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Abstract—MapReduce is now a pervasive analytics engine
on the cloud. Hadoop is an open source implementation of
MapReduce and is currently enjoying wide popularity. Hadoop
offers a high-dimensional space of configuration parameters,
which makes it difficult for practitioners to set for efficient
and cost-effective execution. In this work we observe that
MapReduce application performance is highly influenced by
map concurrency. Map concurrency is defined in terms of two
configurable parameters, the number of available map slots and
the number of map tasks running over the slots. We show that
some inherent MapReduce characteristics enable well-informed
prediction of map concurrency. We propose Map Concurrency
Characterization (M/C?), a standalone utility program that can
predict the best map concurrency for any given MapReduce
application. By leveraging the generated predicted information,
MC? can judiciously guide Map phase configuration and,
consequently, improve Hadoop performance. Unlike many of
relevant schemes, //C? does not employ simulation, dynamic
instrumentation, and/or static analysis of unmodified job code
to predict map concurrency. In contrast, MC? utilizes a
simple, yet effective mathematical model, which exploits the
MapReduce characteristics that impact map concurrency. We
implemented //C? and conducted comprehensive experiments
on a private cloud and on Amazon EC2 using Hadoop 0.20.2.
Our results show that M/ C? can correctly predict the best map
concurrencies for the tested benchmarks and provide up to 2.2X
speedup in runtime.

. 1. INTRODUCTION .
MapReduce [8] is now a popular choice for big data pro-

cessing and is highly recognized for its elasticity, scalability
and fault-tolerance. For instance, Google utilizes MapReduce
to process 20PB of data per day [8]. Amazon added a new
service, called Amazon Elastic MapReduce to enable busi-
nesses, researchers, data analysts, and developers to easily
process vast amounts of data [2]. In essence, Amazon Elastic
MapReduce has created a market for pay-as-you-go analytics
on the cloud [19].

MapReduce provides minimal abstractions, hides architec-
tural details, and automatically parallelizes computation by
running multiple map and/or reduce tasks over distributed
data across multiple machines. MapReduce incorporates two
phases, Map and Reduce phases, and allows programmers
to write sequential map and reduce functions that are trans-
formed by the framework into concurrent map and reduce
tasks. Hadoop [13] is an open source implementation of
MapReduce. Hadoop’s adoption by academic, governmental,
and industrial organizations is growing at a fast pace [19]. For
example, industry’s premier web vendors such as Facebook,
Yahoo! and Microsoft have already advocated Hadoop [22].
Academia is currently using Hadoop for seismic simulation,
natural language processing, and web data mining, among
others [15], [38].

Nonetheless, Hadoop users are faced with a main challenge
on the cloud. In particular, they lack the ability to run
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Figure 1. The execution times of various benchmarks under default Hadoop
and Hadoop with two tuned parameters, # of map tasks and # of map slots
(the two parameters that define map concurrency).

MapReduce applications in the most economical way, while
still achieving good performance. The approach of renting
more nodes so as to enhance performance is not cost-effective
in the cloud’s pay-as-you-go environment [26]. As such, in
addition to elasticity, scalability and fault-tolerance, an ideal
analytics engine should provide high-performing and cost-
effective execution framework for big data applications on
the cloud.

Hadoop has more than 190 configuration parameters out of
which 10-20 parameters can have significant impact on job
performance [17]. Today, the burden falls on Hadoop users to
specify effective settings for all these parameters. Hadoop’s
default configuration settings do not necessarily provide the
best performance. Thus, they might lead to some inefficiency
when Hadoop is deployed on the cloud. Fig. 1 depicts the
execution times of various MapReduce applications run on a
private cloud' under two Hadoop configurations, the default
one and a one with two tuned parameters, the number of
map tasks and the number of map slots. As shown, the
tuned configuration provides Hadoop with speedups of 2.3X,
2.1X, 1.3X, 1.1X and 2X for Sobel, WordCount-CE, K-
Means, Sort, and WordCount-CD, respectively. Clearly, this
demonstrates that: (1) Hadoop’s default configuration is not
optimal, (2) the numbers of map tasks and slots (or what
we refer to as map concurrency) have a strong impact on
Hadoop performance, and (3) for effective execution, Hadoop
might require different configuration settings for different
applications.

Selecting an appropriate Hadoop configuration is not a
trivial task. Exhausting all possible options for a single
parameter, let alone all parameters, is a complex, time-
consuming, and quite expensive process. Furthermore, even if
an optimal configuration is located for a specific application,

The experimentation environment and all our benchmarks are described
in Section VL



it might not be applicable to other applications (see Fig. 1).
Therefore, pursuing a brute-force scan over every parameter
per every application is clearly an inefficient approach. In-
deed, setting Hadoop parameters for efficient execution is a
form of art, which typically requires extensive knowledge
of Hadoop internals [24]. Most practitioners of big data
analytics (e.g., computation scientists, systems researchers,
and business analysts) lack the expertise to tune Hadoop and
improve performance [19]. Consequently, they tend to either
run Hadoop using the default configuration, thus potentially
missing a promising optimization opportunity on the cloud,
or learn the internal intricacies of MapReduce to select
satisfactory Hadoop configuration settings, or hire expertise
to accomplish the mission. We argue that practitioners need
not do all that. Specifically, we suggest that a simple, accurate
and fast scheme can be devised to effectively guide Hadoop
configuration on the cloud.

As map concurrency greatly influences MapReduce per-
formance, in this work we focus on optimizing the Map
phase in MapReduce. Optimizing the Reduce phase is also
crucial and has been left for future exploration. We propose
Map Concurrency Characterization (M C?), a highly accurate
predictor that predicts the best map concurrencies for MapRe-
duce applications. M C? is based on a simple mathematical
model that leverages two main MapReduce characteristics:
(1) data shuffling (i.e., moving Map phase output to Reduce
phase) and (2) total overhead for setting up all map tasks
in a job. This is contrary to many current related schemes
that incorporate simulation, dynamic instrumentation and/or
static analysis of unmodified MapReduce application code
to accomplish a similar objective. MC? is a standalone
utility program that only requires some information about the
given application and speedily enough (in microseconds) can
predict the best map concurrency for the application without
involving Hadoop.

In this paper we make the following contributions:

o We show a strong dependency between the execution
times of MapReduce applications and map concurrency.

e We characterize MapReduce to figure out the core
characteristics that impact map concurrency.

o We develop a general mathematical model that leverages
the discovered concurrency characteristics and allows
estimating runtimes of MapReduce applications.

e We propose MC?, a novel predictor that effectively
utilizes the suggested mathematical model to predict
the best map concurrency for any given MapReduce
application.

o« We present a strategy that can serve in reducing cost
and improving performance in a cloud setting.

o We offer a timely contribution to data analytics on the
cloud, especially as Hadoop usage continues to grow
beyond companies like Google, Microsoft, Facebook
and Yahoo!.

The rest of the paper is organized as follows. An overview
of Hadoop is presented in Section II. We characterize MapRe-
duce for map concurrency in Section III. Section IV presents
our suggested mathematical model. We describe MC? in
Section V. Section VI discusses our evaluation methodology
and results. Finally, we provide a summary of prior work in
Section VII and conclude in Section VIIL.
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phases. Reduce phase includes two stages, Shuffle and Merge stage and
Reduce stage.

II. HADOOP OVERVIEW
A. Hadoop Architecture and MapReduce Phases

Hadoop is an open source implementation of MapReduce.
Hadoop presents MapReduce as an analytics engine and
under the hood uses a distributed storage layer referred to
as Hadoop Distributed File System (HDFS). HDFS mimics
Google File System (GFS) [21]. MapReduce adopts a tree-
style, master-salve architecture. The master is denoted as
JobTracker and each slave node is called a TaskTracker. The
JobTracker is responsible for scheduling map and reduce
tasks at specific TaskTrackers in a Hadoop cluster, monitoring
them and re-executing failed ones.

A MapReduce job typically includes two phases, a Map
phase and a Reduce phase. Nonetheless, a job can still have
only a Map phase and will, consequently, be referred to as
a Reduce-Less job [7]. In the presence of a Reduce phase,
map tasks in the Map phase produce and store intermediate
outputs on local disks (means not on HDFS) and partition
them to designated reduce tasks. Each reduce task pulls its
corresponding partitions in a process known as shuffling,
merges them, applies on the merged outcome a user-defined
reduce function, and stores final results in HDFS (see Fig. 2).
Thus, the Reduce phase is usually broken up into a Shuffle
and Merge stage and a Reduce stage as shown in Fig. 2. In
the absence of a Reduce phase, map tasks write their outputs
directly to HDFS.

B. HDFS Blocks and Map Splits

The input data to a MapReduce job is divided by HDFS
into fixed-size pieces denoted as chunks or blocks. The user-
defined function in a map task operates on one or many
HDFS blocks encapsulated in what is termed as a split (see
Fig. 2). For data locality reasons, a common practice in
Hadoop is to have each split encompassing only one block.
Specifically, when a split includes more than one block, the
probability of these blocks to exist on the same node- where
a map task will run- becomes low, leading thereby to a
network transfer of at least one block per every map task.
In contrary, with a one-to-one mapping between splits and
blocks, a map task can be scheduled at a node where a block
exists and, consequently, results in an improved data locality
and a reduced network traffic.

The number of HDFS blocks in a MapReduce job can be
computed by dividing the input dataset size by the specified
HDEFS block size. The HDFS block size is a parameter that
can be statically set by a user before running a job (by
default, the HDFS block size is 64MB). As each split usually
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Figure 3. The execution of a MapReduce job with map wave numbers less
than 1. MS; and MT; stand for Map Slot ¢ and Map Task i, respectively.
The small square before each task denotes the overhead required to setup
the task. Before the number of map waves is doubled in (b), we assume that
each map task takes time, ¢, in (a).

contains a single block, the number of splits in a job becomes
equal to the number of blocks. Moreover, as each map task is
responsible for only one split, the number of splits becomes
equal to the number of map tasks. This makes the number of
map tasks equals to the number of HDFS blocks. Therefore,
the number of map tasks can be calculated by dividing the
input dataset size by the specified HDFS block size.

III. MAP CONCURRENCY IN MAPREDUCE

Each map task in a MapReduce job is scheduled by the
JobTracker (JT) at a TaskTracker (TT) on what is denoted as a
map slot. A TT in a Hadoop cluster is configured with a set of
map slots to indicate the maximum number of map tasks that
can run at a time on TT. The number of map slots per a TT
can be statically set by a user before running a job. Because
each map task runs as a separate process on a TT, a higher
number of map slots translates into a higher concurrency,
provided that enough map tasks are available to occupy (i.e.,
execute over) the slots. A higher concurrency can result
in an improved performance. A caveat, however, is that a
large number of occupied map slots can potentially result in
resource contention and, accordingly, degrade overall perfor-
mance. On the other hand, a very small number of occupied
map slots, whereby resource contention is totally avoided, can
result in an underutilized system and a degraded performance.
Thus, to obtain optimum performance, the numbers of map
tasks and slots per a TT must be judiciously selected so as
concurrency is highly exploited and resources are maximally
utilized, but not contended [27]. In this work, we avoid
contending TTs and focus on inferring the best achievable
concurrency in terms of the number of map tasks for a given
number of map slots. Predicting the optimal number of map
slots rogether with the number of map tasks is beyond the
scope of this paper and is left for future exploration.

We refer to the maximum number of map tasks that can run
concurrently at a given time within a Hadoop cluster as map
wave. Clearly, the number of map waves in a MapReduce
job can be computed by dividing the number of map tasks by
the aggregate number of map slots in a Hadoop cluster. The
process of selecting a number of map waves for a MapReduce
job would dictate its achievable map concurrency. As a first
step towards inferring the best achievable map concurrencies
for MapReduce applications, we suggest characterizing map
concurrency in MapReduce. Specifically, within the confines
of MapReduce, we define map concurrency characterization

as the process of observing, identifying and explaining vari-
ous MapReduce runtime responses to different values of map
wave numbers. We distinguish between two main cases: (1)
when the number of map tasks is less than or equal to the
total number of map slots (i.e., the number of map waves is
less than or equal to 1), and (2) when the number of map
tasks is greater than the total number of map slots (i.e., the
number of map waves is greater than 1). We refer to the
former case as CASE-I and to the latter case as CASE-II.
We next characterize map concurrency in MapReduce under
CASE-I and CASE-II.

A. Characterizing Map Concurrency: CASE-I

Let us first consider CASE-I. Fig. 3 demonstrates the execu-
tion of a MapReduce job with various map task numbers. MS;
and MT; stand for Map Slot ¢ and Map Task i, respectively.
CASE-I characterization is simple and does not impact the
Reduce phase; hence, we only show the Map phase in the
figure. The small square before each map task indicates the
setup overhead required for initializing the task and launching
a host Java Virtual Machine (JVM)?2. We refer to the required
time for setting up a map task as Map Setup Time (MST). We
further assume that map tasks start and finish at nearly close
times, with each taking initially time, ¢, to commit. As long
as CASE-I holds and we double the number of map tasks,
MST remains constant while map time ¢ is assumingly cut by
half. Map time ¢ is supposed to be cut by half because upon
doubling the number of map tasks, the input HDFS block
of each task is also cut by half. Therefore, as we maintain
CASE-I and scale up the number of map tasks, we expect
the Map phase to finish earlier. As shown in Fig. 3, if the
Map phase in Fig. 3 (a) ends at (¢ + MST), after doubling
the number of map tasks, we expect the Map phase in Fig. 3
(b) to end at time (¢#/2 + MST). An earlier commit of the
Map phase translates to an overall improvement in the job
execution time.

In summary, a main observation pertaining to CASE-I is
that, as map slots are occupied with map tasks, the Map
phase runtime is expected to decrease. This is mainly due to:
(1) exploiting more map concurrency, and (2) attaining better
system utilization. Once the number of map tasks becomes
greater than the number of map slots, we hit CASE-II, which
we next characterize.

B. Characterizing Map Concurrency: CASE-II

In CASE-II, the number of map waves in a MapReduce
job does not only have an impact on the overall job ini-
tialization cost but further on what is known in Hadoop
MapReduce as early shuffle [15], [16]. As a mechanism
to improve performance, Hadoop applies early shuffle by
scheduling reduce tasks before every corresponding partition
is available so as to overlap the Map and Reduce phases, and
consequently, decrease the turnaround times of jobs. More
precisely, Hadoop activates the Shuffle and Merge stage in
the Reduce phase after only 5% of map tasks are done,
thus allowing the interleave between the Map phase and the

2Hadoop runs each task in its own JVM to isolate it from the rest of
running tasks. Hadoop allows task JVM reuse in which more than one task
can use the same JVM; yet sequentially (i.e., tasks do not run concurrently in
a single JVM). Clearly, this can be useful for tasks that share state. Enabling
task JVM reuse will reduce the JVM setup overhead for the tasks that reuse
JVMs, but not the initialization overhead.
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Figure 4. The execution of a MapReduce job with various map wave numbers. MS;, MT;, RS;, and RT; stand for Map Slot ¢, Map Task ¢, Reduce Slot ¢,
and Reduce Task %, respectively. The small square before each task denotes the overhead required to setup the task.

Shuffle and Merge stage. The Reduce stage in the Reduce
phase is not allowed to overlap with the Map phase. This is
because the user-defined reduce function should be typically
applied to the whole/merged reduce input partition, and not
fragments of it, so as application correctness is maintained.
Fig. 4 demonstrates the execution of a MapReduce job
with various map wave numbers. MS;, MT;, RS;, and RT;
stand for Map Slot ¢, Map Task ¢, Reduce Slot 7, and Reduce
Task ¢, respectively. We start with one map wave (i.e., CASE-
I. See Fig. 4 (a)) and characterize map concurrency as we
scale up the number of map waves, thus shifting directly to
CASE-II (see Figures 4 (a) and 4 (b)))*. As in CASE-I, the
small square before each map/reduce task indicates the setup
overhead required for initializing the task and launching a
host Java Virtual Machine (JVM). Again, we refer to the
time needed for setting up a map task as Map Setup Time
(MST) and to the initial time taken by each map task as ¢.
With only one map wave and the assumption that all map
tasks start and finish at comparable times, early shuffle cannot
be triggered before the entire Map phase is committed (see
Fig. 4 (a)). As a result, all data will be shuffled after the
Map phase is done. This will increase the time the Reduce
stage has to wait before it can execute the user-defined reduce
function. In contrary, with two map waves, data shuffling
can be ensued while the Map phase is still running (see
Fig. 4 (b)). This will decrease the duration the Reduce stage
has to wait before it can proceed. In principle, the more
the number of map waves is, the earlier the early shuffle
process can be activated, and the more overlap between the
Map and the Reduce phases can be leveraged (see Fig. 4
(c)). We note that what gets improved in the Reduce phase
as early shuffle is activated earlier is, in fact, its response
time and not its execution time. This is mainly because: (1)
the amount of data to shuffle and merge remains the same,
and (2) the actual required time for the Reduce stage is not
affected. Nonetheless, the improvement in Reduce response
time translates to an overall improvement in job performance.
A critical point to notice is that the gain from the overlap
between the Map and the Reduce phases diminishes geomet-
rically as the number of map waves is monotonically scaled
up (see the blue rectangles around the Shuffle and Merge
stages across Figures 4 (a), 4 (b) and 4 (c)). Specifically, with

3In CASE-II, the number of map waves could be decimal (e.g., 1.5 or
3.2 or 2.7- just as examples). Our presented characterization is general and
applies to any number of map waves that exceeds 1.

only 1 map wave, there will be no opportunity to hide shuffle
latency since 100% of map tasks will be done before data
can be shuffled. With two map waves, however, there will be
an opportunity to hide shuffle latency under 50% (i.e., 0%
+ (100% - 2)) of map tasks. With three map waves, shuffle
latency can be hidden under 75% (i.e., 50% + (50% -+ 2)) of
map tasks. Furthermore, with four map waves, shuffle latency
can be hidden under 87% (i.e., 50% + 25% + (25% = 2))
of map tasks. In general, upon every single scale-up in the
number of map waves, shuffle latency can be hidden under
the previous number of map tasks plus half of it. Clearly,
this is a geometric sequence with a common ratio of 1/2.

Alongside, as we scale up the number of map waves, the
gain from early shuffle will be offset by a loss from growing
MSTs. In particular, as the number of map waves is doubled,
MST is also doubled. This shall add to the runtimes of jobs,
especially when map tasks have lengthy initializations and
jobs have large numbers of short-lived tasks. Conversely, the
map time, ¢, will remain constant as the number of map waves
is increased (see Fig. 4). In conclusion, the number of map
waves for an application must be carefully chosen so as a
decent gain from early shuffle is obtained and a minimal
loss from an increased total MST is avoided. We refer to the
number of map waves that achieve such a goal as the best
number of map waves for the application.

Finally, we note that the preference of when exactly the
early shuffle process must be activated varies across appli-
cations. Specifically, applications induce different amounts
of shuffle data. Hence, the more the amount of data an
application shuffies, the earlier the early shuffle process must
be triggered. This allows hiding more shuffle latency under
the Map phase and diminishing further the Reduce response
time. Since the shuffle process can be activated earlier by
increasing the number of map waves, it can be argued that
with a larger amount of shuffle data, a larger number of map
waves will be favored. We next suggest a mathematical model
that accounts for shuffle data and facilitates locating the best
number of map waves for any MapReduce application.

IV. A MATHEMATICAL MODEL

We first present a general mathematical model that can
predict the runtimes of MapReduce jobs. In the next section
we utilize this model to estimate the best number of map
waves for any MapReduce application. In developing our
mathematical model, we assume that: (1) map tasks start
and finish at nearly close times, and (2) map time is longer




than map setup time (which is typical for MapReduce
applications). Fig. 6 demonstrates our approach in modeling
map concurrency in MapReduce. First, as previously, we
define Map Setup Time (MST) as the time required for
initializing a map task. We measure the incurred MST cost
as the number of map waves is increased. Specifically, with
a single map wave, MST will be counted only once since
all MSTs of all map tasks in a wave will be performed in
parallel. On the other hand, with two map waves, MST will
be counted twice. In general, as we increase the number of
map waves, MST will scale linearly. We state the total MST
with any number of map waves in equation (1). The Number
of Map Waves factor in equation (1) should be always an
integer because irrespective of how many map tasks a wave
includes, only a single MST will be counted for that wave®.
Hence, we use the ceiling function to transform the real
number of map waves to the next smallest integer.

Total MST = [Number of Map Waves|] x MST (1)

Second, we define Hidden Shuffle Time (HST) as the
shuffle time that is hidden under the Map phase due to
utilizing early shuffle. As implied by CASE-I and CASE-II,
with a number of map waves that is less than 1, early
shuffle cannot be exploited (see Section III). With two map
waves, however, early shuffle can be exploited, yet under
only one map wave, or 50% of map tasks. More precisely,
with two map waves, the data shuffling that is carried under
the second map wave is for the first map wave, which is
already done (see Fig. 4 (b)). Therefore, with two map
waves, shuffle latency is hidden for the first map wave, and
not the second. Likewise, with three map waves, shuffle
latency is hidden for the first and second map waves, and
not the third. In general, with N map waves, shuffle latency
is hidden for the first N - I map waves, and not the last. As
an outcome, we define HST as follows:

HST = [Number of Map Waves — 1| x (Shuffle Data
+ Number of Map Waves) x Shuffle Rate (2)

As specified in equation (2), Shuffle Data is the total
intermediate output of an application. We divide Shuffle Data
by the number of map waves to obtain the amount of shuffle
data per a map wave. Furthermore, we apply the ceiling
function to (Number of Map Waves -1) because latency is
always hidden for all the map waves, except the last, which
might not be fully loaded. In particular, given our assumption
that map tasks start and finish at comparable times, all the
map waves in a job will be full of map tasks except the last,
which might include a number of map tasks smaller than the
number of map slots. Thus, we subtract 1 from the Number
of Map Waves factor to exclude the last wave, and then use
the ceiling function in case the remaining number of map
waves is decimal (i.e., one wave is not full of map tasks).
Shuffle Rate is the speed at which data is shuffled over the
cluster’s network, usually quoted in bits per second.

4The number of map waves evaluates to decimal when the remainder
of dividing the number of map tasks by the number of map slots is not
zero. This means that the last map wave in the respective job will include a
number of map tasks that is less than the number of map slots. Regardless
of how many map tasks the last wave includes, only 1 MST will be counted
for it.
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Third, we define Exposed Shuffle Time (EST) as the
shuffle time that cannot be hidden under the Map phase.
Clearly, this is the time needed to shuffle the intermediate
data of the last map wave. EST is stated in equation (3).
To account for the fact that the last map wave might not
be fully loaded, we incorporate in equation (3) the factor
a. As the amount of data to shuffle per a wave will be
less if the wave is not fully loaded, o can determine
exactly how loaded is the last map wave. Specifically,
if the last map wave is fully loaded, « can be set to 1.
Otherwise, « can be set to (Number of Map Waves —
| Number of Map Waves|), which captures the load at
the last map wave. Lastly, the Shuffle Rate in equation (3)
is defined as in equation (2).

EST = (Shuffle Data -~ Number of Map Waves) x «
x Shuffle Rate (3)

Finally, as demonstrated in Fig. 6, the runtime of a job
can be defined in terms of MST, HST, EST and the Reduce
stage time. In particular, the runtime of a job can be defined
as follows:

Runtime = Single Map Wave Time + Total MST +
HST + EST + Reduce Time (4)

As its name suggests, Single Map Wave Time in equation
(4) is the time taken by a single map wave in a job. Besides,
Reduce Time is the time needed for the Reduce stage to apply
the user-defined reduce function on a merged input partition.
Clearly, by using equation (4), the runtime of any job can be
estimated if the Number of Map Waves, Shuffle Data, Shuffle
Rate, MST, Single Map Wave Time and Reduce Time factors
are all provided. We next discuss how such a model can be
effectively used to locate the best number of map waves for
any given MapReduce application.

V. MC2: MAP CONCURRENCY CHARACTERIZATION

Our developed mathematical model can be utilized to predict
the best number of map waves for MapReduce applications.
As stated earlier, by inspecting the Total MST, HST, EST and
Runtime equations, we realize that six factors are required
before such equations can be evaluated. The key factor among
these six factors is the number of map waves, which we are
actually seeking for. We note that as our objective is not
to estimate runtimes of applications, but rather to predict the
best number of map waves for a given application: (1) we can
fix all the model’s factors except the Number of Map Waves
one, and (2) measure the Runtime equation for a range of map

Exposed Shuffle Time (EST)

>Runtime



wave numbers (e.g., 1.0 to 15.0) and select the minimum.
In principle, as we attempt to optimize performance, the
minimum runtime will always provide the best number of
map waves. We propose Map Concurrency Characterization
(M C?), a predictor that effectively realizes such an objective.

A notice, however, is that as we vary the number of
map waves to measure the Runtime equation, the Single
Map Wave Time factor in the equation also indirectly varies,
but inversely. In particular, as the number of map waves
increases, the single map wave time decreases and vice versa.
As such, to use the Runtime equation the way we suggest in
M C?, the Single Map Wave Time factor should be divided by
the Number of Map Waves factor. In addition, the Single Map
Wave Time changes not only with different numbers of map
waves, but also with different cluster map slot configurations.
Specifically, the map wave gets larger with a larger number
of total map slots and smaller otherwise. Assuming enough
available cluster resources, a larger map wave is supposed
to take less time than a smaller one. Therefore, in order to
apply MC? to different cluster map slot configurations, the
Single Map Wave Time should be further multiplied by a
factor, 3, that is capable of capturing such a fact. Simply,
the factor 3 can be defined as the total number of map slots
that we begin with before start varying the number of map
waves, divided by the variable total number of map slots as
the number of map waves is varied®. Clearly, as the total
number of map slots that we begin with is fixed, and the
variable total number of map slots increases, 5 decreases.
When [ decreases, the Single Map Wave Time also decreases
and vice versa. Consequently, the 3 factor can satisfy the goal
of correctly changing the single map wave time as the number
of map slots is altered. In short, with M C? the Single Map
Wave Time becomes equal to (Single Map Wave Time x (3
= Number of Map Waves).

Fig. 6 depicts a high-level view of M(C? with the re-
quired input parameters and the proposed output values. As
illustrated in the figure, M C? requires Shuffle Data, Shuffle
Rate, MST, Single Map Wave Time, Reduce Time and Initial
Map Slots Number as input parameters. The Initial Map
Slots Number is the total number of map slots that we begin
with before start varying the number of map waves to locate
the best one. The rest of the parameters are defined as in
equations (1), (2), (3), and (4). The output curves of MC?
reflect the values of the Runtime, Total MST, EST and HST
equations for a range of map wave numbers. By scaling
up the number of map waves, HST (or the gain from early
shuffle) keeps increasing as long as it does not get dominated
by MST (or the loss from map task setup overhead). HST and
EST are inversely proportional, thus when HST increases,
EST decreases. The local minimum of the Runtime curve is
the spot at which HST is maximally leveraged and MST is
minimally incurred. We denote this spot as the sweet spot,
or the best number of map waves for the given application.

The input application parameters Shuffle Data, MST, Single
Map Wave Time, Reduce Time and Initial Map Slots Number
can be figured out by applying static profiling. First, Shuffle
Data is independent of map concurrency. In particular, the
same amount of data will be shuffled in an application
irrespective of the configured number of map waves. Accord-
ingly, a single run of the application under the default Hadoop

SDifferent numbers of map waves could entail different numbers of map
slots.
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Figure 6. MC? Predictor: Input = Shuffle Data, Shuffle Rate, Single Map
Wave Time, Map Setup Time (MST), Reduce Time, and Initial Map Slots
Number. Output = Expect responses of Hidden Shuffle Time (HST), Expose
Shuffle Time (EST), Total MST and Runtime as map concurrency is varied.
The sweet spot is the best number of map waves (or implicitly, the best
HDFS block size) for the given application.

configuration would suffice to acquire a representative value
for Shuffle Data. Shuffle Data is the intermediate output size
and can be collected from a Hadoop built-in counter. Second,
as we aim to predict the best number of map waves and not
the application’s runtime, Single Map Wave Time and Reduce
Time need not be fully accurate and can be approximated.
Specifically, from a single run of the application, using the
default Hadoop configuration, we can compute the number
of map waves and divide the application’s map time by this
number of waves to obtain Single Map Wave Time. The
Reduce Time can be approximated by selecting any reduce
task in the Hadoop web user interface (UI) (or logs) and
subtract the task’s finish time from its shuffle end time.
Third, Initial Map Slots Number is simply the total number
of map slots of the Hadoop cluster used in running the given
application (i.e., acquiring the profile). Fourth, MST can be
approximated by a small number of seconds (e.g., 5 or 10
seconds) [17]. Lastly, Shuffle Rate is the data transfer rate of
the underlying cluster’s network.

To this end, we note that M C? scans a range of map wave
numbers without involving Hadoop. In particular, all M C?’s
computations occur without executing Hadoop, hence, the
definition standalone utility program. In M C?, the range of
map wave numbers is configurable and can be statically set
by users. Finally, once the best number of map waves for
a specific application is located, the respective HDFS block
size can be easily calculated and, subsequently, configured in
Hadoop (see Section II-B). The HDFS block size is a job, not
a cluster, configuration parameter and can be set differently
for different MapReduce applications. For instance, two
applications can set HDFS block sizes to 512MB and 64MB,
respectively and run on the same Hadoop cluster.

VI. QUANTITATIVE EVALUATION
A. Methodology

We evaluate M C? on our cloud computing infrastructure and
on Amazon EC2 [1]. Our infrastructure is comprised of a
dedicated 14 physical host IBM BladeCenter H with identical
hardware, software and network capabilities. The BladeCen-
ter is configured with the VMware vSphere 4.1 virtualization
environment and VMware ESXi 4.1 hypervisor [34]. The
vSphere system is configured with a single virtual machine
(VM) per each BladeCenter blade. Each VM is configured
with 8 v-CPUs and 8GB of RAM. The disk storage per each
VM is provided via two locally connected 300GB SAS disks.
The major system software on each VM is 64-bit Fedora
13 [10], Apache Hadoop 0.20.2 [13] and Sun/Oracle’s JDK
1.6 [9], Update 20. Table I summarizes the configuration of
our private cloud.



Table I
OUR PRIVATE TESTBED.

Category [ Configuration
Hardware

Chassis IBM BladeCenter H

Number of Blades 14

2 x 2.5GHz Intel Xeon
Quad Core (E5420)
8 GB RAM
2 x 300 GB SAS
Defined as 600 GB RAID 0
3 (organized in a tree-style way)
Software
vSphere 4.1/ESXi 4.1
8 vCPU, 8 GB RAM
1 GB NIC
60 GB Disk (mounted at /)
450 GB Disk (mounted at /hadoop)

Processors/Blade

RAM/Blade

Storage/Blade

Number of Switches

Virtualization Platform

VM Parameters

OS 64-Bit Fedora 13
JVM Sun/Oracle JDK 1.6, Update 20
Hadoop Apache Hadoop 0.20.2

Contrary to our private cluster, Amazon EC2 is a shared
heterogeneous cloud. We provisioned on Amazon EC2 a
Hadoop cluster with standard 20 large (i.e., ml.large) in-
stances, each with 4 EC2 Compute Units (2 virtual cores
with 2 EC2 Compute Units), 7.5GB memory, 850GB instance
storage, high I/O Performance, and 64-bit Ubuntu AMI
image. We adopted an Amazon EC2 cluster with a size
different than that of our private one so as to demonstrate
MC?’s versatility.

To account for various shuffle data sizes, we use
WordCount with the combiner function being enabled
(WordCount-CE) and disabled (WordCount-CD). In addi-
tion, we use the Apache Mahout K-Means clustering work-
load [29], Sort and an in-house developed image processing
benchmark, Sobel. Sort and WordCount are two main bench-
marks utilized for evaluating Hadoop at Yahoo! [8], [38]. K-
Means is a well-known clustering algorithm for knowledge
discovery and data mining [20]. Sobel is a state-of-the-art
edge detection algorithm used widely in various scientific
domains such as bio-medicine [25] (Sobel is part of NIH’s
ImageJ package [23]) and astronomy [30], among others.

On our private cloud, we ran Sort over a 28GB dataset
generated using the RandomWriter in Hadoop. WordCount-
CE and WordCount-CD were run over 28GB and 14GB
datasets, respectively, generated using the RandomTextWriter
in Hadoop. For K-Means we generated a random 5.5GB
dataset of 2D data points. Besides, we selected 4 random
centroids and fixed that for all runs. Per each run we set 5
iterative jobs similar to [20]. Finally, for Sobel we obtained
an image dataset from celebi [6], the public repository of
medical imaging. Our image dataset consists of 30080 dy-
namic high-resolution 4D PNG images (the original images
were in the Dicom format) from a cardiac study acquired on
a 64 detector CT scanner. After bundling all the images in
a sequence file (as required by Hadoop), we obtained a total
image dataset size of 4.3GB.

On Amazon EC2, we ran Sort, WordCount-CE and
WordCount-CD over datasets of size 20GB, generated using
the RandomWriter and the RandomTextWriter in Hadoop.
For K-Means and Sobel we utilized similar datasets as ones
used on our private cloud, but with sizes of 11.1GB and
8.7GB (or 60168 images), respectively. We varied dataset
sizes in order to better test and verify the promise of MC?,
especially with the shuffle data being one of MC?’s inputs
(the size of the dataset influences the amount of data to
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Figure 7.  'WordCount-CE results on our private cloud.

shuffle). To this end, we accounted for variances across runs
by running each benchmark 3 times on our private cloud and
5 times on Amazon EC2, and reported the average.

B. MC? on Our Private Cloud

We first evaluate MC? by: (1) running each benchmark
on our private cloud with different numbers of map waves,
(2) collecting results and locating the best number of map
waves of each benchmark, (3) using the MC? standalone
utility program to predict each benchmark’s best number
of map waves (i.e., the sweet spot), and (4) matching the
best empirically located number of map waves, or what we
refer to as the observed minimum, with the sweet spot of
each benchmark. To execute MC? we use a single static
profile for each workload collected under the default Hadoop
configuration. The required M C? input parameter values are
obtained in a way similar to what is described in Section V.
MST is approximated to 10 seconds for all benchmarks®. As
the number of map waves is defined in terms of the numbers
of map tasks and slots, we ran each benchmark on our private
cloud with 1, 2, and 4 map slots per TaskTracker (or 14, 28,
and 56 total map slots). Furthermore, we used HDFS blocks
of sizes 2048MB or 1024MB, 512MB, 256MB, 128MB and
64MB’. As discussed in Section II-B, by varying the sizes of
HDFS blocks, we vary the number of map tasks. Figures 7,
8, 9, 10 and 11 demonstrate the results for WordCount-CE,
K-Means, Sort, WordCount-CD and Sobel, respectively.

Let us start with a small recap on MC?. MC? does not
predict the actual runtimes of MapReduce applications (i.e.,
how many seconds a certain application will take to finish),
but rather the optimal map concurrencies for applications.
When the best map concurrency for an application is located
and, subsequently, configured on Hadoop, it translates to
an overall runtime reduction. In addition, as described in
Section V, MC? uses approximated values for its input
parameters to compute the Total MST, HST, EST and Runtime

© A more accurate approach is to approximate a different MST for different
benchmarks using static profiling. For simplicity, in this work we assume a
single MST across all our workloads, especially that they all exhibit long-
lived tasks. For jobs that finish in less than 1 minute, we recommend using
different approximated MSTs for different jobs.

7We use ranges of map slots and HDFS block sizes that are typically
utilized in Hadoop settings at small and large scale levels.
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Figure 9. Sort results on our private cloud.

equations. Accordingly, as shown in Figures 7, 8, 9, 10 and
11, the y-axes of MC? predicted outputs do not closely
match the y-axes of MapReduce observed results.

As demonstrated in Fig. 7, MC? correctly predicts the
best numbers of map waves for WordCount-CE under all
various configurations. In particular, M C? predicts 2, 1, and
1 map waves for the 14, 28 and 56 map slot configurations,
respectively. Some map wave numbers in the figure are in
decimal because the remainder of dividing the number of
HDES blocks (or map tasks) of WordCount-CE’s dataset
(i.e., 28GB) by the cluster’s total number of map slots
is not always zero. The exhibited observed minimums in
Fig. 7 (b) match exactly the MC? predicted sweet spots.
Moreover, the configuration corresponding to the best® sweet
spot (i.e., the 56 map slot and 512MB block configuration)
greatly outperforms the default Hadoop configuration (i.e.,
the 28 map slot and 64MB block configuration). Specifically,
the best sweet spot provides a speedup of 2.1X versus
default Hadoop. Clearly, this shows that the default Hadoop
configuration is not necessarily the optimal and substantiates

8The best sweet spot of an application is the minimum sweet spot among
all the located sweet spots of the application.
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Figure 11. Sobel results on our private cloud.

the effectiveness of M C? in locating the best number of map
waves for WordCount-CE.

Likewise, Figures 8, 9, 10 and 11 show that MC? suc-
cessfully predicts the best numbers of map waves for K-
Means, Sort, WordCount-CD and Sobel under all various
configurations, except under the 56 map slot configuration
for Sort, WordCount-CD and Sobel. Although these miss-
predictions cause performance degradations of 2.4%, 10.8%
and 0.7% for Sort, WordCount-CD and Sobel, respectively
versus the configurations under the observed minimums,
they do not incur degradations versus default Hadoop. In
fact, the Hadoop configurations under the miss-predicted
sweet spots outperform default Hadoop by 7.9%, 10.2%,
and 43.8% for Sort, WordCount-CD and Sobel, respectively.
As depicted in Figures 7, 8, 9, 10 and 11, there is indeed
no single degradation under any of the best sweet spot
configurations against default Hadoop. In summary, MC?
provides speedups of 2.1X, 1.34X, 1.07X, 1.1X, and 1.43X
versus default Hadoop for WordCount-CE, K-Means, Sort,
WordCount-Cd and Sobel, respectively. The speedups vary
according to where the default Hadoop configuration is from
the best sweet spot.

M C? might sometimes result in miss-predictions for two



main reasons. First, the mathematical model that M C?
utilizes assumes that map tasks start and finish at comparable
times. This is not always true, especially when some tasks
render slow. Hadoop addresses slow tasks by launching
corresponding speculative tasks so as to avert job delays.
Incorporating effects of speculative execution within our
mathematical model is a promising and worth-exploring
future direction. Second, our mathematical model assumes
that resource contention is avoided. For the infrastructure
of our private cloud and the provisioned virtual machines,
setting 4 or more map slots might stress resources; hence,
the observed miss-predictions with Sort, WordCount-CD and
Sobel under the 56 map slot configuration (the 56 map
slot configuration uses 4 map slots per a TaskTracker). In
contrary, WordCount-CE and K-Means do not incur miss-
predictions under such a configuration due to being less
CPU, memory and I/O bound than Sort, WordCount-CD and
Sobel. Finally, we note that even if a miss-prediction occurs,
it is typically the case that the missed correct sweet spot
(gleaned from the observed minimum) is very close to the
miss-predicted sweet spot at the Runtime curves. As such,
users can always conjecture what potential degradation (if
any) they might experience if a miss to the correct sweet
spot happens. MC? users are always expected to observe
speedups versus default Hadoop, unless default Hadoop is
the optimal configuration and a miss-prediction occurs. We
next evaluate M/ C? on Amazon EC2.

C. MC? on Amazon EC2

Table III
RUNTIME SPEEDUPS PROVIDED BY M C?2 VERSUS DEFAULT HADOOP.

Benchmark Private Cloud Amazon EC2
WordCount-CE 2.1X 1.2X
K-Means 1.34X 1.13X
Sort 1.07X 1.1X
WordCount-CD 1.1X 2.2X
Sobel 1.43X 1.04X

To evaluate M C? on a shared heterogeneous environment,
we ran each of our benchmarks on a Hadoop cluster com-
posed of 20 Amazon EC2 large instances. Each instance
was configured with 2 and 4 map slots (or totals of 20
and 40 map slots). Besides, HDFS block sizes of 1024MB,
512MB, 256MB, 128MB and 64MB were used. For this
set of experiments, we approximated MST to 2 seconds
across all our benchmarks, assuming less initialization time
because of the chosen faster virtual machines on Amazon
EC2. Due to page constraints, we summarize all our M C?
and Amazon EC2 results in Table II. As shown in the
table, MC? correctly predicts the best numbers of map
waves for WordCount-CE, K-Means, Sort, WordCount-CD
and Sobel under all various configurations, except under the
80 map slot configuration for WordCount-CE, K-Means and
Sobel. The miss-predicted sweet spots lead to 0.53%, 16.2%
and 2.2% performance degradations as compared to the
observed minimums for the three benchmarks, respectively.
Nonetheless, the miss-predicted sweet spots result in 16.3%,

9.9%° and 4.4% performance improvements/degradations
for WordCount-CE, K-Means and Sobel, respectively versus
default Hadoop. In summary, on Amazon EC2 we did not
observe any degradation under any of the best sweet spot
configurations (which users would select) against default
Hadoop. In particular, M C? provided speedups of 1.2X,
1.13X, 1.1X, 2.2X, and 1.04X over default Hadoop for
WordCount-CE, K-Means, Sort, WordCount-CD and Sobel,
respectively. Again, the speedups vary according to where the
default Hadoop configuration is from the best sweet spot. To
this end, Table III exhibits the runtime speedups provided
by MC? over default Hadoop for all our benchmarks on
Amazon EC2 and on our private cloud.

VII. RELATED WORK

There has been recently a large body of work that focused on
optimizing Hadoop configuration for improved performance.
In this short article, it is not possible to do justice to every
related work. Hence, we only outline proposals that are most
relevant to M C?.

Babu makes a case for techniques to automate the process
of configuring MapReduce parameters [4]. He discusses the
applicability of different approaches (e.g., the database query-
optimizer-style approach) to meet this goal. Rizvandi et al.
present a preliminary step towards modeling the relationship
between the number of map/reduce tasks and application
runtimes [33]. They suggest employing a multivariate linear
regression model to predict MapReduce performance (or
CPU utilization as in [31]) for various applications. Yang et
al. evaluate the correlation between application characteris-
tics, configuration parameters and workload execution times
[37]. Similar to [33] and [31], they suggest using a regression
model. Ganapathi et al. propose using Kernel Canonical
Correlation Analysis (KCCA) to predict runtimes of (only)
Hive queries [11]. To aid users in making better use of cloud
resources, Wieder et al. suggest utilizing dynamic linear pro-
gramming to model each phase in MapReduce independently
and, accordingly, determine optimal scheduling and resource
configurations [35], [36]. As compared to [4], [11], [31],
[331, [35]-[37], M C? uses no regression, KCCA or dynamic
programming models. In contrary, M C? depends uniquely
on only MapReduce concurrency characteristics and guides
accurately Map phase configuration within milliseconds.

To automatically find good configuration settings for ar-
bitrary MapReduce jobs, Herodotou and Babu introduce
the Cost-Based Optimizer (CBO) [17]. CBO assumes two
components: (1) a profiler and (2) a what-if engine. The
profiler uses dynamic instrumentation to collect runtime mon-
itoring information from unmodified MapReduce programs.
The what-if engine utilizes a mix of simulation and model-
based estimation to answer questions about job executions.
To optimize Hadoop configuration, CBO enumerates and
searches through the parameter space of Hadoop, and makes
appropriate calls to the what-if engine. Herodotou et al
present Elastisizer, a system to which users can express

9In this case (i.e., for K-Means) the runtime provided by default Hadoop
was even better than the one provided by the observed minimum with 80 map
slots, and not with 40 map slots (which is the default number of map slots).
Indeed, the located sweet spot under the 40 map slot configuration offered
Hadoop a performance improvement of 13.1% versus default Hadoop. This
sweet spot is the best sweet spot generated by M C? for K-Means, and
which the users will naturally select.



Table II

SUMMARIZED RESULTS ON AMAZON EC2.

Benchmark # of Map Slots [HDFS Block Size, # of Map Waves] Range Observed Minimum Predicted Sweet Spot

40 [1024, 0.51, [512, 11, [256, 21, [128, 41, [64, 8] 512, 11 [512, 1]

WordCount-CE 80 [1024, 0.251, [512, 0.51, [256, 11, (128, 21, [64, 4] [512, 0] [256, 1]
K-Means 40 [1024, 0.27], [512, 0.52], [256, 1.05], [128, 2.11, [64, 4.17] [128, 2.1] (128, 2.1]
80 11024, 2.08], [512, 1.051, [256, 0.52], [128, 0.26], [64, 0.27] 164, 0.27] 1256, 0.52]

Sort 40 [1024, 0.51, [512, 11, [256, 21, [128, 41, [64, 8] [128, 41 [128, 4]

80 [1024, 0.251, [512, 0.51, [256, 11, [128, 21, [64, 41 164, 41 164, 41

20 [1024, 0.51, [512, 11, [256, 21, [128, 41, [64, 8] (128, 4] [128, 4]

WordCount-CD 30 [1024, 0.25], [512, 0.5], [256, 11, [128, 21, [64, 4] [64, 4] (64, 4]
Sobel 40 [1024, 0.22], [512, 0.42], [256, 0.82], [128, 1.62], [64, 3.25] 164, 3.25] [64, 3.25]

80 [1024, 0.11], [512, 0.211, [256, 0411, [128, 0.81], [64, 1.62] [128, 0.81] [64, 1.62]

the problem of determining cluster resources and MapRe- REFERENCES

duce configurations that best meet performance and cost
needs [18]. Elastisizer makes use of the what-if engine
proposed in [17].

Guided by the work on self-tuning database systems,
Herodotou et al. propose Starfish, a self-tuning system for
big data analytics [19]. Starfish exploits Elastisizer [18] to
automate Hadoop provisioning decisions. In essence, the
CBO, Elastisizer and Starfish schemes pose main challenges
such as developing efficient strategies to search through the
high-dimensional parameter space of Hadoop, and generating
job profiles with minimal overhead. Moreover, they rely on a
mix of mechanisms (e.g., simulation and model-based estima-
tion) to find good configurations. In contrast, M C? requires
no simulation, dynamic instrumentation and/or sampling,
and simply depends on some MapReduce characteristics to
optimize map concurrency.

To effectively configure MapReduce parameters, Koehler
et al. propose the usage of an adaptive framework, which
depends on autonomic computing concepts and utility func-
tions [28]. As per the Map phase, the framework focuses
on optimizing the number of map slots at cluster nodes.
Similarly, Kambatla ef al. suggest a signature-based predictor
to predict the optimum number of map and reduce slots at
Hadoop cluster nodes [27]. As compared to [28] and [27],
MC? focuses on map concurrency in terms of the number
of map tasks for a given number of map slots. Specifically,
M C? does not estimate the optimal number of map slots for
a Hadoop cluster.

VIII. CONCLUDING REMARKS AND FUTURE DIRECTIONS

In this work we observed a strong dependency between
map concurrency and MapReduce performance. We real-
ized that a good configuration for map concurrency can be
determined by simply depending on two main MapReduce
characteristics, data shuffling and map task setup overhead.
We built MC?, a simple standalone utility predictor that
leverages these two characteristics and correctly predict the
best map concurrencies for MapReduce applications. We
showed that M C? works successfully on a private cloud and
on Amazon EC2. M C? makes timely contributions to cloud
data analytics, and serves in reducing cost and improving
MapReduce performance on the cloud.

After verifying the promise of MC?, we set forth three
main future directions: (1) extending MC? to predict the
best possible number of map slots for Hadoop clusters so as
to avoid resource contention and enhance system utilization,
(2) incorporating the effects of speculative execution in our
mathematical model in order to make it more robust to slow
tasks, and (3) characterizing reduce concurrency so as to
guide Reduce phase configuration for improved performance.
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