
15-440
 Distributed Systems

Recitation 7

Slides By: Hend Gedawy
& Previous TAs

• P1 Done!
• P2 Out (due October 24)
• Midterm (October 15)
• PS3 (due October 19)

Announcements

Outline
• Project 2 Overview & Objective
• Synchronization of File Readers & Writers
• Dynamic Replication of Files
• Implementation Tips

Project 2
• Involves building on your Project 1 Distributed File

System (DFS): FileStack

• P2_StarterCode:

• Follow the Handout on what files you will copy from project 1

• Release Date: October 5th

• Due date: October 24th

FileStack Architecture

Presenter Notes
Presentation Notes
Let’s take a closer look at these steps, when a client invokes file operation methods on the storage server hosting the file

In project 1 we talked about only 1 client

Presenter Notes
Presentation Notes
What if we have multiple clients

Presenter Notes
Presentation Notes
And all of a sudden, we have multiple clients are interested on the same file..

What if client 1 modifies one part It to write abc and
Client 2 modifies another part and write xyz

And we have other clients interested in reading from the file.

Is the file/content now consistent?

Presenter Notes
Presentation Notes
We need to resolve this by achieving synchronization
To do this, the main idea is for reader and writer client to grab a locks before performing operations and release them once these operations are done.

Presenter Notes
Presentation Notes
In project 1, each file was hosted only in one storage server. We didn’t allow duplicates
Now imagine that File1 is hosted on SS2 and is getting 500 requests per second,
While File2 is hosted on SS1 and getting only 100 requests per month

What does this imply? What is the consequence of this?
 (traffic/overhead on the server, & bad performance – slow reads/writes)

What should we do about it?

Presenter Notes
Presentation Notes
Load balancing: for hot files, Improve performance by smart-allocation of files across multiple servers

Presenter Notes
Presentation Notes
We solve this problem by dynamic replication of files.
Instead of all clients fetching a file from one storage server,
we can now parallelize - and hence improve read/write times - by redirecting clients to different replicas.
 It also aids in load-balancing of storage servers: many clients who access a very popular file will now not go to a single storage server.
�

Project 2 Objectives
1. Devise and apply a synchronization algorithm that:

 achieves correctness while sharing files

 and ensures fairness to clients.

2. Devise and apply a replication algorithm that:
 achieves load-balancing among storage servers

 and ensures consistency of replicated files.

Outline
• Project 2 Overview
• Synchronization of File Readers & Writers
• Dynamic Replication of Files
• Implementation Tips

Project 2 Objectives
1. Devise and apply a synchronization algorithm that:

 achieves correctness while sharing files

 and ensures fairness to clients.

2. Devise and apply a replication algorithm that:
 achieves load-balancing among storage servers

 and ensures consistency of replicated files.

Logical Synchronization of Readers and
Writers

Synchronization - Questions

•What to lock?
•How to handle read lock requests?
•How to handle write lock requests?
•How to ensure fair access?

Synchronization

Synchronization

Synchronization

Presenter Notes
Presentation Notes
Let’s lock only file1

Synchronization

Synchronization

Synchronization

Presenter Notes
Presentation Notes
A simple way is FIFO: the first request (read/write) occurs before the second, second before the third, and so on

Synchronization

Synchronization

Synchronization

Is this good
enough?

Synchronization

Presenter Notes
Presentation Notes
What if while c2 is reading, c3 renames a parent directory?

Synchronization

Presenter Notes
Presentation Notes
we give Client 2 lock for the whole path
Otherwise, inconsistencies happen

Mutual Exclusion Recap
1. Reader:

 Reader is a Client who wishes to read a file at a SS
 Reader first requests a read/non-exclusive/shared lock

2. Writer:
 Writer is a Client who wishes to write to a file at a SS
 Writer first requests a write/exclusive lock

3. Order:
 Readers and writers are queued and served in the FIFO order

Presenter Notes
Presentation Notes
Mutual exclusion: only one access at a time.

So what do we do exactly and how we lock. It depends on the request.

Since reads do not change the file, you can allow as many readers as possible to access the file at the same time.

However, if a writer has to write to a file, you have to ensure that there are no other readers or writers who have locked the file.

Now we also want to ensure fair access to the file, and fair handling on these requests
So you will queue the lock requests and serve clients in a First in first out order
�

Read Locks
• Readers request read locks from the NS before reading files

• Readers do not modify contents of a file/directory

• Multiple readers can acquire a read lock simultaneously

• Readers unlock files once done

Presenter Notes
Presentation Notes
Since reads do not change the file, you can allow as many readers as possible to access the file at the same time�

Write Locks
• Writers request write locks from the NS before

reading/writing to files

• Writers can modify contents of files/directories

• Only one writer can acquire a write lock at a time

• Writers unlock files once done

Presenter Notes
Presentation Notes
. However, if a writer has to write to a file, you have to ensure that
there are no other readers or writers who have locked the le.

Write Locks
• NS grants a write lock on a file if:

• No reader is currently reading the file

• No writer is currently writing to the file

• Assume a writer requests a write lock for project2.txt:

 /FileStack/users/student1/work/project2.txt

• NS applies read locks on all the directories in the path to prevent modifications

• NS then grants a write lock to the requestor of project2.txt

Service Interface
• Two new operations available to Clients:

• LOCK(path, read/write)

• UNLOCK(path, read/write)

Presenter Notes
Presentation Notes
To be able to implement this,
The service interface now has two new methods, which will be implemented at the naming server and the client can invoke

Lock and unlock

Each method takes as an input, the path of the file to lock or unlock
And the lock type. Whether it is an exclusive lock for writes or a shared lock for reads

The naming server implements the service interface as we know form project 1
So you will implement these methods in the Naming server

Outline
• Project 2 Overview
• Synchronization of File Readers & Writers
• Dynamic Replication of Files
• Implementation Tips

Project 2 Objectives
1. Devise and apply a synchronization algorithm that:

 achieves correctness while sharing files

 and ensures fairness to clients.

2. Devise and apply a replication algorithm that:
 achieves load-balancing among storage servers

 and ensures consistency of replicated files.

Logical Synchronization of Readers and
Writers

Presenter Notes
Presentation Notes
For replication,

We said to achieve load balancing and improve performance, we will need to replicate files across storage servers

Project 2 Objectives
1. Devise and apply a synchronization algorithm that:

 achieves correctness while sharing files
 and ensures fairness to clients.

2. Devise and apply a replication algorithm that:
 achieves load-balancing among storage servers
 and ensures consistency of replicated files.

Dynamic Replication of Files

Replication - Questions

•Which files to replicate?
•How many Replicas?
•When to replicate?
•How to Replicate?
•How to achieve consistency of replicas?

Which files to replicate?
• In our DFS, we’ll have two kinds of Files:

• Files that have a lot of requests
• These are denoted as “hot-files”

• Files that are very rarely accessed
• These are denoted as “cold-files”

• To achieve load-balancing, we can replicate “hot-files” onto other
SSs

Presenter Notes
Presentation Notes
Improve performance by smart-allocation of files across multiple servers

How many replicas?

Coarse-grained Approach:

Fine-grained Approach:

Presenter Notes
Presentation Notes
you will scale replicas linearly as the number of requesters increases.

where ALPHA is a positive constant. By controlling ALPHA, you control the number of replicas per file.

In addition, you would want to limit the replicas of a file.
For that sake, you can maintain a REPLICA_UPPER_BOUND, and avoid replicating a file whose number of replicas has exceeded this threshold.

To enhance the policy, you can rather apply a coarse-grained approach by rounding the number of replicas to the next integer that is a multiple of 20

The max number of replicas could be set to the number of storage servers

When to Replicate?
• NS would want to store num_requests as file metadata
• However, how can we determine and in turn update

num_requests over time?
• We know that Clients invoke read operations on storage servers

• Therefore, every “read” lock request from a client is deemed as
a read operation

• Afterward, NS increments num_requests

• Reavaluate num_replicas

Presenter Notes
Presentation Notes

To answer this we have to track the number of requests,
Everytime the server receives a read lock, it increments the number of requests
And re-assess or evaluate the number of replicas

How can we Replicate?
• NS first elects one or many SSs to store the replicas
• NS commands each elected SS to copy the file from the

original SS
• Therefore, the metadata of a file now includes a set of SSs

instead of a single SS

Presenter Notes
Presentation Notes
The file node used to track storage stub for one storage server,
Now you need a list of storage servers

Replication Challenges What are the
challenges?

Presenter Notes
Presentation Notes
Now when we replicate, a file on storage ss1’
And a client writes to a replica, what challenges might arise?

We have to make sure that all replicas are the same (consistent)
We have to decide on which storage server to redirect a client to .. To achieve load balancing and make sure the client access the updated file
We have to ensure correctness of the file, so if a replica is updated, other replicas have to be invalidated

How to Update Replicas?
• When a Client requests a write lock on a file:
 It causes the NS to invalidate all the replicas except the locked one

• Invalidation is achieved by commanding those SSs hosting
replicas to delete the file

• When the Client unlocks the file, the NS commands SSs to
copy the modified file

The Command Interface
• One new operation available to the NS:

• COPY (path P, StorageStub S)
 copies file with path P from StorageStub S

Presenter Notes
Presentation Notes
To achieve this,
There is a new method defined in the command interface
And implemented by the storage server
This method is remotely invoked by the the naming server to copy a file to a target storage server

Outline
• Project 2 Overview
• Synchronization of File Readers & Writers
• Dynamic Replication of Files
• Implementation Tips

Process Flow w/ Locking & Replication

(1) Lock Request
on Path

Invalidate all
copies except 1

Add an exclusive
lock Request to

Lock Queue

Add a shared
Lock to Lock

Queue

Choose a new
SS & Copy to it

Get Next Path
component

Directory?
Add a shared
Lock Request

to Lock Queue

Yes

No
Read

 (Shared Lock)?

Replicate?
Yes

No

Yes

No

Wait for Lock
on whole Path

(3) getStorage()
(4) Storage Stub
(6) Release Lock

Client Naming
Server

(2)

(5) Read(),
write()

Implementation Tips: Read/Write Locks
• Tracking Lock requests on Nodes

• Each tree Node at the Naming Server should have an Object to manage locks on that
node

• A queue of read/write lock requests should be maintained

• Granting Locks
• lock(Path path, boolean exclusive) method: defined in the service interface &

should be implemented in the Naming Server

• Releasing Locks
• unlock(Path path, boolean exclusive) method: defined in the service interface &

should be implemented in the Naming Server

• Avoiding Deadlocks by adding Ranks to Paths
• Path implements Comparable:

• - CompareTo() method: compares two paths to determine which one to be locked first
• Paths that need to be locked simultaneously are locked in an increasing order

Presenter Notes
Presentation Notes
Lock & unlock are available to clients

paths that need to be locked simultaneously (when multiple clients want to lock multiple paths) are locked in increasing order

Deadlock: is a situation in which two computer programs sharing the same resource are effectively preventing each other from accessing the resource, resulting in both programs ceasing to function.

Locking/Unlocking
a Path

Client 1
(read-sharedLock)

Client 2
(write-ExclusiveLock)

Client 3
(read- SharedLock)

Shared

Allow=T

“/”

“usr”

Shared

Allow=T

“/”
“/”

12

1

3
“bin”

Shared

Allow=T
1

“usr”

2

“bin”

2

“usr”

3“bin”

3

“file1.txt”

Shared

Allow=T
1

Exclusive
Allow=F

“file1.txt”

“file1.txt”

Shared

Allow=F
1

2

2

2

“file1.txt” 1

1

1

“file1.txt” T T

More on Locks implementation and
Semaphores – Next Recitation

Implementation Tips: Replication
• Replication Decision: deciding whether a file should be replicated

• Track number of reads to a file (update tree metadata)
• Create a Formula to define the number of replicas; given the number of reads
• Replication Process

• Selecting a new host storage server
• Copying the file to a new server

• copy(Path file, Storage server) method: defined in the Command interface and
implemented in the Storage Server

• Updating tree metadata (list of storage servers hosting the file)
• Ensuring Consistency

• Given a shared Lock request for read:
• Assess number of reads and replicate if needed

• Given an exclusive lock request for Write
• Invalidate all copies except 1

Code Overview

	15-440 � Distributed Systems�Recitation 7
	Slide Number 2
	Outline
	Project 2
	FileStack Architecture
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Project 2 Objectives
	Outline
	Project 2 Objectives
	Synchronization - Questions
	Synchronization
	Synchronization
	Synchronization
	Synchronization
	Synchronization
	Synchronization
	Synchronization
	Synchronization
	Synchronization
	Synchronization
	Synchronization
	Mutual Exclusion Recap
	Read Locks
	Write Locks
	Write Locks
	Service Interface
	Outline
	Project 2 Objectives
	Project 2 Objectives
	Replication - Questions
	Which files to replicate?
	How many replicas?
	When to Replicate?
	How can we Replicate?
	Replication Challenges
	How to Update Replicas?
	The Command Interface
	Outline
	Process Flow w/ Locking & Replication
	Implementation Tips: Read/Write Locks
	Locking/Unlocking a Path
	Implementation Tips: Replication
	Code Overview
	Slide Number 50

