
3/17/2022

1

Recitation 9
Laila Elbeheiry

March 17, 2022

Logistics

• P2 done (almost)

• P3 out (discussion next week)

• No office hours next week

Parallel Programming Models

• Shared Memory Model

• Message Passing Model

Parallel Programming Models
Shared Memory Message Passing

3/17/2022

2

Parallel Programming Models
Shared Memory Message Passing

Communicating processes usually
reside on the same machine

Typically used in a distributed
environment where communicating
processes reside on remote machines
connected through a network.

Faster communication strategy.
Relatively slower communication
strategy

More difficult to synchronize Easier to synchronize

Example: OpenMP Example: MPI

What is MPI?

• Message Passing Interface

• Defines a set of API declarations on message passing (such as send,
receive, broadcast, etc.), and what behavior should be expected from
the implementations.

• The de-facto method of writing message-passing applications

• Applications can be written in C, C++ and calls to MPI can be added
where required

MPI Program Skeleton

Photo credits:
https://princetonuniversity.github.io/PUbootcamp/sessions/par
allel-programming/Intro_PP_bootcamp_2018.pdf

MPI Program Skeleton

Photo credits:
https://princetonuniversity.githu
b.io/PUbootcamp/sessions/para
llel-
programming/Intro_PP_bootca
mp_2018.pdf

https://princetonuniversity.github.io/PUbootcamp/sessions/parallel-programming/Intro_PP_bootcamp_2018.pdf
https://princetonuniversity.github.io/PUbootcamp/sessions/parallel-programming/Intro_PP_bootcamp_2018.pdf

3/17/2022

3

MPI Concepts

• Communicator
• Defines which collection of processes may communicate with each other to

solve a certain problem
• In this collection, each process is assigned a unique rank, and they explicitly

communicate with one another by their ranks.
• When an MPI application starts, it automatically creates a communicator

comprising all processes and names it MPI_COMM_WORLD

• Rank
• Within a communicator, every process has its own unique ID referred to as

rank
• Ranks are used by the programmer to specify the source and destination of

messages

MPI Concepts

Rank=0

Rank=0

Comm_Fluid

Rank=1

Rank=1

Rank=2

Rank=2

Rank=3

Rank=3

Rank=0

Rank=4

Comm_Struct

Rank=1

Rank=5

Rank=2

Rank=6

Rank=3

Rank=7

MPI_COMM_WORLD

✓Ranks within MPI_COMM_WORLD are printed in red

✓Ranks within Comm_Fluid are printed in green

✓Ranks within Comm_Struct are printed in blue

MPI Concepts

MPI_Init(int *argc, char ***argv) • Initialize the MPI library (must be the first
routine called)

MPI_Comm_rank(comm, &rank); • Returns the rank of the calling MPI process
within the communicator, comm

• MPI_COMM_WORLD is set during Init(…)
• Other communicators can be created if

needed

MPI_Comm_size(comm, &size) • Returns the total number of processes within
the communicator, comm

Let’s write our first MPI
program...

3/17/2022

4

MPI Send and Recv

• The first argument is the data buffer

• The second and third arguments describe the count and type of
elements that reside in the buffer

• MPI Datatype is very similar to a C datatype: MPI_INT, MPI_CHAR

• The fourth and fifth arguments specify the rank of the
sending/receiving process and the tag of the message

• The sixth argument specifies the communicator

MPI_Send(, , , ,
,)

Why do we
need a tag?

void *buf int count MPI_Datatype datatype int dest
int tag MPI_Comm comm

MPI_Recv(void *buf, int count, MPI_Datatype datatype, int src, int tag,

MPI_Comm comm, MPI_Status *status)

Let’s look at some parallel
programs

Point-to-Point Communication
• Blocking

• Only returns after completed

• Receive: data has arrived and ready to use

• Send: safe to reuse sent buffer

• Be aware of deadlocks

• Tip: Use when possible

• Non-Blocking
• Returns immediately

• Unsafe to modify buffers until operation is known to be complete

• Allows computation and communication to overlap

• Tip: Use only when needed

Credits:
https://princetonuniversity.github.io/PUbootcamp/sessions/parallel-
programming/Intro_PP_bootcamp_2018.pdf

Deadlock Scenario

Credits:
https://princetonuniversity.github.io/PUbootcamp/sessions/parallel-
programming/Intro_PP_bootcamp_2018.pdf

3/17/2022

5

Collective Communication

• Collective communication allows you to exchange data among a
group of processes

• It must involve all processes in the scope of a communicator

• Hence, it is the programmer's responsibility to ensure that all
processes within a communicator participate in any collective
operation

Patterns of Collective Communication

1. Broadcast

Patterns of Collective Communication

• Broadcasts a message from the process with
rank root to all other processes of the group

MPI_Bcast(void *buffer, int count, MPI_Datatype datatype,

int root, MPI_Comm comm)

Patterns of Collective Communication

• Distributes elements of sendbuf to all processes in comm

• Although the root process (sender) contains the entire data array,
MPI_Scatter will copy the appropriate element into the recvbuf
of the process.

• sendcount and recvcount are counts per process

MPI_Scatter(const void *sendbuf, int sendcount,

MPI_Datatype sendtype, void *recvbuf, int recvcount,

MPI_Datatype recvtype, int root, MPI_Comm comm)

3/17/2022

6

Patterns of Collective Communication

• Inverse of MPI_Scatter

• Only the root process needs to have a valid receive buffer. All other
calling processes can pass NULL for recv_data

MPI_Gather(const void *sendbuf, int sendcount,

MPI_Datatype sendtype, void *recvbuf, int recvcount,

MPI_Datatype recvtype, int root, MPI_Comm comm) Computing average of numbers
with MPI_Scatter and
MPI_Gather

Patterns of Collective Communication

• Reduces values on all processes within a group.

• The sendbuf parameter is an array of elements of type datatype that each
process wants to reduce.

• The recvbuf is only relevant on the process with a rank of root.

• The recvbuf array contains the reduced result and has a size
of sizeof(datatype) * count.

• The op parameter is the operation that you wish to apply to your data.

• MPI contains a set of common reduction operations that can be used

int MPI_Reduce(const void *sendbuf, void *recvbuf, int

count, MPI_Datatype datatype, MPI_Op op, int root,

MPI_Comm comm)

Why not just sizeof(datatype)?

Patterns of Collective Communication

3/17/2022

7

Patterns of Collective Communication

1. Broadcast

2. Scatter

3. Gather

4. Allgather

5. Alltoall

6. Reduce

7. Allreduce

8. Scan

9. Reducescatter

Let’s implement a more efficient
parallel_sum

