3/17/2022

Logistics

* P2 done (almost)
* P3 out (discussion next week)

ReCitation 9 * No office hours next week

Laila Elbeheiry
March 17, 2022

dmandselag s olemialy
Carnegie Mellon University Qatar

Parallel Programming Models Parallel Programming Models

Shared Memory Message Passing ‘

* Shared Memory Model

* Message Passing Model

Parallel Programming Models

Shared Memory

Message Passing

c icati usually

Typically used in a distributed
- . .

reside on the same machine

processes reside on remote machines
connected through a network.

Faster communication strategy.

Relatively slower communication
strategy

More difficult to

Easier

Example: OpenMP.

Example: MPI

MPI Program Skeleton

Start of Program

[mitiatize MPI

Run Parallcl C
Pass

End of Program

[Include MPI Header File

(Non-interacting Code)

[End MPI Environment |

(Non-interacting Code)

Photo credits

https://orincetonuniverstyithub jo/PUbootcamp/sessions/par
allekprogramming/intro PP_baotcamp 201 pdf

Laga ol WY
o Unisersity Qatar

What is MPI?

* Message Passing Interface

« Defines a set of APl declarations on message passing (such as send,
receive, broadcast, etc.), and what behavior should be expected from

the implementations.

* The de-facto method of writing message-passing applications
* Applications can be written in C, C++ and calls to MPI can be added

where required

NIRRT
Mellon Un

MPI Program Skeleton

[nclude MPI Header File |

Start of Program
(Non-interacting Code)

Initialize MPI
Run Parallel Code &
Pass Messages

End MPI Environment

(Non-interacting Code)

End of Program

int main (int arge, char *argv(])
MPI_Init{farge, argv);

// Run parallel code

/ End MPI Envir

‘M‘Flil-".vallzeu

3/17/2022

Photo credis
https:/orincetonuniversiyithy
bio/PUbootcampsessions/para
lel

rosramming/intro PP bootca
mp 2018 00t

https://princetonuniversity.github.io/PUbootcamp/sessions/parallel-programming/Intro_PP_bootcamp_2018.pdf
https://princetonuniversity.github.io/PUbootcamp/sessions/parallel-programming/Intro_PP_bootcamp_2018.pdf

MPI Concepts

* Communicator
« Defines which collection of processes may communicate with each other to
solve a certain problem
* In this collection, each process is assigned a unique rank, and they explicitly
communicate with one another by their ranks.
* When an MPI application starts, it automatically creates a communicator
comprising all processes and names it MPI_COMM_WORLD

* Rank
* Within a communicator, every process has its own unique 1D referred to as
rank
* Ranks are used by the programmer to specify the source and destination of
messages

dmigd ol e

e Mellon University Qainr

MPI Concepts

MPI_Init(int *argc, char *x*argv) |+ Initialize the MPIlibrary (mustbe the first
routine called)

MPI_Comm_rank(comm, &rank); « Returns the rank of the calling MPI process
within the communicator, comm
MPI_COMM_WORLD is set during Init (...)
Other communicators can be created if
needed

MPI_Comm_size(comm, &size) « Returns the total number of processes within
the communicator, comm

g selag ol emi o

e Mellon University Qatar

MPI Concepts

MPI_COMM WORLD

Ve N
Comm_Fluid \ / Comm_Struct
v B
Rank=0 Rankd ankel
>
Ronkeo. Ranked Ronkes
Ranke2 Ranke3
Ranke2 Rank7
S A
AN

Ranks within MPI_COMM_WORLD are printed in red
vRanks within Comm_Fluid are printed in green
vRanks within Comm_Struct are printed in blue

Let’s write our first MPI
program...

3/17/2022

MPI Send and Recv

MPI_Send(void *buf , int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm

* The first argument is the data buffer

* The second and third arguments describe the count and type of
elements that reside in the buffer

* MPI Datatype is very similar to a C datatype: MPI_INT, MPI_CHAR

 The fourth and fifth arguments specify the rank of the
sending/receiving process and the|tag of the messagel—— :ZZT::’
* The sixth argument specifies the communicator

MPI_Recv(void *buf, int count, MPI_Datatype datatype, int src, int tag,
MPI_Comm comm, MPI_Status *status)

Point-to-Point Communication

* Blocking
* Only returns after completed
* Receive: data has arrived and ready to use
* Send: safe to reuse sent buffer
* Be aware of deadlocks
* Tip: Use when possible

* Non-Blocking
* Returns immediately
* Unsafe to modify buffers until operation is known to be complete
* Allows computation and communication to overlap
* Tip: Use only when needed
st

ttps:fprincetonuniversiy github io/PUbootcampsesions/paralel-
programming/intro_PP_bootcamp. 2018 pdf

Let’s look at some parallel
programs

Deadlock Scenario

lea g
MellonUn

3/17/2022

Process 0 | [Process 1] Process
T

G
it fprincetonuniversiy ithu o/PUscotsamlsesionsparalel- ¢
programming/inro_P_baotcamp_2018 pi i

ol
Mellon Uni

versity Qatar

Collective Communication

« Collective communication allows you to exchange data among a
group of processes

* It must involve all processes in the scope of a communicator

* Hence, it is the programmer's responsibility to ensure that all
processes within a communicator participate in any collective
operation

apd g lemialls
ellon University Qatar

Patterns of Collective Communication

MPI_Bcast (void *buffer, int count, MPI_Datatype datatype, WPz
int root, MPI_Comm comm) @.
* Broadcasts a message from the process with
rank root to all other processes of the group Q= O O O

o University Qatar

3/17/2022

Patterns of Collective Communication

1. Broadcast

dmagdseluogs olamials
Carnegie Mellon University Qatar

Patterns of Collective Communication

MPI_Scatter(const void *sendbuf, int sendcount, () m
MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)

@000
« Distributes elements of sendbuf to all processes in comm

« Although the root process (sender) contains the entire data array,
MPI_Scatter will copy the appropriate element into the recvbuf
of the process.

* sendcount and recvcount are counts per process

Mellon University Qatar

Patterns of Collective Communication

MPI_Gather (const void *sendbuf, int sendcount, -
MPI_Datatype sendtype, void *recvbuf, int recvcount, LT
MPI_Datatype recvtype, int root, MPI_Comm comm) @' @' O' O

() w=
* Inverse of MPI_Scatter

* Only the root process needs to have a valid receive buffer. All other
calling processes can pass NULL for recv_data

el alls
ellon University Qatar

Patterns of Collective Communication

int MPI_Reduce(const void *sendbuf, void *recvbuf, int
count, MPI_Datatype datatype, MPI_Op op, int root,
MPI_Comm comm)

* Reduces values on all processes within a group.

« The sendbuf parameter is an array of elements of type datatype that each
process wants to reduce.

* The recvbuf is only relevant on the process with a rank of root.

« The recvbuf array contains the reduced result and has a size
of[sizeof(datatype) * count.] Why not just si ?

« The op parameter is the operation that you wish to apply to your data.

* MPI contains a set of common reduction operations that can be used

3/17/2022

Computing average of numbers
with MPI_Scatter and
MPI_Gather

ersity Qutar

Patterns of Collective Communication

@E O @ OO
@
QELQEE @FE LR

O

3/17/2022

Patterns of Collective Communication

1. Broadcast
2. Scatter

3. Gather . . o
; Let’s implement a more efficient

4. Allgather
5. Alltoall

6. Reduce para"e|_5um
7. Allreduce

8. Scan

9. Reducescatter

gt ssloag ol emi s g seleag s loma o s
Carnegie Mellon University Qatar Carnegie Mellon University Qutar

