
Investigating and Modeling Performance Scalability for Distributed Graph Analytics

Kenrick Fernandes, Rami Melhem
Computer Science Department

University of Pittsburgh, Pittsburgh, USA
kenrick@cs.pitt.edu, melhem@cs.pitt.edu

Mohammad Hammoud
Computer Science Department

Carnegie Mellon University, Doha, Qatar
mhhamoud@cmu.edu

Abstract—Distributed systems for graph processing continue
to attract attention in the literature, driven by the power of
the underlying computational model and the availability of
open-source software. Among the biggest barriers to achieving
high resource efficiency are time and money-consuming system
parameter tuning for cluster size. In this work, we undertake
a comprehensive experimental study to characterize and then
model the scaling behaviors of multiple graph analytics bench-
marks in a production-grade distributed system, Apache Gi-
raph. We show that our theoretical model can leverage existing
domain knowledge in an interpretable fashion and accurately
predict optimal choices even for previously unseen clusters.
Our primary conclusions are that despite using randomized
hash partitioning for work distribution, two factors - dynamic
algorithm behavior and graph dataset skew - are the most
important, respectively, for predicting scalability. Under the
same regime, different numbers of partitions and memory
optimizations have little impact on performance.

Keywords-parallel and distributed systems; cloud computing;
graph analytics; data analytics; big data; performance analysis;
predictive modeling;

I. INTRODUCTION

Graph data management and processing systems have
been proliferating for almost a decade now and the abun-
dance of specialized work has led to the production of meta-
analyses comparing systems along dimensions such as com-
munication, execution models and partitioning[1][2][3]. The
goal of such meta-analyses is often to guide a user/developer
in making the right choice that best suits their particu-
lar needs. These systems require user-specified parameters
including cluster size, memory capacity, threads devoted
to networking and computation, and software optimization
settings. The ambiguity inherent in choosing such param-
eters limits the accessibility of these systems, especially
in distributed settings for analyzing big data where sig-
nificant parameter-tuning efforts are already required. The
end result: making the right choices of resource unit size
(cores, memory, and network bandwidth) and cluster size are
challenging, and seemingly only admit solutions requiring
costly up-front exploration and tuning.

For popular graph processing systems, the evaluation of
system scalability on commodity clusters or cloud envi-
ronments is practically de-facto[4][5][6]. The accessibility
of cloud computing resources through large providers like
Amazon EC2 has helped drive the democratization of cloud
computing. Popular systems such as Apache Giraph[7] are
built on top of cluster resource management frameworks
such as Hadoop YARN[8] which provide convenient pro-
gramming abstractions for cluster resources. Careful man-
agement of these resources is essential to control monetary
costs when executing on pay-as-you-go cloud infrastruc-

ture. Since small clusters running on virtualized resources
represent a large fraction of real-world use cases[9][10], it
is essential to understand the impacts of parameter tuning
in this environment. In this work we conduct and analyze
the results of extensive experiments on Apache Giraph, one
of the few production-grade systems that also operates as
part of the widely-used Hadoop ecosystem, running on a
cloud infrastructure. Using rigorous statistical methodology,
we analyze evidence leading to a number of conclusions
regarding the impact of system parameters. In addition, we
develop a theoretical model using domain knowledge to
predict performance and test it on real-world data.

In summary, the primary contributions of this paper are:
• Characterization of scaling behaviors of graph analytics

workloads, distributed using randomized hash partition-
ing, on a production-grade distributed graph processing
system, Apache Giraph (Section III)

• A domain-inspired, interpretable model to set expec-
tations for the potential benefits of optimal resource
choices, along with recommendations for system pa-
rameter choices (Section IV)

• Demonstration of the model’s ability to generalize and
accurately predict optimal cluster size choice, using
previously unseen scenarios (Section V)

II. BACKGROUND AND RELATED WORK

Graph Processing in the Wild: Much work in the data
analytics literature focuses on solving large-scale problems,
which only large technology companies like Google, Face-
book, and Yahoo! face on a regular basis. However, recent
industry surveys[9][10] show that the much more common
use cases involve relatively small cluster sizes (typically
less than 50 nodes) and a few terabytes of data. In such
situations with tight resource constraints, efficient resource
usage is critical. Resource usage and fungibility for a group
of computing resources are typically achieved by using a
layer of software abstraction such as a cluster management
framework like Hadoop YARN[8], which provide feature-
rich abstractions for programming distributed clusters.

Background on Apache Giraph: Pregel[11] was among
the first works to provide a simple programming model
for enabling computation on large graph data. Pregel-like
systems apply the Bulk Synchronous Parallel (BSP) compu-
tation model to individual vertices of an input graph and
are often called Think Like A Vertex (TLAV) systems.
Apache Giraph[7] is a popular open-source, Pregel-like
graph processing system engineered for performance over
multiple releases, leading to a number of advances in the
size and speed of graph processing at scale[7]. We chose to
focus on Apache Giraph in this work for two main reasons

despite other works’ claims of surpassing it in absolute
performance. First, other prototype-quality systems do not
provide the programming flexibility or stability of Giraph
which was built and tested in a production environment.
Second, other systems also do not play well or at all in the
widely used Hadoop ecosystem which Giraph was designed
to work in. We aim to provide answers in the context of
a real-world environment similar to a number of use cases
rather than in a constrained setting with the aim of avoiding
pitfalls of applicability[12]. Since Giraph is an open-source
member of a small group of industrially engineered and
production tested systems, reflecting real-world integration
and flexibility constraints, it is an ideal candidate for study.

Giraph stores vertices in a partition data structure - each
vertex is stored with its outgoing edges along with data asso-
ciated with the vertex/edge. By default, hash partitioning by
graph vertex ID (a discrete numeric value) is used to place
vertices into partitions, and then assign partitions to workers
by hashing partition IDs. In this work, we use the default
hash partitioning due to its relative simplicity at scale. Each
iteration or superstep consists of some maintenance work
such as initializing data structures, followed by computation
which is overlapped with communication between workers.
At the end of the superstep, a worker flushes its outgo-
ing message queue and waits for the barrier signal from
the ZooKeeper coordination system. Giraph interfaces with
Netty, an open-source library for asynchronous, event-driven
Java networking library which provides two customizable
options - Pooled Buffers and Direct Memory - which are
Java Virtual Machine (JVM) software optimizations. The
former enables buffer pooling to minimize the allocation and
deallocation overhead, and the latter enables finer-grained
memory management to avoid wasting resources on ”zero-
ing” out memory - both are recommended as performance
optimizations[13]. Lastly, Giraph exposes other configurable
parameters such as preference for data locality and thread
counts for input-output, computation and networking.

Related Work on Experimental Analysis of Cloud-based
Graph Processing Systems: As mentioned, there are previous
works proposing distributed graph processing systems where
evaluations focus on processing time and scalability alone.
Many works in both systems and partitioning[14][6][15] do
not explicitly address the questions of choosing the right
cluster size and number of partitions.

Related Work in Performance Modeling for Parallel and
Distributed Systems: [2] compares a number of graph pro-
cessing systems, including an older release of Giraph, to
study both performance properties and advantages and disad-
vantages. [2],[3] also propose graph algorithm behavior clas-
sifications. [16],[17] undertake performance comparisons of
graph processing systems. However, none of these works
attempt to model and predict performance scalability.

III. UNDERSTANDING PERFORMANCE IMPACT OF
MULTIPLE SYSTEM PARAMETERS

We investigate the impact of resource allocation on the
performance and energy consumption of a production-grade,
industrial graph processing system, across a number of
benchmarks in this work. ”Resources” includes hardware
and software resources such as working memory, CPU
threads, network bandwidth and JVM optimizations. The

Table I
GRAPH DATASETS USED

Graph |V |, |E| Avg. Out-Degree Skew
USA-Road 23.9M, 57.7M 2.4 6.6

Arabic-2005 22.7M, 639M 28 9872
Twitter-2010 41.6M, 1.46B 35 2899965
UK-2007-05 105M, 3.73B 35 14965

Weibo 58.6M, 261M 4.5 3995
CCHost-12 101M, 2.04B 20 3898540

questions we seek to answer are of the form: “How important
is resource X for distributed graph analytics on a production
system (Giraph) in a virtual cloud-based deployment? To
answer such questions, we collect and analyze performance
measurements from Apache Giraph 1.1.0 across a number
of configurations of the resource variables. We assemble a
large, multi-dimensional measurement set from these perfor-
mance measurements on a VMware private research cloud
provisioned on 20 physical Dell PowerEdge R710 servers,
each having 12 cores, 144 GB memory and dual 10 Gbps
Ethernet. Based on this measurement set, we provide readers
with a nuanced understanding of real-world behaviors for
optimal decision making from a statistical standpoint.

A. Data Collection and Algorithm Classification
Collecting sufficient performance data is essential to build

a suitable measurement set of samples that can capture
the variety of complex behaviors encountered in real-world
workloads. We collect nearly 9500 measurements or data
points for three categories of variables described below:
benchmark, hardware environment and software. We analyze
experimental data obtained from running algorithms on large
directed (Arabic-2005, Twitter-2010, UK-2007-05, Weibo,
CCHost-12) and undirected (USA-Road) graph datasets (Ta-
ble I) of different scales and degree distributions, obtained
from a number of online sources[18][19][20] (e.g. Twitter
and USARoad are a large social network and road network
respectively). In our experiments with various algorithms,
we observed the following classes of behavior based on the
load patterns in superstep time seen in our measurements:
-Identical Iterations: Algorithms in which the computation
and messaging loads of vertices are identical (e.g. PageRank,
Diameter Estimation, Semi-clustering) or nearly identical
across supersteps which could lead to near-identical super-
step times without resource performance variations
-Clustered Iterations: Algorithms in which the computation
and messaging loads vary across supersteps (explained in
more detail in the next section). We group these into:

1) Graph traversals (e.g. Single and Multiple Source
Shortest Path, Breadth First Search), where peak su-
perstep time is many times the average, and the peak
is concentrated in a few contiguous iterations

2) Repeated rounds of sequences of different supersteps
(e.g. Graph Coloring, Maximal Matching), where the
peak superstep time is not as large a multiple of the
average, and is spread across a longer period. In this
group, shorter peaks occur more frequently.

We use seven analytics algorithms for our measurement
set - PageRank (PR), Diameter Estimation (DE), Single
Source Shortest Path (SSSP), Multiple Source Shortest Path

Figure 1. Superstep time for different cluster sizes, showing impact of
graph dataset features on the benefits of scaling

(MSSP), Breadth First Search (BFS), Connected Compo-
nents (CC) and Graph Coloring (GC) - as representatives of
the above classes of behavior and set values for the following
variables/parameters before running jobs:
-Cluster Used: We collect measurements on 2 virtual-
machine clusters created on our physical hardware - one
contains 36 nodes and the other 20. The 36-node cluster al-
locates 8 GB per node for the JVM and has 1 Gbps network
bandwidth, while the 20-node cluster allocates 45 GB per
node for the JVM and has 0.5 Gbps network bandwidth. A
majority of our samples (∼8770) were collected on the 36-
node cluster. We do so with the aim of training a model on
these samples and using the 20-node cluster measurements
mainly to test our model’s ability to generalize.
-Workers: This is the number of Giraph workers processing
the graph dataset, with one worker assigned to each virtual
machine. The range of workers used for each graph dataset
is upper-bounded by the available cluster size and lower-
bounded by the aggregate memory needed to hold the graph
dataset in-memory.
-Algorithms & Datasets: These two variables describe the
workload for a job, with 1 algorithm (GC) run on the undi-
rected USARoad graph dataset, 4 (PR, DE, SSSP, MSSP)
on the other directed graph datasets, and 2 (BFS, CC) on bi-
directional versions of some directed graph datasets where
an edge in the reverse direction was added for every existing
edge (27 benchmarks in total).
-Vertices, Edges and Skew: These variables have unique
values for each graph dataset (see Table I) - the Dataset
variable above is simply a string representation of the
graph dataset name. The value of Skew is calculated as
the difference between average and maximum out-degree for
directed graphs (simple maximum degree for undirected).
-Compute Threads: This is a tunable Giraph parameter for
which we assign values of 2, 4, 6 and 8 - the latter two
settings are used only on the 20-node cluster for scaling
and testing purposes.
-Network Bandwidth between the workers: 1Gbps on the 36-
node cluster, 0.5Gbps on the 20-node cluster.
-Netty Software Optimizations: We group both optimizations
described in Section II, Pooled Buffers and Direct Memory,
and name this binary variable NettyOn, indicating whether
both optimizations are enabled or not.
-Partition Count: This is the total number of partitions

created from the input graph, which can be modified in the
hash partitioning code in Giraph. We use either n2 or 4n
partitions - where n is the number of workers - as they are
two different asymptotic growths. Choosing 4 as a multiplier
enables us to test the impact of multiple waves[21] or rounds
of computation since each partition is assigned to a single
compute thread.

All variables except the following have discrete numer-
ical values: Algorithms & Datasets, Cluster Used, Netty
Optimizations and Partition Count. After running the jobs,
we measure the superstep time (SSTime) as a depen-
dent/response variable, which is calcualted from the metrics
in the logs in seconds, calculated as the sum of the time taken
for all supersteps to complete i.e. the total time required for
in-memory processing. For four experiments (in particular
PR & SSSP on Twitter and USARoad with n2 partitions),
a larger number of samples was collected to determine
the effect on the confidence intervals and variance of the
measured/response variables. In real-world scenarios, it is
likely that a few benchmarks will be run more frequently,
hence more data will be available for those which must be
leveraged effectively without limiting a potential model’s
ability to generalize. A key limiting factor in real-world
modeling is the paucity of data for less-used workloads,
something we attempt to account for in our analysis by
collecting more samples for these four experiments.

B. Analyzing Resource Impact on Performance
Performance can be quantified in two different ways for

a computation running on a distributed cluster: using either
the SSTime which is the end-to-end in-memory processing
(excluding Input-Output) time of a job measured in seconds
(or ms), or Resource Minutes which is the equivalent of cost
or energy consumed and defined as (SSTime×workers),
thus accounting for the quantity of resources engaged over
the period of the job. Our scalability study includes keeping
the problem size constant for each chosen benchmark and
varying the number of processors (weak scalability). Since
the benchmarks themselves involve a range of workloads per
processor, we are also able to study the strong scalability
aspect (keeping the number of processors constant while
increasing problem size), although that is not our focus. A
key challenge in analyzing data collected in a virtualized
environment is the addition of a noise component to results
that is non-trivial to analyze and model (e.g. non-Gaussian
behavior), which might be similar or worse compared to
what one would expect in a public cloud environment[22].

Prior to modeling, we explore the measurements collected
to build our modeling hypothesis and leverage domain in-
sights in the process. Figure 1 shows the scaling behavior of
SSTime for both PR (representing algorithms with identical
iterations) and SSSP (representing traversal algorithms with
clustered iterations) on the Twitter graph, which apparently
follows a trend of decreasing returns to scale. This demon-
strates that the benefits of increasing the available resources
(workers) can provide large benefits initially, but this benefit
reduces rapidly to the point where adding more workers has
little benefit but significantly increases the resource minutes.
We observed that these benefits only apply for Twitter and
other highly skewed graphs, and not for USARoad which
has a much lower skew. Our initial hypothesis is that the

Figure 2. Performance gains due to scaling (Twitter dataset) cluster size, which are unevenly distributed and decrease with additional resources (limited
range of configurations shown for visualization clarity)

time benefits of scaling resource allocations are dependent
on the Skew of the input graph dataset, which we will rely
on during modeling in Section IV.

Within a single job, superstep-level effects follow a near-
logarithmically decreasing trend themselves and provide
decreasing returns to scale in only a few steps, similar to
SSTime at the job level. The incremental time benefits of
adding resources at a superstep-level granularity for the
Twitter graph and PR and SSSP algorithms (Figure 2)
decrease quickly (example run on the 20-node cluster). The
same holds for the USARoad graph and GC algorithm (we
omit other figures due to a page constraint), with near-
overlap between the times of the supersteps with lower
workload. In addition, the benefits of increasing the cluster
size do not have a uniform effect across supersteps, and in
the case of the algorithms with clustered iterations, their
effect is limited to the workload-heavy supersteps with the
most vertex activation (Figures 1, 2).

A key insight gleaned from this analysis is that multiple
nearby points have similar performance times within an
acceptable margin of error due to performance variation
(we omit plots of mean behavior due to a page con-
straint). Moreover, since the performance stops improving
and potentially worsens after a point, the tail end of the
curve contains consecutive points where the performance is
stagnant. Hence, predicting a single ”sweet spot”, where the
maximum benefits of additional resource benefits have been
obtained and additional increases bring no further benefit is
not the right modeling objective. It is more fitting to predict a
”sweet range” or group of points within which the behavior
will be optimal as compared to points outside the range.
This requires modeling trends in the entire measurement set,
which is both more challenging and more useful: once we
find the ”sweet range”, resource minutes or other consid-
erations such as available working memory can be used to
make a final decision based on cost or energy considerations.
Since resource minutes is derived from SSTime, we focus
on accurately modeling primarily SSTime from the other
variables (except Compute Time and Network Bytes which
are also measured at the end of a job).

IV. MODELING SUPERSTEP TIME

In this section, we build a simple, interpretable model
incorporating the different variables we measured, train
it using supervised learning and test it on data not seen
during training. Our aim is to accurately predict the ”sweet
range” for a given benchmark using the intuitions from our

observations in the previous section. A salient feature of
the model’s application is that it will be used to find a
range of optimal cluster sizes - hence, the relative ordering
of predictions is more important than their absolute values,
compared to the ground truth measured data. Attempting to
make behavioral decisions with more complex tools such as
neural networks might be accurate but is hard to interpret in
terms of domain-specific insights.

A. Developing a Formal Model
We model the SSTime by creating terms that cap-

ture a job’s workload from combinations of the vari-
ables/parameters. To begin, we need a way to connect the
workload to the randomized hash partitioning of the graph
dataset. With p representing the number of worker machines
used for the job under a randomized hash partitioning, we
can represent the edge cut in expectation as P (edge is cut)
= 1− 1

p . Hence, we can write the expected number of edges
cut as E(edge cuts) = |E|(1− 1

p) = |E|(p−1)p .
With this representing the communication load per ma-

chine, we can write the total load in a superstep as the sum
of per-worker computation and communication components
defined as SSComm (= E(p−1)

p) and SSComp (= V+E
p).

These equations incorporate our intuition that workload
depends on both edges and vertices of a graph and enable
us to account for the overlap in time between computation
and communication in Giraph, as the edge count is included
in both terms. Therefore, every machine processes all the
edges assigned to it as it iterates over vertices and performs
additional computation for message-related functions, pro-
portional to the number of vertices and edges assigned to
it. Each superstep or iteration will see near-identical load
for any identical iterations-algorithm, hence we can simply
multiply the superstep time by a constant to approximate the
job time. However, this is not the case for algorithms with
clustered iterations. For this reason, a statistical model must
have a means of capturing the activation pattern of each
algorithm, which we represent as the Algorithm variable.

The above terms do not account for the rate of com-
putation processing per machine (the threads assigned for
computation), or the rate of network processing per machine
(network bandwidth) respectively. Thus, we can update
both terms as follows, naming them SSCommBand and
SSCompThreaded:

SSCommBand =
E(p− 1)

p ∗NetBandwidth
(1)

SSCompThreaded =
V + E

p ∗ Threads
(2)

Finally, these equations implicitly assume a uniform dis-
tribution of the graph’s edges - they do not account for
skewed edge distribution characteristics of the graph dataset
(since hash partitioning distributes vertices almost equally
among machines, skew is not much of a problem there).
We incorporate graph dataset skew to account for this,
based on our initial hypothesis about the scaling behavior.
The skew term scales the benefits provided by a resource
increase, based on the skew characteristics of the graph.
Hence, we can write down equations for the computation
and communication workloads which capture the behavior
of a benchmark for a skewed graph distribution compared
to the ideal scaling scenario:

SSCommSkewed = SSCommBand× log(Skew) (3)

SSCompSkewed = SSCompThreaded× log(Skew)
(4)

Equations 3 and 4 are simple and interpretable since
they rely on domain insights. In addition, they are powerful
enough to represent the variety of scaling behaviors we ob-
served using a linear model with non-linear terms/features.

B. Validating and Training
To show that the above terms above have the power

to explain the SSTime accurately, we use a feature se-
lection procedure on the measurement set, comparing the
base variables against our model’s terms. We rely on for-
ward stepwise regression[23] and bootstrapping[24], a non-
parametric method (we use non-parametric methods as our
data displayed statistical features that challenged traditional
parametric modeling assumptions), to find the variables that
are statistically useful in modeling the behaviors in the
data. All our analyses are implemented in R. We perform
feature selection after pre-processsing the data to calculate
the above equations for the 36-node cluster training set. We
then perform bootstrap sampling (sample size of 20%) and
forward stepwise regression ten times to obtain the ten best-
fitting models, chosen with the Akaike Information Criterion
(AIC)[23]. The AIC is an information-theoretic criterion
that rewards goodness of fit measured using likelihood,
and penalizes larger numbers of parameters. We examined
the ten best-fitting models to discover that the following
variables are significant: Algorithm, SSCompSkewed and
SSCommSkewed and NettyOn. We choose to include the
Partition Count variable to provide a numerical estimate
of its impact. Since the default setting in Giraph is n2

partitions, we learn the impact of n2 partitions via the
IncreasedPartitionCount factor, by using 4n as our base
setting. Equation 5 below represents the model designed
using features selected from Section IV-A and above.

SSTime =


θ1 × SSCommSkewed
+θ2 × SSCompSkewed
+θ3(Algorithm)
+θ4 ×NettyOn
+θ5 × IncreasedPartitionCount

(5)

For training, we log-transformed the SSTime variable to
reduce its range and performed bootstrap sampling (sam-
ple size of 10%) one thousand times to obtain coefficient

estimates along with boostrap confidence intervals. The
coefficient distributions (rounded values in Table II) show
the stability of the estimated values, with the average mean
squared error on the training data approximately one-two
seconds only. Finally, we perform ten-fold cross-validation
(CV) and find a low prediction error estimate (ranging from
approximately one and a half to 2 seconds), demonstrating
a good fit and an ability to generalize.

C. Results of Modeling
Table II shows the learned coefficients for our model (see

equation 5). We also learned coefficients for a model where
the skew was replaced by the average degree (computed
as edges

vertices) and found that the former had lower training
and testing error. These coeffficients coupled with our data
analysis led us to the following conclusions for typical small-
to-medium size distributed graph analytics use-cases:
-SSCommSkewed and SSCompSkewed (θ1 and θ2): The
coefficients of the feature capturing network traffic show
it has a larger impact than the computation load, all other
factors being equal. These indicate that the graph dataset
skew has a major impact on the performance under scaling.
-Algorithm (θ3): We run PR and DE for ten supersteps,
SSSP, MSSP, BFS and CC until convergence (number of
supersteps will depend on graph diameter) and GC for one
thousand supersteps. The identical iteration algorithms have
close coefficient values while the other group has a much
broader range of coefficients depending on the workload
(e.g. MSSP requires more work than SSSP due to the nature
of the algorithm). Low standard deviation values for the
algorithm coefficients show the stability of this behavior
across graphs, allowing us to characterize algorithm behavior
robustly. We can conclude that the most important factors
to predict the impact of scaling are the algorithm behavior
and the graph dataset skew.
-NettyOn (θ4): We visualized the data (plots omitted due to a
page constraint) to gauge the impact of Netty’s optimizations
in more detail and observed that they are only meaningful at
smaller cluster sizes. There is greater memory pressure per
machine in this case, also explaining the relatively larger
standard deviation. Beyond that, the impact on performance
is small enough to indicate little benefit to performance
times, and possibly even increasing them very slightly.
-Increased Partition Count (θ5): The mean overhead of an
asymptotically-greater partition count is small but non-zero.
It can have negligible improvement on the actual perfor-
mance in some cases, as seen by the range of coefficients,
but is generally a contributor to performance degradation.

V. PREDICTION WITH THE MODEL

To show the validity of our model in predicting the
sweet range, we trained the model on 36-node cluster data
and test it on data from the 20-node cluster using the
Mean coefficient values (Table II) . Hence, even with point
prediction inaccuracy that can be captured via the range of
learned coefficients, we can test the ability of the model
to predict the sweet range among all cluster sizes. Recall
(from Section III-B) that our objective is primarily to capture
the relative ordering of performance scaling trends, not the
absolute values. Note that for the 20-node cluster data, the
Network Bandwidth, Cluster size effects (captured via the

Table II
LEARNED COEFFICIENTS

θ1 θ2 θ3(PR) θ3(DE) θ3(SSSP) θ3(MSSP) θ3(BFS) θ3(CC) θ3(GC) θ4 θ5
Max 1.01 0.59 4.74 4.94 3.16 6.46 1.83 2.98 7.69 0.06 0.43
Mean 0.80 0.33 4.49 4.54 2.93 5.45 0.94 2.42 7.48 -0.18 0.19

Median 0.80 0.33 4.49 4.54 2.93 5.46 0.94 2.43 7.48 -0.18 0.19
Min 0.61 0.13 4.24 4.05 2.72 4.58 -0.18 1.79 7.29 -0.41 -0.004

Std.Dev. 0.064 0.068 0.074 0.15 0.069 0.27 0.29 0.17 0.059 0.07 0.074

Figure 3. Optimal range prediction examples on unseen cluster and
configurations, with areas of agreement within box

Cluster factor variable) and Thread counts (6 and 8) were
never seen in the training data, so this is a practical way
of testing the model. Despite this, predictions of the sweet
range (Figure 3) are robust, with the 4 thread predictions
agreeing exactly for both PR-Twitter and SSSP-Twitter, and
the 6 thread prediction for PR-USARoad off by one worker
(on very close absolute values). With 8 threads (figures
omitted due to a page constraint), due to higher variance, the
predicted range has higher inaccuracy although the values
are close. All sweet range predictions on the Twitter and
USARoad graphs, with PR and SSSP for 4 or 6 threads,
either match exactly or are off by one worker. This shows
that the model is able to generalize effectively to previously
unseen environments proving its worth.

VI. CONCLUSIONS AND FUTURE WORK

The conclusions presented in this work make it clear
that for performance metrics, understanding the impact of
system parameter choices and their relationship with the
graph dataset characteristics is essential. A preliminary step
for future work would be expanding our measurement set
to include measurements for different partitioning methods
and algorithm behaviors. Analyzing this data can provide
additional insights on the relative effects of these variables.
The results of this work enable users to make choices for
distributed graph data processing in a static setting without
considering dynamic graphs that may change frequently.
An interesting area for future exploration could enable
leveraging the ability of resource management frameworks
to acquire and release resources elastically, making flexible
real-time decisions via relying on our proposed model.

ACKNOWLEDGMENTS

The authors would like to thank the Statistics Consulting
Center at the University of Pittsburgh and Vineet Raghu
for their feedback on the methods used. This publication

was made possible by NPRP grant #7-1330-2-483 from
the Qatar National Research Fund (a member of Qatar
Foundation). The statements made herein are solely the
responsibility of the authors.

REFERENCES

[1] R. R. McCune et al., “Thinking like a vertex: a survey of vertex-
centric frameworks for large-scale distributed graph processing,” ACM
Computing Surveys, 2015.

[2] M. Han et al., “An experimental comparison of pregel-like graph
processing systems,” Proc. VLDB Endowment, 2014.

[3] Y. Lu et al., “Large-scale distributed graph computing systems: An
experimental evaluation,” Proc. VLDB Endowment, 2014.

[4] Y. Low et al., “Distributed graphlab: a framework for machine
learning and data mining in the cloud,” Proc. VLDB Endowment,
2012.

[5] J. E. Gonzalez et al., “Graphx: Graph processing in a distributed
dataflow framework.” OSDI, 2014.

[6] ——, “Powergraph: Distributed graph-parallel computation on natural
graphs.” OSDI, 2012.

[7] A. Ching et al., “One trillion edges: Graph processing at facebook-
scale,” Proc. VLDB Endowment, 2015.

[8] V. K. Vavilapalli et al., “Apache hadoop yarn: Yet another resource
negotiator,” Proc. of the 4th Annual Symp. on Cloud Computing, 2013.

[9] B. Graham and M. Rangaswami, “Do you hadoop? a survey of big
data practitioners,” Sand Hill Group, San Francisco, CA, USA, 2013.

[10] A. Nadkarni and L. DuBois, “Trends in enterprise hadoop deploy-
ments,” Survey, IDC, 2013.

[11] G. Malewicz et al., “Pregel: a system for large-scale graph process-
ing,” Proc. of the ACM SIGMOD, 2010.

[12] A. Barker et al., “Academic cloud computing research: Five pitfalls
and five opportunities.” HotCloud, 2014.

[13] N. Maurer, “Netty best practices.” [Online]. Available:
http://normanmaurer.me/presentations/2014-facebook-eng-netty/slides

[14] C. Martella et al., “Spinner: Scalable graph partitioning in the cloud,”
IEEE 33rd Intl. Conf. on Data Engineering, 2017.

[15] S. Salihoglu and J. Widom, “Gps: A graph processing system,”
Proc. of the 25th Intl. Conf. on Scientific and Statistical Database
Management, 2013.

[16] O. Batarfi et al., “Large scale graph processing systems: survey and
an experimental evaluation,” Cluster Computing, 2015.

[17] Y. Guo et al., “How well do graph-processing platforms perform?
an empirical performance evaluation and analysis,” IEEE 28th Intl.
Parallel and Distributed Processing Symp., 2014.

[18] P. Boldi et al., “Layered label propagation: A multiresolution
coordinate-free ordering for compressing social networks,” Proc. of
the 20th Intl. Conf. on World Wide Web, 2011.

[19] “soc-sinaweibo — massive network data.” [Online]. Available:
http://networkrepository.com/soc-sinaweibo.php

[20] “Web data commons hyperlink graph.” [Online]. Available:
http://webdatacommons.org/hyperlinkgraph/2012-08/

[21] M. Hammoud et al., “Mc2: Map concurrency characterization for
mapreduce on the cloud,” IEEE Intl. Conf. on Cloud Computing, 2013.

[22] P. Leitner and J. Cito, “Patterns in the chaos—a study of performance
variation and predictability in public iaas clouds,” ACM TOIT, 2016.

[23] J. Neter et al., Applied linear statistical models. Irwin Chicago,
1996.

[24] B. Efron, The jackknife, the bootstrap, and other resampling plans.
SIAM, 1982.

