
15-440
 Distributed Systems

Recitation 9

Slides By: Hend Gedawy

& Previous TAs

•P3 Out (Due Nov. 16)

Announcements

Outline

• Parallel Programming Models

• MPI Skeleton & Concepts

• Mpi4py Initialization & Insights

• Mpi4py Point-to-Point Communication

• Mpi4py Collective Communication

• Setting up & Running MPI on your Cluster

Parallel Programming Models

• Shared Memory Model

• Message Passing Model

Parallel Programming Models
Shared Memory Message Passing

Parallel Programming Models
Shared Memory Message Passing

Communicating processes usually
reside on the same machine

Typically used in a distributed
environment where communicating
processes reside on remote machines
connected through a network.

Faster communication strategy.
Relatively slower communication
strategy

More difficult to synchronize Easier to synchronize

Example: OpenMP Example: MPI

Outline

• Parallel Programming Models

• MPI Skeleton & Concepts

• Mpi4py Initialization & Insights

• Mpi4py Point-to-Point Communication

• Mpi4py Collective Communication

• Setting up & Running MPI on your Cluster

What is MPI?

• Message Passing Interface

• Defines a set of API declarations on message passing (such as send,
receive, broadcast, etc.), and what behavior should be expected from
the implementations.

• The de-facto method of writing message-passing applications

• Applications can be written in C, Python and calls to MPI can be
added where required

MPI Program Skeleton

Photo credits:
https://princetonuniversity.github.io/PUbootcamp/sessions/par
allel-programming/Intro_PP_bootcamp_2018.pdf

https://princetonuniversity.github.io/PUbootcamp/sessions/parallel-programming/Intro_PP_bootcamp_2018.pdf
https://princetonuniversity.github.io/PUbootcamp/sessions/parallel-programming/Intro_PP_bootcamp_2018.pdf

MPI Concepts

• Communicator
• Defines which collection of processes may communicate with each other to solve a

certain problem
• In this collection, each process is assigned a unique rank, and they explicitly

communicate with one another by their ranks.
• When an MPI application starts, it automatically creates a communicator comprising

all processes and names it MPI.COMM_WORLD
• This is the biggest communicator your program has
• Sub communicators can be created to tackle sub problems

• Rank
• Within a communicator, every process has its own unique ID referred to as rank
• Root or master machine will have rank 0

• It usually splits/distributes the work and reduces or gathers partial results
• Ranks are used by the programmer to specify the source and destination of

messages

MPI Concepts – Local and Global Ranks

Rank=0

Rank=0

Comm_Fluid

Rank=1

Rank=1

Rank=2

Rank=2

Rank=3

Rank=3

Rank=0

Rank=4

Comm_Struct

Rank=1

Rank=5

Rank=2

Rank=6

Rank=3

Rank=7

MPI.COMM_WORLD

✓Ranks within MPI.COMM_WORLD are printed in red

✓Ranks within Comm_Fluid are printed in green

✓Ranks within Comm_Struct are printed in blue

Outline

• Parallel Programming Models

• MPI Skeleton & Concepts

• Mpi4py Initialization & Insights

• Mpi4py Point-to-Point Communication

• Mpi4py Collective Communication

• Setting up & Running MPI on your Cluster

Mpi4Py - Initialization

• MPI for Python (Mpi4py) library provides Python bindings for the
Message Passing Interface (MPI) standard.

• Importing the library
• from mpi4py import MPI
• Will take care of initialization of MPI library (Unlike in C will have to do it

explicitly)

• MPI_Finalize() is called when all python processes exit

• Initializing the main parallel workflow variables
• comm = MPI.COMM_WOLD
• myrank= comm.Get_rank()
• nproc= comm.Get_size()

https://mpi4py.readthedocs.io/en/stable/reference/mpi4py.MPI.html

Mpi4py – Types of Communicated Objects

• Any kind of generic python objects
• e.g. dictionaries, lists, …

• Use lower case methods: send, recv, bcast,….

• Introduces Overhead: a binary representation of the message is created to
send and restored after received

• Python buffer-like objects allocated in contagious memory
• e.g. NumPy arrays, …

• Use upper case analogues, Send, Recv, Bcast,…

Mpi4Py – Hello World

To Run: mpiexec –np 4 python3 helloWorld.py
mpirun –np 4 python3 helloWorld.py

Outline

• Parallel Programming Models

• MPI Skeleton & Concepts

• Mpi4py Initialization & Insights

• Mpi4py Point-to-Point Communication

• Mpi4py Collective Communication

• Setting up & Running MPI on your Cluster

MPI Point-Point Send and Recv
Blocking Communication:

• Sending:
• Generic Objects: comm.send(sendobj, dest=1, tag=0)
• Numpy Buffer: comm.Send([sendarray, count, datatype], dest=1, tag=0)

• Receiving:
• Generic Objects: recvobj = comm.recv(src=0, tag=0)
• Numpy Buffer: comm.Recv([recvarray, count, datatype], src=0, tag=0)

Non-Blocking Communication:

• Sending:
• Generic Objects: reqs = comm.isend(object, dest=1, tag=0)
• Numpy Buffer: reqs = comm.Isend([sendarray, count, datatype], dest=1, tag=0)
• reqs.wait()

• Receiving:
• Generic Objects: reqr = comm.irecv(src=0, tag=0)
• NumpyBuffer: reqr = comm.Irecv([recvarray, count, datatype], src=0, tag=0)
• data = reqr.wait()

• MPI.Request.Waitall([reqs, reqr])

Why do we
need a tag?

Parameters:

• sendarray/recvarray is the data
buffer

• count and datatype of
elements that reside in the
buffer

• dest /src specify the rank of
the sending/receiving process

• tag of the message (optional)
• reqs/reqr are request objects

Point to Point Communication Example-
Generic Object

Point to Point Communication Example–
Buffer Type Objects

Point to Point Communication –
Sum of the first N integers

• Make each processor add up an
interval of values from 0 to N

• Assign an interval to each processor
based on its rank

• All processors will do a partial sum

• All except root, will send the result

• Root will add up the sums from all
the processors

Outline

• Parallel Programming Models

• MPI Skeleton & Concepts

• Mpi4py Initialization & Insights

• Mpi4py Point-to-Point Communication

• Mpi4py Collective Communication

• Setting up & Running MPI on your Cluster

Collective Communication

• Collective communication allows you to exchange data among a
group of processes

• It must involve all processes in the scope of a communicator

• Hence, it is the programmer's responsibility to ensure that all
processes within a communicator participate in any collective
operation

Patterns of Collective Communication

Patterns of Collective Communication -
Broadcast

• Broadcasts a message from the process with rank root to all other
processes of the group

• Generic Objects:

• recvobj = comm.bcast(sendobj, root=0)

• Numpy Buffer:

• comm.Bcast(buf, root=0)

• buf = [recvbuf, count, datatype]

Patterns of Collective Communication -
Scatter
• Distributes elements of sendbuf to all processes in comm

• Generic Objects:

• recvobj = comm.scatter(sendobj, root=0)

• sendObj: a single value or a list/tuple of size comm.size()

• recvobj: a single value

• Numpy Buffer:

• comm.Scatter(sendbuf, recvbuf, root=0)

• Although the root process (sender) contains the entire data array, Scatter will
copy the appropriate element into the recvbuf of the process.

• sendcount and recvcount are counts per process

Patterns of Collective Communication -
Gather

• Inverse of MPI_Scatter

• Generic Object:

• recvobj = comm.gather(sendobj, root=0) #

• recvObj: a list of size comm.size()

• sendObj: a single value or a list/tuple of size comm.size()

• Numpy Buffer:

• comm.Gather(sendbuf, recvbuf, root=0)

• Only the root process needs to have a valid receive buffer.
• All other calling processes can pass NULL for recv_data

Patterns of Collective Communication -
Reduce

Patterns of Collective Communication -
Reduce
• Reduces values on all processes within a group.

• Generic Object:

• reducedobj = comm.reduce(sendobj, op=MPI.OPERATION, root=0)

• Numpy Buffer:

• comm.Reduce(sendbuf, reducedbuf, op=MPI.OPERATION, root=0)

• The sendbuf parameter is an array of elements of type datatype that each process wants to reduce.

• The reducedbuf is only relevant on the process with a rank of root.

• The reducedbuf array contains the reduced result.

• The op parameter is the operation that you wish to apply to your data.

• MPI contains a set of common reduction operations that can be used (SUM, MAX, MIN, ..)

Other Patterns of Collective
Communication

1. Broadcast

2. Scatter

3. Gather

4. Reduce

5. Allgather: Similar to Gather, but all processes receive result (not just the Root)

6. Alltoall: Sends data from all processes to all processes

7. Allreduce: Similar to Reduce, but the result appear in receive buffers of all
processes (not just the root)

9. Reducescatter: Reduce followed by Scatter

……

Collective communication –
Scatter Generic Object Example

Collective communication –
Scatter Buffer-like Object Example

Collective communication –
Sum of the first N Integers Example

Outline

• Parallel Programming Models

• MPI Skeleton & Concepts

• Mpi4py Initialization & Insights

• Mpi4py Point-to-Point Communication

• Mpi4py Collective Communication

• Setting up & Running MPI on your Cluster

Setting up you cluster

• ssh to head node
• 15440-<andrewID>-n01.qatar.cmu.edu

• ssh to all 3 other worker nodes (using machine names)
• Make sure to accept keys the first time

• Try to ssh again to make sure it is not asking for keys permission

• Create your machine file in the head node
• This should have list of all machine names

• Place it in the same folder as your code

• On all nodes, install the library by running:
• pip install mpi4py

15440-<andrewID>-n01.qatar.cmu.edu

15440-<andrewID>-n02.qatar.cmu.edu

15440-<andrewID>-n03.qatar.cmu.edu

15440-<andrewID>-n04.qatar.cmu.edu

Running Mpi4py program on your cluster

• You write and run your code in the head node (n01)

• Run the command

mpirun -n 4 -machinefile machinesFile python3 collective_sumIntegers.py

• -n: the number of machines that you will run the code on (4) for Project 3

• -machinefile: the file that has the hostnames for the machines in your cluster

MPI Parameters Your Program file and parameters

Credit

• https://indico.cism.ucl.ac.be/event/101/attachments/105/241/mpi4py2021.pdf

• http://ceciliajarne.web.unq.edu.ar/wp-
content/uploads/sites/43/2019/06/talk_04.pdf

• https://cloudmesh.github.io/cloudmesh-mpi/report-mpi.pdf

• https://materials.jeremybejarano.com/MPIwithPython/overview.html

https://indico.cism.ucl.ac.be/event/101/attachments/105/241/mpi4py2021.pdf
http://ceciliajarne.web.unq.edu.ar/wp-content/uploads/sites/43/2019/06/talk_04.pdf
http://ceciliajarne.web.unq.edu.ar/wp-content/uploads/sites/43/2019/06/talk_04.pdf
https://cloudmesh.github.io/cloudmesh-mpi/report-mpi.pdf
https://materials.jeremybejarano.com/MPIwithPython/overview.html

	Slide 1: 15-440 Distributed Systems Recitation 9
	Slide 2
	Slide 3: Outline
	Slide 4: Parallel Programming Models
	Slide 5: Parallel Programming Models
	Slide 6: Parallel Programming Models
	Slide 7: Outline
	Slide 8: What is MPI?
	Slide 9: MPI Program Skeleton
	Slide 10: MPI Concepts
	Slide 11: MPI Concepts – Local and Global Ranks
	Slide 12: Outline
	Slide 13: Mpi4Py - Initialization
	Slide 14: Mpi4py – Types of Communicated Objects
	Slide 15: Mpi4Py – Hello World
	Slide 16: Outline
	Slide 17: MPI Point-Point Send and Recv
	Slide 18: Point to Point Communication Example- Generic Object
	Slide 19: Point to Point Communication Example– Buffer Type Objects
	Slide 20: Point to Point Communication – Sum of the first N integers
	Slide 21: Outline
	Slide 22: Collective Communication
	Slide 23: Patterns of Collective Communication
	Slide 24: Patterns of Collective Communication - Broadcast
	Slide 25: Patterns of Collective Communication - Scatter
	Slide 26: Patterns of Collective Communication - Gather
	Slide 27: Patterns of Collective Communication - Reduce
	Slide 28: Patterns of Collective Communication - Reduce
	Slide 29: Other Patterns of Collective Communication
	Slide 30: Collective communication – Scatter Generic Object Example
	Slide 31: Collective communication – Scatter Buffer-like Object Example
	Slide 32: Collective communication – Sum of the first N Integers Example
	Slide 33: Outline
	Slide 34: Setting up you cluster
	Slide 35: Running Mpi4py program on your cluster
	Slide 36
	Slide 37: Credit

