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Project 2 Objectives

1. Devise and apply a synchronization algorithm that:
= achieves correctness while sharing files

= and ensures fairness to clients.

2. Devise and apply a replication algorithm that:
= achieves load-balancing among storage servers

= and ensures consistency of replicated files.
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Project 2 Objectives

1. Logical Synchronization of Readers and
Writers

2. Devise and apply a replication algorithm that:
= achieves load-balancing among storage servers

= and ensures consistency of replicated files.
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Mutual Exclusion Recap

1. Reader:

= Reader is a Client who wishes to read a file at a SS

= Reader first requests a read/non-exclusive/shared lock
2. Writer:

= Writeris a Client who wishes to write to a file ata SS

= Writer first requests a write/exclusive lock
3. Order:

= Readers and writers are queued and served in the FIFO order

Write Locks

Writers request the NS for write locks before
reading/writing to files

Writers can modify contents of files/directories

Only one writer can acquire a write lock at a time

Writers unlock files once done
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Read Locks

* Readers request the NS for read locks before reading files
« Readers do not modify contents of a file/directory
e Multiple readers can acquire a read lock simultaneously

¢ Readers unlock files once done

Write Locks

*  NSgrants a write lock on a file if:
« Noreader is currently reading the file

No writer is currently writing to the file

*  Assume a writer requests a write lock for project2.txt:

/FileStack/users/student1/work/project2.txt

* NSapplies read locks on all the directories in the path to prevent modifications

¢ NSthen grants a write lock to the requestor of project2.txt
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Service Interface

* Two new operations available to Clients:
¢ LOCK(path, read/write)

¢ UNLOCK(path, read/write)

Project 2 Objectives

Dynamic Replication of Files

Project 2 Objectives

1. Logical Synchronization of Readers and
Writers

2. Devise and apply a replication algorithm that:
= achieves load-balancing among storage servers

= and ensures consistency of replicated files.

Why Replicate?

* In our DFS, we’ll have two kinds of Files:
* Files that have a lot of requests

These are denoted as “hot-files”

* Files that are very rarely accessed

These are denoted as “cold-files”

To achieve load-balancing, we can replicate “hot-files” onto other
SSs
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How many replicas?
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How can we Replicate?

* NS first elects one or many SSs to store the replicas

* NS commands each elected SS to copy the file from the
original SS

* Therefore, the metadata of a file now includes a set of SSs
instead of a single SS
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When to Replicate?

* NS would want to store num_requests as file metadata

* However, how can we determine and in turn update

num_requests over time?
* We know that Clients invoke read operations on storage servers

* Therefore, every “read” lock request from a client is deemed as
a read operation
« Afterward, NS increments num_requests

* Reavaluate num_replicas
ssleagnr s lamials
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How to Update Replicas

* When a Client requests a write lock on a file:

= It causes the NS to invalidate all the replicas except the locked one

¢ Invalidation is achieved by commanding those SSs hosting
replicas to delete the file

¢ When the Client unlocks the file, the NS commands SSs to
copy the modified file

Implementation Tips: Synchronization

* Consider a Lock object that:
* Stores a list of “Requests” (represents a read/write Request)
* Isassigned to each Node in your tree

* Inthe new LOCK/UNLOCK method:
* Traverse your tree
* Obtain/Release locks as necessary
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The Command Interface

* One new operation available to the NS:

¢ COPY (path P, StorageStub S)
copies file with path P from StorageStub S

Implementation Tips: Replication

* Keep track of the number of reads for files:
*  You need to modify your Tree data structure

* Create a formula for calculating the number of
replicas given the number of reads
« Similar to the one shown earlier

* After each read/write:

Update the number of replicas
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