

جامعے کارب جی ہیلوں ہی قطر Carnegie Mellon University Qatar

P2 done (almost) P2 out (discussion

Logistics

- P3 out (discussion next week)No office hours next week
- omice nours next Wt

جامعہ کار بندی میلوں ہی ہطر Carnegie Mellon University Qatar

Parallel Programming Models

- Shared Memory Model
- Message Passing Model

Parallel Programming Models

جامعے دارنے جی میلوں ہی ہطر Carnegie Mellon University Qatar

Parallel Programming Models

Shared Memory	Message Passing
Communicating processes usually reside on the same machine	Typically used in a distributed environment where communicating processes reside on remote machines connected through a network.
Faster communication strategy.	Relatively slower communication strategy
More difficult to synchronize	Easier to synchronize
Example: OpenMP	Example: MPI

جامعہ دارنیجی میلور ہی قطر Carnegie Mellon University Qatar

What is MPI?

- Message Passing Interface
- Defines a set of API declarations on message passing (such as send, receive, broadcast, etc.), and what behavior should be expected from the implementations.
- The *de-facto* method of writing message-passing applications
- Applications can be written in C, C++ and calls to MPI can be added where required

جامعہ کاریب جی میلوں ہی ہطر Carnegie Mellon University Qatar

MPI Program Skeleton Include MPI Header File Start of Program (Non-interacting Code) Initialize MPI Run Parallel Code & Pass Messages End MPI Environment

(Non-interacting Code)

End of Program

MPI Concepts

• Communicator

- Defines which collection of processes may communicate with each other to solve a certain problem
 In this collection, each process is assigned a unique rank, and they explicitly communicate with one another by their ranks.

- When an MPI application starts, it automatically creates a communicator comprising all processes and names it MPI_COMM_WORLD

• Rank

- Within a communicator, every process has its own unique ID referred to as rank
- Ranks are used by the programmer to specify the source and destination of messages

جامعہ دارنے جی میلوں ہی قطر Carnegie Mellon University Qatar

MPI Concepts

جامعے کاربِجی میلور ہی ہطر Carnegie Mellon University Qatar

MPI Concepts

<pre>MPI_Init(int *argc, char ***argv)</pre>	 Initialize the MPI library (must be the first routine called)
MPI_Comm_rank(comm, &rank);	Returns the rank of the calling MPI process within the communicator, comm MPI_COMM_WORLD is set during Init () Other communicators can be created if needed
MPI_Comm_size(comm, &size)	 Returns the total number of processes within the communicator, comm

جامعہ داریجی ہیلوں ہی ہطر Carnegie Mellon University Qatar

Let's write our first MPI program...

جامعہ دارنے دی میلوں ہی قطر Carnegie Mellon University Qatar

MPI Send and Recv

- The first argument is the data buffer
- The second and third arguments describe the count and type of elements that reside in the buffer
- MPI Datatype is very similar to a C datatype: MPI_INT, MPI_CHAR
- The sixth argument specifies the communicator

MPI_Recv(void *buf, int count, MPI_Datatype datatype, int src, int tag, MPI_Comm comm, MPI_Status *status)

Let's look at some parallel programs

جامعہ دارنے دی میلوں ہی قطر Carnegie Mellon University Qatar

Point-to-Point Communication

- Blocking
 - Only returns after completed
 - · Receive: data has arrived and ready to use
 - Send: safe to reuse sent buffer
 - Be aware of deadlocks
 - Tip: Use when possible
- Non-Blocking
 - Returns immediately
 - Unsafe to modify buffers until operation is known to be complete
 - Allows computation and communication to overlap
 - Tip: Use only when needed

Credits: https://princetonuniversity.github.io/PUbootcamp/sessions/parallel programming/httro_PP_bootcamp_2018.pdf جامعہ داریجی ہیلوں ہی ہطر Carnegie Mellon University Qatar

Deadlock Scenario

Credits: https://pr ortonuniversity.github.io/PUbootci g/intro_PP_bootcamp_2018.pdf

جامید دارنیدی میلور فی قطر Carnegie Mellon University Qatar

Collective Communication

- Collective communication allows you to exchange data among a group of processes
- It must involve all processes in the scope of a communicator
- Hence, it is the programmer's responsibility to ensure that all processes within a communicator participate in any collective operation

جامعے داریے جی میلوں ہی قطر Carnegie Mellon University Qatar

Patterns of Collective Communication

1. Broadcast

جامعہ داریجی میلوں ہی قطر Carnegie Mellon University Qatar

Patterns of Collective Communication

MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root, MPI_Comm comm)

• Broadcasts a message from the process with rank root to all other processes of the group

Patterns of Collective Communication

MPI_Scatter(const void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)

• Distributes elements of sendbuf to all processes in comm

 Although the root process (sender) contains the entire data array, MPI_Scatter will copy the appropriate element into the recvbuf of the process.

sendcount and recvcount are counts per process

جامعت کار تیجی میلون ہی قطر Carnegie Mellon University Qatar

جامف کارنیدی میلور ہی قطر Carnegie Mellon University Qatar

Patterns of Collective Communication

MPI_Gather(const void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)

Inverse of MPI_Scatter

 Only the root process needs to have a valid receive buffer. All other calling processes can pass NULL for recv_data

> جامد داریدی میلور ہی قطر Carnegie Mellon University Qatar

MP_Gather

0 ==

Computing average of numbers with MPI_Scatter and MPI_Gather

> جامعہ داریے جبی میلوں ہی قطر Carnegie Mellon University Qatar

Patterns of Collective Communication

int MPI_Reduce(const void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

- Reduces values on all processes within a group.
- The sendbuf parameter is an array of elements of type datatype that each process wants to reduce.
- The recvbuf is only relevant on the process with a rank of root.
 The recvbuf array contains the reduced result and has a size of sizeof(datatype) * count. Why not just sizeof(datatype)?
- The op parameter is the operation that you wish to apply to your data.
- MPI contains a set of common reduction operations that can be used

جا مید کارنیدی میلور ہی قطر Carnegie Mellon University Qatar

Patterns of Collective Communication

جامعے کا ریے جی میلوں ہی ہے ا Carnegie Mellon University Oatar

Patterns of Collective Communication

1. Broadcast

- 2. Scatter
- 3. Gather
- 4. Allgather 5. Alltoall
- 6. Reduce
- 7. Allreduce
- 8. Scan
- 9. Reducescatter

جامعہ دارنے جبی میلوں ہی ہطر Carnegie Mellon University Qatar Let's implement a more efficient parallel_sum

جامعہ دارنے جی میلوں ہی قطر Carnegie Mellon University Qatar