2/24/2022

Logistics
15-440 |
Distributed Systems ot e March 161
ReC|tat|On 6 * Midterm (March 9)

* PS3 (due tod
Laila Elbeheiry (due today)

Adopted from: Previous TAs

dmagdssloag s olamie dmandselag s olemialy
Carnegie Mellon University Qatar

Carnegie Mellon University Qatar

Project 2 FileStack Architecture
* Involves building on your Project 1 Distributed File Naming
System (DFS): FileStack ’, n‘

» P2_StarterCode: Copy files into your P1 folder
Server 1
M Storage
Server 2

Storage
Server n

* Release Date: February 24th

* Due date: March 16t

it sebeas
Carnegie VMello

flet it

Storage
Server 1
Storage
Server 2

Storage

Server n

fie1 txt ‘What might go wrong?
wwmmm,tgg
* readfiles.oxt)

pedgdseleags o lami

Carnegie Mellon U

ity O

file1.

Storage

l Server 1
Storage
Server 2

Storage
Server n

dmandsslagn s,
Mellon Un

Carnegi

fle1 1t

‘What might go wrong?

write('abe”, fiet)

E * Synchronization
e, Rl .-

read(fle?)

e dgdseleag s o lami
Cary Mellon Univ

y Qat

2/24/2022

file! txt

wiite{"abe’, et 1)
mxa[xyz'.ﬁm o). [‘
. read(fle1.tx)

il txt

‘What might go wrong?
® Synchronization

filel.txt is hosted on 889, and

it's gets S000 reqs/ sec. As

opposed to file2.oxt which gets
1000 reqs / month on §53

Liags

lellon University

What might go wrong?

* Synchronization

wnteCabe” et
E ® Load-balancing

write{"xyz", fle tet)« | -

. readfiet.txt)

Replicate filel.txt on multiple
Storage Servers

fellon University Qatar

2/24/2022

a1 ‘What might go wrong?

write b, et o) E ® Synchronization

readiflal.tet)

Project 2 Objectives

1. Devise and apply a synchronization algorithm that:
= achieves correctness while sharing files

= and ensures fairness to clients.

2. Devise and apply a replication algorithm that:
= achieves load-balancing among storage servers

= and ensures consistency of replicated files.

Mellon University Qatar

Project 2 Objectives

1. Logical Synchronization of Readers and
Writers

2. Devise and apply a replication algorithm that:
= achieves load-balancing among storage servers

= and ensures consistency of replicated files.

Synchronization v
wete“abe”, fle tet) ‘_I_t
—
.

Synchronization .
— |
‘
il
Synchronization .

3

s “li”

write('abe, filel bt} (

it o2 e
--m Client! has the lock

2/24/2022

N

Synchronization

o

wite(*abe”. file 1.t (‘—lﬁ

“lig”

wr
W s e

readifie! i

"‘-‘-—m Cliont1 has the lock

e agdssleags o lami oy
Carnegie Mellon University Qatar

Synchronization

o
witer'abe, e) (‘_l—‘
T - i
readifiet g . - “bin
B ! -
aQueve

¥
'*‘«m Cliont1 has the lock

Sosloagrslmmaals
egie Mellon University Qatar

Synchronization

write('abc”, file1.bx1) (

reacifien o)
Queue

-
b 2 e

e

—

'k“-‘-—m Clisnt1 has the lock

dmandselag s olemialy
Carnegie

Synchronization

“

3

write('abe, filel bt} {

“lib"

readifilet bt} *.

readifie1 1)
Th QUEUE
B

2, ¥
- **—“m Glientt has the lock

deagtaeliagi alom
Carnegie Mellon Universi

“lib"

|

e Mellon University Qatinr

2/24/2022

Synchronization

readifie uta‘”‘.‘ i Tin T e
QUEVE
¥
EEE oo

g sploas s ilomeals

Carnegie Mellon University Qatar

Synchronization

“r"
Cliont3 is Ronaming? = = = = = = = = e -
i s -

B cicoz nas e ok

Jmdgdsslaga olomialls
Carnegie Mellon University Qatar

2/24/2022

Synchronization

Is this good
enough? - .
.

LT o T T

458len lemaa s

sekeagd g
Carnegie Mellon University Qutar

Synchronization

.

Ciient3 is Renaming? - === == _..: -
= , -

Client2 has the lock

dmdgdssleag s s lomialls
Carnegie Mellon University Qatar

Mutual Exclusion Recap

1. Reader:

= Reader is a Client who wishes to read a file at a SS

= Reader first requests a read/non-exclusive/shared lock
2. Writer:

= Writeris a Client who wishes to write to a file ata SS

= Writer first requests a write/exclusive lock
3. Order:

= Readers and writers are queued and served in the FIFO order

Write Locks

Writers request the NS for write locks before
reading/writing to files

Writers can modify contents of files/directories

Only one writer can acquire a write lock at a time

Writers unlock files once done

soliss;

sloagrdglomi s L
i

University Qatar

University Qatar

Read Locks

* Readers request the NS for read locks before reading files
« Readers do not modify contents of a file/directory
e Multiple readers can acquire a read lock simultaneously

¢ Readers unlock files once done

Write Locks

* NSgrants a write lock on a file if:
« Noreader is currently reading the file

No writer is currently writing to the file

* Assume a writer requests a write lock for project2.txt:

/FileStack/users/student1/work/project2.txt

* NSapplies read locks on all the directories in the path to prevent modifications

¢ NSthen grants a write lock to the requestor of project2.txt

2/24/2022

Service Interface

* Two new operations available to Clients:
¢ LOCK(path, read/write)

¢ UNLOCK(path, read/write)

Project 2 Objectives

Dynamic Replication of Files

Project 2 Objectives

1. Logical Synchronization of Readers and
Writers

2. Devise and apply a replication algorithm that:
= achieves load-balancing among storage servers

= and ensures consistency of replicated files.

Why Replicate?

* In our DFS, we’ll have two kinds of Files:
* Files that have a lot of requests

These are denoted as “hot-files”

* Files that are very rarely accessed

These are denoted as “cold-files”

To achieve load-balancing, we can replicate “hot-files” onto other
SSs

2/24/2022

How many replicas?

HOT FILES
Fropntly et e
e
gt ssloag s slemialls
Carnegie Mellon University Qatar

How can we Replicate?

* NS first elects one or many SSs to store the replicas

* NS commands each elected SS to copy the file from the
original SS

* Therefore, the metadata of a file now includes a set of SSs
instead of a single SS

ndgdseliag s lama alls
Carnegie Mellon University Qatar

2/24/2022

When to Replicate?

* NS would want to store num_requests as file metadata

* However, how can we determine and in turn update

num_requests over time?
* We know that Clients invoke read operations on storage servers

* Therefore, every “read” lock request from a client is deemed as
a read operation
« Afterward, NS increments num_requests

* Reavaluate num_replicas
ssleagnr s lamials
Carnegie Mellon University Qatar

Load Balancing Whatare the

challenges?

HOT FILES CONSISTENCY
Frequentl?r Accessed REDIRECTION
N WRITE REQUESTS

- ~ INVALIDATION

= =1 write{"abc”, file1.txt)
¢ o -

filed tet file bt

dmdgdssleag s s lomialls
Carnegie Mellon University Qatar

How to Update Replicas

* When a Client requests a write lock on a file:

= It causes the NS to invalidate all the replicas except the locked one

¢ Invalidation is achieved by commanding those SSs hosting
replicas to delete the file

¢ When the Client unlocks the file, the NS commands SSs to
copy the modified file

Implementation Tips: Synchronization

* Consider a Lock object that:
* Stores a list of “Requests” (represents a read/write Request)
* Isassigned to each Node in your tree

* Inthe new LOCK/UNLOCK method:
* Traverse your tree
* Obtain/Release locks as necessary

2/24/2022

The Command Interface

* One new operation available to the NS:

¢ COPY (path P, StorageStub S)
copies file with path P from StorageStub S

Implementation Tips: Replication

* Keep track of the number of reads for files:
* You need to modify your Tree data structure

* Create a formula for calculating the number of
replicas given the number of reads
« Similar to the one shown earlier

* After each read/write:

Update the number of replicas

10

