
2/24/2022

1

15-440
Distributed Systems

Recitation 6
Laila Elbeheiry

Adopted from: Previous TAs

Logistics

• P1 Done!

• P2 Out (due March 16)

• Midterm (March 9)

• PS3 (due today)

Project 2

• Involves building on your Project 1 Distributed File
System (DFS): FileStack

• P2_StarterCode: Copy files into your P1 folder

• Release Date: February 24th

• Due date: March 16th

FileStack Architecture

2/24/2022

2

2/24/2022

3

Project 2 Objectives

1. Devise and apply a synchronization algorithm that:

▪ achieves correctness while sharing files

▪ and ensures fairness to clients.

2. Devise and apply a replication algorithm that:

▪ achieves load-balancing among storage servers

▪ and ensures consistency of replicated files.

2/24/2022

4

Project 2 Objectives

1. Devise and apply a synchronization algorithm that:

▪ achieves correctness while sharing files

▪ and ensures fairness to clients.

2. Devise and apply a replication algorithm that:

▪ achieves load-balancing among storage servers

▪ and ensures consistency of replicated files.

Logical Synchronization of Readers and
Writers

Synchronization

Synchronization Synchronization

2/24/2022

5

Synchronization Synchronization

Synchronization Synchronization

2/24/2022

6

Synchronization Synchronization

Is this good
enough?

Synchronization Synchronization

2/24/2022

7

Mutual Exclusion Recap

1. Reader:

▪ Reader is a Client who wishes to read a file at a SS

▪ Reader first requests a read/non-exclusive/shared lock

2. Writer:

▪ Writer is a Client who wishes to write to a file at a SS

▪ Writer first requests a write/exclusive lock

3. Order:

▪ Readers and writers are queued and served in the FIFO order

Read Locks

• Readers request the NS for read locks before reading files

• Readers do not modify contents of a file/directory

• Multiple readers can acquire a read lock simultaneously

• Readers unlock files once done

Write Locks

• Writers request the NS for write locks before
reading/writing to files

• Writers can modify contents of files/directories

• Only one writer can acquire a write lock at a time

• Writers unlock files once done

Write Locks

• NS grants a write lock on a file if:

• No reader is currently reading the file

• No writer is currently writing to the file

• Assume a writer requests a write lock for project2.txt:

/FileStack/users/student1/work/project2.txt

• NS applies read locks on all the directories in the path to prevent modifications

• NS then grants a write lock to the requestor of project2.txt

2/24/2022

8

Service Interface

• Two new operations available to Clients:

• LOCK(path, read/write)

• UNLOCK(path, read/write)

Project 2 Objectives

1. Devise and apply a synchronization algorithm that:

▪ achieves correctness while sharing files

▪ and ensures fairness to clients.

2. Devise and apply a replication algorithm that:

▪ achieves load-balancing among storage servers

▪ and ensures consistency of replicated files.

Logical Synchronization of Readers and
Writers

Project 2 Objectives

1. Devise and apply a synchronization algorithm that:
▪ achieves correctness while sharing files

▪ and ensures fairness to clients.

2. Devise and apply a replication algorithm that:
▪ achieves load-balancing among storage servers

▪ and ensures consistency of replicated files.

Dynamic Replication of Files

Why Replicate?

• In our DFS, we’ll have two kinds of Files:

• Files that have a lot of requests

• These are denoted as “hot-files”

• Files that are very rarely accessed

• These are denoted as “cold-files”

• To achieve load-balancing, we can replicate “hot-files” onto other
SSs

2/24/2022

9

How many replicas? When to Replicate?

• NS would want to store num_requests as file metadata

• However, how can we determine and in turn update
num_requests over time?

• We know that Clients invoke read operations on storage servers

• Therefore, every “read” lock request from a client is deemed as
a read operation

• Afterward, NS increments num_requests

• Reavaluate num_replicas

How can we Replicate?

• NS first elects one or many SSs to store the replicas

• NS commands each elected SS to copy the file from the
original SS

• Therefore, the metadata of a file now includes a set of SSs
instead of a single SS

Load Balancing What are the
challenges?

2/24/2022

10

How to Update Replicas

• When a Client requests a write lock on a file:

▪ It causes the NS to invalidate all the replicas except the locked one

• Invalidation is achieved by commanding those SSs hosting
replicas to delete the file

• When the Client unlocks the file, the NS commands SSs to
copy the modified file

The Command Interface

• One new operation available to the NS:

• COPY (path P, StorageStub S)

copies file with path P from StorageStub S

Implementation Tips: Synchronization

• Consider a Lock object that:

• Stores a list of “Requests” (represents a read/write Request)

• Is assigned to each Node in your tree

• In the new LOCK/UNLOCK method:
• Traverse your tree

• Obtain/Release locks as necessary

Implementation Tips: Replication

• Keep track of the number of reads for files:
• You need to modify your Tree data structure

• Create a formula for calculating the number of
replicas given the number of reads
• Similar to the one shown earlier

• After each read/write:
• Update the number of replicas

