
2/3/2022

1

15-440

Distributed Systems

Recitation 4

Laila Elbeheiry
Slides Adopted from:

Previous TAs

Last Time

• Entities, Architecture and 
Communication

• RMI

• Interfaces

• Skeleton & Stub

• Example

Today

• Packages dive-in:

✔ RMI

✔ Common

✔ Naming

✔ Storage

Quick Recap

Architecture

• FileStack will boast a Client-Server
architecture:

Storage 
Server 2

Storage 
Server n

1

Storage 
Server 1

Naming  
Server

2

Client

3

4

5

6



2/3/2022

2

Communication

• Registration phase

Storage 
Server 2

Storage 
Server n

1

Storage 
Server 1

Naming  
Server

2

Client

3

4

5

6

Communication

• Post registration, the Naming Server responds with a list of duplicates (if 
any).

Storage 
Server 2

Storage 
Server n

1

Storage 
Server 1

Naming  
Server

2

Client

3

4

5

6

Communication

• System is now ready, the Client can invoke requests.

Storage 
Server 2

Storage 
Server n

1

Storage 
Server 1

Naming  
Server

2

Client

3

4

5

6

Communication

• Client requests a file (to read, write etc…) from the Naming Server.

Storage 
Server 2

Storage 
Server n

1

Storage 
Server 1

Naming  
Server

2

Client

3

4

5

6



2/3/2022

3

Communication

• Depending on the operation, the Naming Server could either perform it, or, respond back 
to the Client with the Storage Server that hosts the file.

Storage 
Server 2

Storage 
Server n

1

Storage 
Server 1

Naming  
Server

2

Client

3

4

5

6

Communication

• After the Client receives which Storage Server hosts the file, it contacts that 
Server to perform the file operation.

Storage 
Server 2

Storage 
Server n

1

Storage 
Server 1

Naming  
Server

2

Client

3

4

5

6

Full Example: Client Read
Client

Naming  
Server

Storage  
Server

Service  
Stub

Service 
Skeleton

Storage 
Skeleton

TI
M

E

ServiceStub.getStorage(abc)

GetStorage(abc)

GetStorage(abc)

Storage  
Stub

Storage  
Stub

Storage  
Stub

StorageStub. 
read(abc,0,10)

read(abc,0,10)

read(abc,0,10)

“HelloWorld”
“HelloWorld”

“HelloWorld”

RM I package 
(overview)



2/3/2022

4

RMI package

• It contains two parametrized (generic-type) classes:
1. Skeleton.java

2. Stub.java

• RMIException

• Both the Skeleton and the Stub classes take a remote interface 
as a parameter.

RMI package

Client at address IP

Stub’s client 
socket at port P

Server at address IP’

Listening Socket  
at port P’

Service  
Socket

(1) TCP connection request

(2) Communication

• We implement multi-threaded 
socket programming

• The skeleton is multi-threaded
• When it is started, the main thread 

creates a listening socket and waits 
for client requests.

• Once a client's request is received, 
the skeleton accepts the request, 
creates a new thread, and 
instantiates a new service socket to 
handle the communication

public void start() {

create serverSocket();

bind(address);

while (!stopped) {

clientSocket = accept();

Thread a = new Thread

(new serviceThread(clientSocket));

a.start() ;

}

}

serviceThread {

String methodName = (String) in.readObject();

Class[] argTypes = (Class[]) in.readObject();

Object[] args = (Object[]) in.readObject();

Method m = c*.getMethod(methodName,argTypes);

Object result = m.invokeMethod(implementation*, args);

out.writeObject(result);

}

Skeleton.java
*c is the interface,
*implementation is the implementation of the interface

Stub.java

• A stub is implemented in Java as a dynamic proxy

• A proxy has an associated invocation handler

• The invoke method checks whether the invoked method is local 
or remote

• If the remote, the proxy connects to the corresponding 
skeleton at the server side, marshalls the method name,
parameter types and values, and sends the entailed byte
stream.

• http://tutorials.jenkov.com/java-reflection/dynamic-proxies. 
html

http://tutorials.jenkov.com/java-reflection/dynamic-proxies.html
http://tutorials.jenkov.com/java-reflection/dynamic-proxies.html


2/3/2022

5

RM I  package 
(Example: File Server)

Creating a file server:

1. Defining a remote interface

2. Defining a server class

3. Creating the server object and making it remotely-accessible

4. Accessing a server object remotely

Creating a file server:

1. Defining a remote interface

2. Defining a server class

3. Creating the server object and making it remotely-accessible

4. Accessing a server object remotely

public interface Server {

public long size(String path) throws ..;

public byte[] retrieve(String path) throws ..;

}

Creating a file server:

1. Defining a remote interface

2. Defining a server class

3. Creating the server object and making it remotely-accessible

4. Accessing a server object remotely

public class ServerImplementation implements Server {

// Fields and methods. ...

public long size(String path) throws ..{

//size method impl.

}

public byte[] retrieve(String path) throws ..{

// retrieve method impl.

} ...

}



2/3/2022

6

Creating a file server:

1. Defining a remote interface

2. Defining a server class

3. Creating the server object  and making it remotely-accessible

4. Accessing a server object  remotely

// Create the server object.

ServerImplementation server = new ServerImplementation(...);

// At this point, the server object is a regular local  object, and is not accessible remotely.

// Create the skeleton object.

Skeleton skeleton = new Skeleton(Server.class, server);

// Start the skeleton, making the server object  remotely-accessible.

skeleton.start();

Creating a file server:

1. Defining a remote interface

2. Defining a server class

3. Creating the server object and  making it remotely-accessible

4. Accessing a server object  remotely

// Create a stub which will forward method  calls to the remote object.

InetSocketAddress address = new InetSocketAddress(hostname, port);

Server server = Stub.create(Server.class, address);

// Perform some method calls using the stub.

long file_size = server.size("/file");

...

byte[] data = server.retrieve("/file");

Common package

Path package

• This package contains the  class 
Path which contains  helper 
methods that are used  by 
Naming Server and the  Storage 
Servers.

• Path creation

• Listing

• toString

• Equals

• Hashcode

• isRoot

• …



2/3/2022

7

Naming package

Naming package

• The naming package contains:

1. Registration interface

2. Service interface

3. NamingServer class:  creates the 
necessary  skeletons and stubs and  
implements the logic of all  the 
operations handled by  the Naming 
Server

Naming  
Server

Registration  
Interface

Service 
Interface

ImplementsImplements

isDirectory()  
isFile()

…

register()

Naming package

• The naming package contains:

1. Registration interface

2. Service interface

3. NamingServer class:  creates the 
necessary  skeletons and stubs and  
implements the logic of all  the 
operations handled by  the Naming 
Server

Naming  
Server

Registration  
Interface

Service 
Interface

ImplementsImplements

isDirectory(
)

isFile()
…

register(
)

Service 
Skeleton

Registration  
Skeleton

Naming package (NamingServer.java)

• Creates and maintains the FileStack directory  tree:

✓ Top-level directory being the root represented by the path "/".

✓ Inner tree nodes represent directories,

✓ the leaves represent files

• Builds its tree  during registration.

• After registration, uses its tree to handle operations.
• It is important to design the directory tree in a way that allows the 

NamingServer to easily look-up, traverse andalter the tree, as well as 
detect  invalid paths.



2/3/2022

8

Naming package (Tree)

• How can we build the Directory Tree?
• One way is to use  Leaf/Branch  approach:

• Leaf will represent:
• A file (name) and stub

• Branch (inner node) will represent:
• A list of Leafs/Branches

Naming package (Classes)

public class Node { 

String name;

}

public class Branch extends Node { 

ArrayList<Node> list;

}

public class Leaf extends Node { 

Command c;

Storage s;

}

Storage package

Storage package
Storage  
Server

Command  
Interface

Storage 
Interface

ImplementsImplements

size  
read

writ
e

create
delet
e Storage 

Skeleton
Command  
Skeleton

Storage  
Stub

Command  
Stub

These stubs are sent to the 

Naming server during

registration



2/3/2022

9

Storage package

• The Storage Package:
• Command.java (interface)

• Storage.java (interface)

• StorageServer.java (public class)

• Implements:

• Command Interface

• methods(s): create, delete

• Storage Interface

• methods(s): size, read, write

• Has functions:
• start()

• stop()

Storage package

• The StorageServer start() function will:
• Start the Skeletons:

• Command Skeleton

• Storage Skeleton

• Create the stubs

• Command Stub

• Storage Stub

Storage package

• The StorageServer start() function will:
• Registers itself with the Naming Server using:

• Its files

• The created stubs

• Post registration, we receive a list of duplicates (if any):

• Delete the duplicates

• Prune directories if needed

Storage package

• The StorageServer stop() function will:
• Stop the skeletons:

• Command Skeleton

• Storage Skeleton


