the three competi-
tor distributed systems (RDF-3X is centralized, thus does not in-
cur data shuffling).

Query GP H2RDF+
# of Nodes

DREAM
# of Nodes

Used By Used By
H2RDF+ DREAM

L2 36864 225443840 4 60 3
L4 9949184 152576 1 0 1
L7 538624 218112 1 0 1
L8 95232 643072 2 0 1
L9 1089470464 876609536 6 959447040 2
L12 9232384 407552 1 0 1
A1 351012 286720 6 60 4
A2 3241041 201728 5 60 4
B1 17127261 421888 5 147456 2
B2 9815928 582656 4 166912 3
C2 3562149 3675136 4 0 1

To the contrary of DREAM, GP performs much worse than RDF-
3X for the fast queries. In particular, GP slackens L4, L7, L8, L12,
A1, A2 and C2 by 18.1x, 22.7x, 41x, 1.5x, 45.7x, 37.5x and 187.9x
(note the log-scale of Fig. 9), respectively. First, queries L4, L7,
L8 and L12 expose graph pattern diameters less than 4 (i.e., do not
exceed 2 hops). Hence, they all run in a Parallelizable Without Com-
munication (PWOC) mode under GP (i.e., answered without trigger-
ing Hadoop for data shuffling)18. Nonetheless, any query under GP
will still incur communication and computation overheads to transfer
(large) partial results to the GP’s master machine (see Table 4), apply
a union to aggregate the results, and perform an extra join to remove
duplicate triples (more precisely, to filter out sub-graph matches that
are centered on a vertex that is not a base vertex of a partition-
see [25] for more details). Evidently, these overheads become more
pronounced with the fast queries, which are inherently short. In con-
trast to GP, DREAM averts all these overheads by adaptively se-
lecting sweet configurations for all such queries and naturally (by
design) precluding duplicate results. Aside from L4, L7, L8 and
L12, A1, A2 and C2 are more than 2 undirected hops long, thus do
not run in a PWOC mode under GP. As such, A1, A2 and C2 induce
additional overhead due to triggering Hadoop for data redistribution.
On average, DREAM accomplishes a speedup of 49.6x versus GP
for the fast queries.

Similarly, H2RDF+ executes much slower than RDF-3X for the
fast queries. Specifically, H2RDF+ degrades the performance of
L4, L7, L8, L12, A1, A2 and C2 by 6.3x, 11.5x, 63.9x, 4.6x, 2.4x,
13.1x and 3.1x, respectively. First, L4, L7 and L12 contain some
selective patterns and produce miniature results, hence, are executed
by H2RDF+ as centralized. Nonetheless, H2RDF+ remains inferior
to RDF-3X, mainly because of the high seek latency it incurs upon
accessing its distributed HBase indices and shuffling pertaining data
(Table 4 shows that network traffic are still transferred for L4, L7

18We note that for queries that run in a PWOC mode, GP can poten-
tially run faster if the underlying cluster is scaled out further (we use
a cluster of 10 VMs).
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Figure 10: Runtime results for slow queries.

and L8 although they are run as centralized). Second, H2RDF+
executes L8, A1, A2 and C2 in a distributed fashion and, accord-
ingly, induces network overhead (see Table 4) and still adds seek
latency for accessing its distributed HBase indices. As opposed to
H2RDF+, DREAM effectively adapts to query loads, avoids shuf-
fling actual data (it reduces network traffic by an average of 99.9%
versus H2RDF+ for the fast queries), and precludes the overhead
of accessing distributed sophisticated indices via simply relying on
RDF-3X. On average, DREAM outperforms H2RDF+ by 13.9x for
the fast queries.

Aside from the fast queries, Fig. 10 portrays results for the slow
LUBM and YAGO2 queries using DREAM, RDF-3X, GP and H2RDF+.
For this type of queries, a distributed scheme is generally expected
to perform better than a centralized one (this is not always the case
as we will see shortly for GP and H2RDF+). As illustrated in Ta-
ble 3, L2, L9, B1 and B2 involve 3, 3, 5 and 3 join vertices, out
of which DREAM generated sweet graph plans with 3, 2, 2 and 3
vertices (i.e., all distributed), respectively. This resulted in 92.4%
(or 13.2x), 13.4%, 6% and 22.5% runtime improvements for L2,
L9, B1 and B2 against RDF-3X, respectively (note the log-scale of
Fig. 10). In contrast, GP speeds up L9 by ∼1.2x (or 16.5%), while
slacking L2, B1 and B2 by 2.1x, 9.9x and 4.8x, respectively as com-
pared to RDF-3X. L2 is less than 2 undirected hops long (i.e., runs
in PWOC mode), yet RDF-3X surpasses GP in satisfying it. This
is because the loss (say, l) from communication and extra compu-
tations (i.e., a final union and an additional join) offsets the gain
(say, g) from distributed execution. GP does not apply any adap-
tive mechanism to locate a number of machines that properly suits
L2, making l more prominent, especially that L2 takes only 28.7
seconds on RDF-3X. L9, however, runs in PWOC mode, but takes
935.6 seconds on RDF-3X. This allows amortizing l and accentuat-
ing g, leading to a ∼1.2x speedup versus RDF-3X. To the contrary
of L2 and L9, B1 and B2 are longer than 2 undirected hops (i.e., they
trigger Hadoop for data redistribution), thus causing extra overhead
imposed by Hadoop and, subsequently, performance degradations
of 9.9x and 4.8x against RDF-3X, respectively. As opposed to GP,
DREAM provides an average speedup of 11.1x for the slow queries.

Fig. 10 depicts results for H2RDF+ as well. First, H2RDF+ de-
grades the performance of L2 by 4.1x versus RDF-3X. This is due
to the following three factors: (1) the high network traffic induced
by L2 under H2RDF+ (see Table 4), (2) the overhead of access-
ing distributed indexes in HBase, which renders more visible when
the query is not very slow (as mentioned earlier, L2 takes 28.7 sec-
onds on RDF-3X) and (3) the query plan chosen by H2RDF+’s cost
function for L2, which is sometimes far from optimal (H2RDF+ uti-
lizes 4 machines for L2). On the other hand, H2RDF+ reduces the
runtimes of L9, B1 and B2 by 68.4% (or 3.1x), 4.8% and 20.8%,
respectively as compared to RDF-3X. The improvement of L9 is ev-
ident due to the fact that it is a very slow query (it takes 935.6 sec-
onds on RDF-3X), allowing thereby the aforementioned overheads

imposed by H2RDF+ to be amortized through long query processing
times. Indeed, H2RDF+ excels with very long, non-selective queries
as discussed in [32]. As opposed to H2RDF+, DREAM achieves an
average speedup of 13.6x for the slow queries.

Table 5: Data versus auxiliary data (in Bytes) shuffled under
DREAM around the cluster network.

Query Data Auxiliary Data % of Saving
in Network Traffic

L2 60 60 0%
L9 5959057408 959447040 83.8%
A1 60 60 0%
A2 60 60 0%
B1 372736 147456 60.43%
B2 463872 166912 64%

In summary, DREAM executes all the tested queries according to
the two main goals set distinctly in its design, namely adaptive exe-
cution and minimal communication. As shown in Figures 9 and 10,
DREAM performs well for the slow and fast queries, hence, renders
general-purpose, while GP and H2RDF+ perform well (on average)
for only the slow queries. To elaborate, this is attained via: (1) adopt-
ing the Quadrant-IV paradigm, which suits all types of queries (see
Section 2), (2) successfully adapting to any query type and running it
as either centralized or distributed depending on its complexity, and
(3) achieving minimal communication through avoiding data shuf-
fling altogether and shipping only auxiliary data around the clus-
ter network. Table 4 shows that DREAM accomplishes reductions
in network traffic of 16% and 13.4%, on average, versus GP and
H2RDF+, respectively (RDF-3X is centralized and does not gener-
ate network traffic). These reductions can be referred to two main
factors: (1) the query planner, which attempts to exploit parallelism,
yet minimizes the number of machines needed to run a query (when
1 join vertex is used, minimal network traffic is induced), and (2)
the shuffling of auxiliary data instead of actual triples. Table 5 il-
lustrates the improvement in network traffic obtained by DREAM
as a result of realizing the second factor (only queries that run dis-
tributed are shown). By transmitting only auxiliary data, DREAM
decreases the network traffic by an average of 34.7%. For L2, A1
and A2 shown in Table 5, no difference between data and auxiliary
data was observed due to the fact that our query planner selected
graph plans which involve constituent sub-graphs that return empty
results. As each sub-graph of a query graph is mapped to an in-
dependent machine (only 2 and 3 machines were utilized for these
queries), minimal intermediate traffic (only control messages) were
transmitted by the sub-graphs which expose no output results. L2,
A1 and A2 eventually return empty result sets.

4.3 A Scalability Study
We now study how DREAM scales over a range of datasets. In par-
ticular, we tested DREAM on the Amazon EC2 platform over three
other LUBM datasets with 30K, 40K, and 50K universities, which
evaluate to 3, 5, and 7 billions of triples or 700 GB, 950 GB, and 1.2
TB (see Table 2), respectively. We provisioned a cluster of 5 EC2
instances, each of type m3.xlarge, which is pre-configured with 15
GB of RAM, 2 vCPUs, 2 × 40 GB SSD Storage and Ubuntu Server
14.04. We further attached two Elastic Block Storage (EBS) vol-
umes to each instance, with 1 TB capacity per a volume, and applied
RAID0 configuration across the two volumes. As for queries, we
selected the slow queries L2 and L9 since they were executed as dis-
tributed by DREAM over the LUBM 20K dataset (see Section 4.2).
Fig. 11 demonstrates the runtimes of L2 and L9. DREAM produced
graph plans with 3 and 2 vertices for L2 and L9, respectively and
scaled very well as clearly depicted in the figure.

We have also tested the case where RDF-3X is given a CPU capac-
ity and a memory size that equates (or even exceeds) the aggregate
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Figure 11: Runtime results of DREAM for two slow LUBM
queries over various dataset sizes.

CPU and memory capacities assigned to DREAM. The objective
is to verify whether a centralized RDF scheme (in this case RDF-
3X) with high CPU power and large memory capacity can track
or even outstrip a distributed RDF system (in this case DREAM).
Evidently, with graph plans encompassing 2 and 3 vertices for L2
and L9, DREAM uses 2 and 3 machines, respectively. Since we
utilized EC2 instances of type m3.xlarge to conduct a scalability
study for DREAM, the aggregate CPU and memory capacities be-
come 4 vCPUs and 30 GB with 2 machines, and 6 vCPUs and 45
GB with 3 machines. For a fair comparison against DREAM, we
first provisioned an EC2 instance of type m3.2xlarge for RDF-3X.
The type m3.2xlarge is pre-configured with 30 GB of RAM, 8 vC-
PUs, 2 × 80 GB SSD Storage and Ubuntu Server 14.04. Clearly,
with this instance type, identical memory capacity and extra CPU
power are given to RDF-3X for running L9 as opposed to DREAM
with 2 m3.xlarge instances. As for running L2, extra CPU power,
yet smaller memory size are provided to RDF-3X with this instance
type versus DREAM (more memory capacity is given to RDF-3X
for running L2 shortly).

Table 6: Performance of RDF-3X for L2 and L9 over a range of
LUBM datasets using different EC2 instances.

Query LUBM EC2 Instance Runtime
Dataset Type (In Seconds)

L2
30K m3.2xlarge 48
40K (30 GB of RAM and FAILED
50K 8 vCPUs) FAILED

L9
30K

m3.2xlarge
FAILED

40K FAILED
50K FAILED

L2
30K r3.2xlarge 35
40K (61 GB of RAM and 89
50K 8 vCPUs) 144

L9
30K

r3.2xlarge
2760

40K 5880
50K 7680

Table 6 shows the results of running L2 and L9 under RDF-3X
with LUBM 30K, 40K and 50K using an m3.2xlarge instance. A
main observation is that L9 failed under RDF-3X over an m3.2xlarge
machine, while it performed well under DREAM using 2 m3.xlarge
instances (see Fig. 11). Likewise, L2 failed with LUBM 40K and
50K, but survived with LUBM 30K. For L2 with LUBM 30K, DREAM
outpaced RDF-3X by 22.3x. The results clearly indicate the advan-
tage of a distributed scheme over a centralized one. We attribute
this advantage to the way the query planner of DREAM partitions
the query graphs, G1 and G2, of L2 and L9, respectively. Specifi-
cally, the set of partitioned sub-graphs of G1 or G2, with each sub-
graph getting eventually mapped to a different machine, results in
less numbers of triples visited and generated at each machine (i.e., a
smaller working set at each machine) versus running G1 or G2 as a
whole on a solo machine (as is the case with RDF-3X). In fact, RDF-
3X is known to perform inferiorly (and sometimes fail- see [32])

when the underlying single main memory is greatly dwarfed by the
size of a query working set. Contrarily, if a distributed RDF system
can better (and not necessarily fully) hold the working set of a query
within its aggregate memories, as well as offset the imposed network
traffic, it can highly expedite the query performance. This is the case
of L2 and L9 under DREAM as related to RDF-3X.

Second, we provisioned an EC2 instance of type r3.2xlarge to
provide more memory to RDF-3X, especially for running L2, which
under DREAM it used 3 m3.xlarge instances (i.e., 45 GB of ag-
gregate memory). The type r3.2xlarge is pre-configured with 61
GB RAM, 8 vCPUs, 2 x 800 GB SSD Storage and Ubuntu Server
14.04. Hence, with this instance type, for L2, RDF-3X is granted 15
GB extra memory capacity as compared to DREAM. Nevertheless,
DREAM still outperforms RDF-3X by an average of 2.6x across
the 3 LUBM datasets for L2 (Table 6 shows the results for RDF-
3X). Again, this corroborates the efficacy of using a distributed RDF
system like DREAM with an effective query planner at large-scale.
Lastly, to further pursue a fair evaluation of DREAM against RDF-
3X using an r3.2xlarge instance for L9, we provisioned 2 m3.2xlarge
instances for DREAM to run L9, thus offering it equivalent memory
size (i.e., 60 GB of memory), but still less CPU power, as compared
to RDF-3X. Yet again, DREAM surpassed RDF-3X by an average
of 2x across the three LUBM datasets for L9.

To this end, we note that DREAM parallelizes queries at the gran-
ularity of join vertices (i.e., each join vertex is mapped and executed
fully on only a single machine). Hence, if a slow query contains
only one join vertex, then DREAM will expose the limitation of a
centralized scheme at large-scale19. Parallelizing SPARQL queries
at different granularities (e.g., at fine-grained regular vertex, hence,
partitioning a join vertex itself, and at coarse-grained join vertex) is
beyond the scope of this work, yet is a promising direction and can
potentially accelerate DREAM further. We set this as a main future
direction for DREAM’s next version (see Section 6).

4.4 DREAM with Batch Processing
As pointed out in Sections 3.2 and 4.2, the maximum number of ma-
chines that can be assigned to any query, Q, in DREAM is bound
by the number of join vertices in Q. While this allows Q to effec-
tively utilize what it only needs from cluster resources, some slave
machines might be left idle. For example, if Q incorporates 5 join
vertices, yet is executed by DREAM on only 2 machines over a
cluster with 5 machines, 3 machines will remain idle. To account
for this underutilization, we added a unique scheduling functional-
ity to DREAM, which essentially extends the one-query-at-a-time
processing paradigm adopted by most existing distributed RDF sys-
tems. In particular, many of the current distributed RDF systems run
queries in a sequential order, thus disallowing cluster space sharing,
wherein more than one query can co-execute on the same cluster at
the same time.

To allow space sharing and prevent cluster underutilization, we
developed two simple job schedulers in DREAM, namely, random
and greedy schedulers. To elaborate, if the master receives a job of
queries (a job can consist of 1 or many queries), it triggers the query
planner, which, in turn, generates the lowest-cost graph plans of all
the queries in the job and stores them in a queue. Afterwards, ei-
ther the random or the greedy scheduler is enabled. The random job
scheduler selects randomly as many graph plans as the cluster can fit
(one after the other) from the queue and executes them concurrently
over the cluster. If at any time, a graph plan, GP , with a number
of vertices greater than the (so far) available number of machines is

19As pointed out in Section 4.2, in contrast to slow queries, fast
queries use few index lookups and avoid full scans of RDF datasets,
thus, typically preclude memory thrashing. As such, even if a fast
query contains only one join vertex, it is not expected to perform
inferiorly or fail at large-scale.
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chosen, the scheduler retains GP in the queue and randomly picks
another potential graph plan. This process continues until the queue
becomes empty. In contrast, the greedy job scheduler selects graph
plans (one after the other) in an ascending order based on their num-
bers of vertices, and executes as many of them as the cluster can fit at
a time (we assume that the cluster can always fully fit the graph plan
with the largest number of vertices). Again, the scheduler continues
selecting and executing the graph plan with the smallest number of
vertices from the queue, until the queue renders empty.

Of course, to pursue the suggested random and greedy job sched-
ulers in DREAM, the master needs always to keep track of which
(and indirectly how many) slave machines are available at any schedul-
ing point in time. In fact, this can be accomplished very easily in
DREAM. Specifically, each time a query is to be scheduled, the Ids
of the machines that will be occupied by the query (which are de-
cided by the query planner) are maintained in a very small meta-
graph-plans table at the master space. In return, when a query com-
mits, the meta-graph-plans table is updated accordingly. When a
scheduling decision is to be made, the meta-graph-plans table is in-
spected. To this end, we tested DREAM with our random and greedy
job schedulers via encompassing all the 14 standard LUBM queries
as one job and running it over the LUBM 20K dataset. We observed
comparable job performance (i.e., the total time to finish the whole
job) improvement (on average, 63.1%) for the random and greedy
schedulers versus the traditional sequential job scheduler. In the
future, we plan to devise more sophisticated scheduling algorithms
(see Section 6).

5. RELATED WORK
Much work has been done to effectively store and query RDF data.
Indeed, it is not possible to do justice to this large body of work in
this short article. Consequently, we briefly describe some of the most
closely related prior centralized and distributed RDF systems.
Centralized RDF Systems: Traditional centralized systems store
RDF triples in gigantic relations or hash tables such as Jena [38],
Sesame [10], FORTH RDF Suite [2], rdfDB [12], 3store [15], DLDB [31],
RStar [28] and Oracle [11]. Some other systems maintain RDF
data in native graph forms such as the ones in [3, 17, 26, 29]. Re-
cently, Abadi et al. [1] promoted a vertical partitioning approach,
whereby RDF triples are grouped based on predicates and mapped
onto n two-column tables for n unique predicates. This type of RDF
stores is typically referred to as predicate-oriented stores [9]. Vir-
tuoso 6.1.5 Open-Source Edition20 is another example of predicate-
oriented RDF systems. Hexastore [37] generalized the vertical parti-
tioning approach via indexing RDF data in six possible ways, namely
SPO, PSO, POS, OPS, OSP and SOP. BitMat [4] employed a memory-
based, highly-compressed inverted index structure for storing RDF
triples. RDF-3X [30] adopted exhaustive highly-compressed indices
for all permutations of (S, P, O) and their binary and unary projec-
tions. Lastly, TripleBit [40] proposed a more compacted RDF store
as compared to RDF-3X, with a 2D triple matrix maintained in a
highly-compacted format.

A main characteristic of RDF data is the dynamicity of schemas
[9]. As such, new predicates will result in new relations if a predicate-
oriented approach is utilized. To avoid this problem, DB2RDF [9]
suggests an entity-oriented approach, where columns of a relation
are not pre-assigned to any predicate. Specifically, DB2RDF keeps
all instances of a single predicate in the same column and stores dif-
ferent predicates in the same column as well. Clearly, this leads to
significant space saving as compared to predicate-oriented stores.

Finally, we note that all centralized RDF systems lie under Quadrant-
I (see Fig. 2). The current version of DREAM employs RDF-3X at
each slave machine. However, in principle, any other centralized

20http://virtuoso.openlinksw.com/dataspace/
doc/dav/wiki/main/

RDF store can be easily incorporated (this is essentially orthogonal
to the DREAM’s design philosophy).
Distributed RDF Systems: Researchers have also investigated dis-
tributed RDF systems [16, 34, 25, 41, 32]. A major drawback of such
systems is intermediate data shuffling, which typically hinders query
performance tremendously. To minimize intermediate data shuffling,
Huang et al. [25] promote using graph partitioning by vertex instead
of simple hash partitioning by subject, object or predicate. This way,
vertices that are nearby in the RDF graph can be naturally collocated
and mapped onto the same machine. Furthermore, they replicate
triples at the boundary of each partition according to a mechanism
denoted as n-hop guarantee. In particular, the n-hop guarantee strat-
egy ensures that vertices which are n hops away from any vertex at
any partition, P, are stored at P, even if they do not originally belong
to P. Accordingly, queries that can be satisfied within n hops of any
partition will result in minimal data shuffling. However, queries that
exceed n hops of partitions will still induce huge amounts of network
traffic. This traffic is exchanged using Hadoop [20] jobs. As com-
pared to [25], DREAM precludes data partitioning altogether, avoids
using Hadoop (which can slowdown queries by tens of seconds), and
employs a novel query planner which effectively partitions queries
(as opposed to partitioning data). Huang et al. [25] adopts Quadrants
II and III, while DREAM employs Quadrant-IV.

Instead of modeling RDF data as triples of subjects, predicates
and objects (like in [25]), Trinity.RDF [41] proposes storing RDF
datasets in their native graph forms on top of Trinity [35], a dis-
tributed in-memory key-value store. Trinity.RDF replaces joins with
graph explorations in order to prune the search space and avert gener-
ating useless intermediate results. In addition, it decomposes a given
SPARQL query, Q, into a sequence of patterns so that the bindings
of a current pattern can exploit the bindings of a previous pattern.
As compared to DREAM, Trinity.RDF does not distribute the de-
composed patterns of Q across machines, but sends them all (as one
optimized sequence) to each machine. Moreover, Trinity.RDF ap-
plies data partitioning, while DREAM does not. Trinity.RDF lies
under Quadrant-II.

H2RDF+ [32] proposes an indexing scheme over HBase [21] to
expedite SPARQL query processing. It maintains eight indexes, each
stored as a table in HBase. Besides, it partitions RDF datasets us-
ing the HBase internal partitioner, but does not partition queries.
H2RDF+ shuffles intermediate data and utilizes a Hadoop-based sort-
merge join algorithm to join them. Lastly, it runs simple queries
over single machines and complex ones over varied numbers of dis-
tributed machines. To the contrary of DREAM, H2RDF+ lies under
Quadrant-II.

Most recently, the TriAD system [13] suggested asynchronous
inter-node communication and parallel/distributed join execution over
a distributed, six in-memory vectors of triples, each corresponding
to one SPO permutation. TriAD applies graph summarization at the
master node so as to avoid searching a large part of the data graph at
slave machines. The data graph is partitioned using a locality-based,
horizontal hash partitioning algorithm and stored across the six dis-
tributed in-memory vectors at the slaves. As opposed to DREAM,
TriAD adopts Quadrant-II. Table 7 presents a comparison between
TriAD, H2RDF+ [32], Huang et al. [25], Trinity.RDF [41] and DREAM.

6. CONCLUSIONS
In this paper, we presented DREAM, a Distributed RDF Engine
with Adaptive query planner and Minimal communication. DREAM
avoids partitioning RDF datasets and, contrarily, partitions SPARQL
queries. As such, it follows a novel paradigm, which has not yet been
explored in literature (to our knowledge). We refer to this paradigm
as the Quadrant-IV paradigm. By not partitioning datasets at clus-
ter machines, DREAM is able to satisfy queries without shuffling
intermediate data whatsoever (only auxiliary data are transferred).
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Table 7: A comparison between various distributed RDF systems and DREAM.
Scheme Quadrant(s) Data Store Data Model Partitioning Exchange Distributes

Strategy Intermediate Data Sub-Queries

Huang et al. [25] II & III
RDF-3X [30] per

Triple-Based
Graph partitioning Yes, when a query Yes, when a query

each cluster machine using METIS [19] spans more than spans more than
one partition one partition

Trinity.RDF [41] II
Distributed in-memory

Graph-Based Random Yes Nokey-value store
(based on [35])

H2RDF+ [32] II HBase [21] Triple-Based HBase internal partitioner Yes, Nobut compressed

TriAD [13] II
Distributed in-memory Graph-Based & Graph (using

Yes Notriple vectors Triple-Based METIS [19])& horizontal
hash partitioning

DREAM IV
Any (current version

Any N/A
No; only auxiliary

Yesuses RDF-3X [30] per)
each slave machine) data

On the other hand, by partitioning queries, DREAM is capable of
adaptively choosing a suitable number of machines, which maxi-
mizes parallelism and minimizes auxiliary data communication, for
any given query. This is accomplished via employing a novel graph-
based query planner with a new cost model and a rule-oriented query
partitioning strategy. Experimentation results show that DREAM
can effectively achieve its design goals and outperform three re-
lated popular RDF systems, RDF-3X [30], Huang et al. [25] and
H2RDF+ [32].

Finally, we set forth three main future directions. First, DREAM
currently partitions SPARQL queries at the granularity of join ver-
tices. We envision that partitioning queries at different granularities
(e.g., at coarse-grained join and fine-grained regular vertices) would
accelerate DREAM further. Second, we will develop job sched-
ulers that are more sophisticated than the current random and greedy
schedulers of DREAM (e.g., something similar to the fair and ca-
pacity schedulers in Hadoop [20]). Finally, we will study the appli-
cability of offering an elastic version of DREAM, where its cluster
size can be expanded and contracted on the cloud based on observed
query loads.
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