
Dynamic Elasticity for Distributed Graph Analytics
Kenrick Fernandes, Rami Melhem

Computer Science Department
University of Pittsburgh, Pittsburgh, USA

{kenrick, melhem}@cs.pitt.edu

Mohammad Hammoud
Computer Science Department

Carnegie Mellon University, Doha, Qatar
mhhamoud@cmu.edu

Abstract—Graph data analytics has received a great deal of
attention in computing theory and systems research over the
past decade. This paper proposes, implements and evaluates a
distributed graph analytics system that scales resources up and
down elastically to address the challenge of dynamic workload
changes in analytics jobs. We show that by relying on hash parti-
tioning, a simple and scalable method, and dynamically changing
the placement of partitions from the already-partitioned graph,
we can improve performance. Hence, the system eliminates
the need to burden the user with resource acquisition and
management decisions. We compare the system’s performance
against a static partition placement to set expectations for
real-world applications. Early evaluations show our system can
achieve up to 2.4x speedup for certain applications.

Index Terms—parallel and distributed systems; cloud com-
puting; graph analytics; data analytics; big data; performance
analysis

I. INTRODUCTION AND MOTIVATION

Graph or network-structured data topics have seen a marked
rise in popularity recently, with a plethora of work directed
at both the theoretical and systems aspects of processing
graphs [1]. In this work, we focus on addressing a key
challenge inherent in running these workloads: the change
in workload patterns over the job duration [2]. There are
two paths to dealing with this challenge: partition the graph
prior to running the job to deal with the issue e.g. [3], or
change the partitioning dynamically while the job is running
e.g. [4]. The former solution is not guaranteed to perform
well, since the specific times and duration of these patterns are
not predictable without having already run the job. The latter
typically requires an expensive accounting of the current graph
partitioning to decide how to change it for the new scenario.

The key to practical feasibility in computing systems is
finding a balance between the overhead of data movement
and the benefits for computation time and/or cost. We propose
a novel means of reaching this balance through a two-stage
process: first, we use a randomized partitioning scheme (e.g.
hash partitioning) which has the benefits of being simple and
scalable in both the graph and resource pool sizes; and second,
we change the placement of the partitions formed from the
simple initial partitioning in response to changes in workload.

We focus our efforts on the common use case scenarios
in real-world analytics with comparatively small cluster sizes.
There is often a focus on large clusters in prior work, such as
those encountered at large companies; inquiry into the day-
to-day efforts in data processing by industry [5] [6] show
that smaller clusters of fifty nodes or less are more common
and are used to analyze a few terabytes of data. In these
scenarios, the Hadoop ecosystem, which has commercial dis-
tributions and includes a cluster resource management layer,
can be leveraged in combination with resource virtualization
to achieve granular use of computing resources. The ability

to achieve resource efficiency without sacrificing completion
time or adding process complexity is key to smooth op-
eration. The resource management capabilities provided by
these systems are well positioned to leverage the popularity
of computing-as-a-service through cloud providers, where
resources can be cheaply and economically acquired and re-
leased. We take advantage of these capabilities to acquire and
release resources on-the-fly by designing and implementing
a resource-elastic system to solve the problem of dynamic
behavior of graph analytics jobs.

The contributions of this short paper are:
• an evidence-based case for leveraging simple, scalable

partitioning configurations on real-world workloads (Sec-
tion III)

• a design, implementation and initial evaluation of a
resource-elastic, distributed graph processing system on
top of a popular framework (Section IV)

II. BACKGROUND AND RELATED WORK

Cloud-based Graph Processing Systems There are a
number of distributed systems for graph processing [1] in
which evaluations focus on processing time and scalability
alone when evaluating in a cloud computing context. However,
changing the system design to enable scalability can lead to
resource efficiency issues due to large system overheads [7].

Apache Giraph We build our system on top of Apache
Giraph [8], a popular and mature distributed graph processing
system that is open-source. Originally created at Yahoo!, it is
currently being shepherded by a diverse group of contributors
including engineers at Facebook, LinkedIn, Twitter, Horton-
Works and academic institutions. Performance improvements
have been integrated over multiple releases enabling growth
in the size and speed of large scale graph processing [8] [9].
Giraph uses a Bulk Synchronous Parallel (BSP) processing
model, where computation proceeds in rounds called super-
steps. In each round, vertices receive messages sent during
the previous superstep, perform computations based on a user-
defined computation function, and send messages which are
made available to the target vertices in the following superstep.

Static Graph Partitioning Partitioning the graph prior
to distributed processing and committing to this partitioning
for every superstep relies on methods from static graph
partitioning, which has long been an area of research. How-
ever, previous work [2] has shown that theoretically optimal
algorithms do not necessarily translate to good real-world
performance, since the behavior of graph algorithms changes
over time and is coupled to the graph structure. Currently,
analytics systems employ strategies such as over-partitioning
(e.g.: Giraph produces n2 partitions, for n machines) or
sophisticated graph partitioning algorithms [3]. However, the



Fig. 1. Selected Performance Comparisons of Hash and Range Partitioning
on Large Graphs for PageRank and Single Source Shortest Path Workloads

effects of placement strategies on top of these partitionings
have not been thoroughly evaluated in the literature.

Dynamic Graph Re-partitioning Previous works have
focused on re-partitioning and migration at the vertex level
e.g. [3] [4]. However, these works involve complex re-
partitioning schemes and do not consider migration at a
coarser granularity than a vertex, which is our focus.

Elastic Graph Processing Systems Some recent works
have begun to leverage resource elasticity and adapt graph
processing systems to cope with changing load. However, [10]
do not perform experimental evaluations in real-world envi-
ronments but rely on mathematical calculations and depend on
recorded behaviors from running jobs apriori. They also rely
on METIS, a high quality but challenging to scale partitioning
algorithm. [11] focus only vertex data movement.

Additionally, we implement and test our design in a widely
used, industrial-strength graph processing system to determine
if there are any benefits to be gained when using a system
already engineered for performance. The benefits of elasticity
have been leveraged for some big data processing frameworks
such as Apache Storm [12], indicating the feasibility of
resource elasticity in real-world cloud processing.

III. PERFORMANCE IMPACT OF PARTITIONING AND
CLUSTER SIZE

A key choice in graph partitioning for real-world appli-
cations is between simple, scalable algorithms and complex,
expensive ones that are potentially better performing. Our key
contribution in this work proposes relying on a simple parti-
tioning algorithm initially and then changing the placement of
the resulting partitions. To establish an optimal baseline among
different simple and scalable partitionings, we explore here

how a label-informed range partitioning with different key
space sizes performs against a round-robin hash partitioning.
A traditional hash partitioning relies on hashing the vertex
identifiers or label numbers by the number of workers to
find the partition. When studying the graph structures of
multiple datasets, we observed that the neighbors of a chosen
node had labels contiguous or very close to that of the
chosen node, indicating a dataset creation process similar to
breadth-first-search to create the labels, rather than a depth-
first crawling or random assignment. Hence, we can speculate
that a range partitioning could perform better due to less
communication load between workers, and potentially more
balanced computation patterns. While it is often assumed that
hash partitioning leads to vertex-balanced partitions, this is
dependent on contiguity in the labeling of the underlying
graph. We found that over ten percent of the total labels in
the contiguous sequence are unassigned in some cases.

The summarized results for the PageRank and Single Source
Shortest Path algorithms with two large directed graphs in
Figure 1 demonstrate this is indeed the case for the UK-2007-
05 graph (web graph with 105M vertices and 3.73B edges)
but the performance impact becomes negligible as cluster size
increases. Selected results for 8, 12 and 16 workers are shown
for visual clarity. For the Twitter-2010 social graph (41.6M
vertices and 1.46B edges) and the USA Road network (an
undirected graph with 23.9M vertices and 58.3M edges; plot
omitted due to a space constraint), the performance of different
partitionings also converges as the cluster size increases. Our
key takeaways: first, we can rely on a simple and scalable
hash partitioning which takes constant time per vertex when
using larger cluster sizes without the complexity of tuning
range sizes; second, since cluster size has a large impact on
performance, finding the right cluster size is critical.

Motivated by these results, we explored the relationship
between the number of partitions, the number of threads, and
the partitioning scheme. We omit figures due to a page con-
straint. Our experiments consisted of varying the unit of work
i.e. the partition size, the partition count and the processing
thread count, using the PageRank, Single Source Shortest Path
and Graph Coloring algorithms with the UK-2007-07, Twitter-
2010 and USA Road graphs. Disk input/output measurements
were not included. Our results show that a larger number
of partitions run on a closely matching number of available
threads performs significantly better than fewer numbers of
large partitions. This reflects design choices wherein parti-
tions are processed by a single-threaded only, and shows we
can achieve a significant gain in performance by assigning
concurrency parameters in a system-aware manner.

IV. RESOURCE AWARENESS AND ELASTICITY FOR
DISTRIBUTED GRAPH PROCESSING

In this section, we discuss the architecture and implementa-
tion of our elastic system on top of Apache Giraph and provide
initial experimental results to demonstrate its potential. A
resource-elastic system design must address three questions:

• Q1: When to acquire and release resources?
• Q2: What data to move?
• Q3: How to move data?



A. Q1: When to Acquire and Release Resources - Elasticity
Policy

We intentionally separate the decision to scale up or down
the cluster from the placement of partitions on the scaled clus-
ter. This enables independent decision making and evaluation
of the quality of the load balancing algorithms separately from
the benefits of elasticity. Based on our analysis, we choose to
decrease the cluster size when the ratio of communication
to computation is high and increase it in the opposite case.
Decisions are made based on the changes across pairs of past
supersteps to amortize the cost of data movement observed
in our experiments, and also to avoid making potentially
expensive decisions hastily. The full algorithm for elastic
resource scaling, to be run at every superstep, is parametrized
below.
Parameters:

• history-window α: The number of past supersteps to
consider for resource increment/decrement decisions

• incr-threshold µ and dec-threshold ν: Cluster size can
greatly affect job performance (Section III) and these
parameters represent the change threshold to consider
for incrementing or decrementing resources respectively.
Tuning them allows the user to tradeoff between aggres-
sive and more cautious resource management.

• step-size δ: The amount of resources to acquire or release
when the thresholds are met i.e. the elasticity step size

• load-metric λi: The desired load metric to measure for
superstep i, for example, the ratio of communication
volume to active vertex count

Superstep Algorithm:
i← current superstep number (starting from 0)
λi ← record active vertex count Vi and communication
volume Ci for this superstep
if i ≥ α then

if ∀j, (i− α− 1) ≤ j ≤ i , (λj − λj−1) ≥ µ then
increase number of workers by δ

else if ∀j, (i− α− 1) ≤ j ≤ i , (λj − λj−1) ≤ ν then
decrease number of workers by δ

end if
end if
{calculate placement using Dynamic Rebalance algorithms
below}

B. Q2: What Data to Move - Dynamic Rebalance Algorithms
For a superstep to proceed, two types of data are required:

the vertex and edge data and associated values, and the
messages sent between vertices. In this subsection, we treat
these as a single unit per partition and describe the algorithm
we rely on to choose the appropriate placement. Details of the
individual data movements are detailed in the next subsection.

As a first approach to tackle the problem, we treated
workers as fixed-capacity bins and relied on well-understood
approximation algorithms for the bin packing problem such as
first fit decreasing packing, observing that this did not provide
performance benefits. This also led to the problem of needing
to allow creation of new bins when capacity was exceeded,
thus nullifying the clean separation of partition placement
from the elastic decision. Hence, we decided to lift the
capacity constraints on the bins. We did so after observing two
key behaviors: first, we did not see any significant straggler
effects in our experiments on the cluster; second, we studied

the distributions of vertices and edges from these simple
partitionings and found that having multiple partitions on the
workers greatly reduced disparity, leading to only a small
percentage difference in the edge and vertex counts overall
between workers. Hence we leverage a simple heuristic algo-
rithm with a different ”size” value or ”balancing metric” for
each partition. The balancing metric can be the communication
volume, active vertex count, or another user-chosen metric.
Partitions are first sorted by the relevant balancing metric in
a decreasing order. The workers are placed in a min-heap
based on the balancing metric, and we can initialize constraints
based on their load and processing capacity if necessary. For
example, if some machines have twice as much processing
power as the others, they can be given an appropriately scaled
capacity. Then, the partitions are placed one after another on
the workers in the heap (we note that some code for this
algorithm based on edge counts was present in the codebase).

An advantage of this approach is that metrics can be chosen
flexibly and incorporate prior knowledge about job structure
e.g. if the algorithm does not alter the graph structure during
the job, then we can choose a metric such as vertex/edge
count to ensure that migration only happens once if necessary,
avoiding unnecessary data movement. To alleviate the issue
of needing to move a large number of partitions around when
scaling up or down, we also introduce an alternative algorithm
which moves the least heavy (in terms of balancing metric)
partition from each worker to the new worker.

C. Q3: How to Move Data - Migration and Elasticity Mech-
anisms

In Giraph, graph structure data including vertices and edges
as well as any associated data values are stored in a Partition
data structure in a PartitionStore on the assigned worker. Sim-
ilarly, messages are stored in a MessageStore data structure.
At the beginning of each superstep, centralized computation
on the master runs our algorithms described above and decides
future partition placements. These placements are then shipped
to all workers prior to any computation or vertex messaging.
After each worker receives these placements, data can be
moved from the existing worker to the destination worker.

A naive implementation of data movement would migrate
messages and vertex data at the very beginning or end of a
superstep. However, we observed that this superstep structure
requires the movement of unprocessed messages, which incurs
significant overhead. To mitigate this, we made two modifi-
cations which are shown alongside Giraph’s unaltered system
structure in Figure 2. First, after placements are updated at
the beginning of the superstep, messages for future supersteps
are sent directly to the worker where the partition will reside.
Second, partitions are migrated immediately after processing
so that data communication can be overlapped with ongoing
computations. A key advantage of this approach is that data
movement can take place in parallel and independently across
workers without requiring specific coordination or signaling.

Giraph measures time and data movement metrics and
collects these on the master node after each superstep. Our
system then performs additional decision making (including
examining additional metrics we add) to alter partition place-
ments and decide whether to add or remove workers. As an
artifact of our particular experimental setup in which Giraph
runs on Hadoop 1, we require the system to acquire the
maximum number of workers that will be used through the job



Fig. 2. Our system superstep structure (right) with changes from Giraph’s superstep structure (left) shown in dashed boxes

Fig. 3. System Gains on Single Source Shortest Path Algorithm with UK-
2007-05, a Large Web Graph with 105M vertices and 3.73B edges

prior to launching, since the underlying resources cannot be
acquired and released dynamically in Hadoop 1. We verified
in our experiments that these idle acquired resource containers
do not affect the running time.

V. EXPERIMENTAL EVALUATIONS

We perform an initial evaluation of our prototype system
on a twenty node virtual machine cluster with one Giraph
worker to a virtual machine. Results shown are for in-memory
processing time over all computation superstep excluding disk
input/output time. We evaluate our proposed algorithms for
their load-balancing ability with and without elasticity to
discover their impact separately. The baseline for comparison
(static) is a round-robin placement of partitions onto the
workers. Figure 3 shows a performance comparison for the
strategies on the Single Source Shortest Path algorithm with
the UK-2007-05 graph. This consists of the static baseline,
a dynamic rebalance data migration using edge count as the
balancing metric (triggered on superstep 1 deliberately; 1.1x
speedup), and an elastic migration with a single additional
worker (2.4x speedup). Note that the dynamic rebalance strat-
egy provides limited benefit once the cost of data movement is
accounted for, whereas our elastic scaleup strategy performs
significantly better. For the results described here, we set the
following parameter values: history-window=3, incr-threshold
& dec-threshold=20%, and step-size=1.

In our early evaluations, we also used other algorithms
such as K-Core and smaller graphs such as Twitter-2010 and
Arabic-2005 (22.7M vertices, 639M edges) (results omitted
due to a page constraint). For the smaller graphs, the cost
of performing data migrations required overtakes the benefits
accrued over the following supersteps. We also performed
initial experiments with vertex count rebalancing, and saw

little to no benefit compared to the edge count rebalancing,
which can be explained in part by the uneven distribution of
edges from the hash partitioning. Our evaluations showed that
unless the job in question has an adequate duration to offset the
cost of data migration, there is not enough benefit gained for
either balancing or elasticity. Hence, the benefits of our work
lie primarily in analytics for large scale graphs and medium
to long-running jobs.

VI. CONCLUSIONS AND FUTURE WORK

The initial experimental evaluation of our prototype indi-
cates that the most promising applications lie in very large
graphs, and most critically that we can realize benefits even
for relatively small cluster sizes. In future work, we will
perform an evaluation on public clouds to incorporate a cost-
benefit evaluation under performance variance. In addition, we
will evaluate a broader set of both partitioning and analytics
algorithms in our experiments.

ACKNOWLEDGMENTS

This publication was made possible by NPRP grant #7-
1330-2-483 from the Qatar National Research Fund (a member
of Qatar Foundation). The statements made herein are solely
the responsibility of the authors.

REFERENCES
[1] R. R. McCune et al., “Thinking like a vertex: a survey of vertex-

centric frameworks for large-scale distributed graph processing,” ACM
Computing Surveys, 2015.

[2] Z. Shang et al., “Catch the wind: Graph workload balancing on cloud,”
in IEEE 29th International Conference on Data Engineering, 2013.

[3] C. Martella et al., “Spinner: Scalable graph partitioning in the cloud,”
IEEE 33rd International Conference on Data Engineering, 2017.

[4] N. Xu et al., “Loggp: a log-based dynamic graph partitioning method,”
Proceedings of the VLDB Endowment, 2014.

[5] B. Graham and M. Rangaswami, “Do you hadoop? a survey of big data
practitioners,” Sand Hill Group, San Francisco, CA, USA, 2013.

[6] A. Nadkarni and L. DuBois, “Trends in enterprise hadoop deployments,”
Survey, IDC, 2013.

[7] F. McSherry et al., “Scalability! but at what cost?” in HotOS, vol. 15.
Citeseer, 2015.

[8] A. Ching et al., “One trillion edges: Graph processing at facebook-
scale,” Proceedings of the VLDB Endowment, 2015.

[9] Facebook Code, “A comparison of state-of-the-art
graph processing systems,” 2016. [Online]. Avail-
able: https://code.facebook.com/posts/319004238457019/a-comparison-
of-state-of-the-art-graph-processing-systems/

[10] R. Dindokar et al., “Elastic partition placement for non-stationary graph
algorithms,” in 16th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, 2016.

[11] M. Pundir et al., “Supporting on-demand elasticity in distributed graph
processing,” in IEEE International Conference on Cloud Engineering,
2016.

[12] N. Katsipoulakis et al., “Ce-storm: Confidential elastic processing of
data streams,” in Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2015.


