
15-440
Distributed Systems

Recitation 11:
Project 4 & Ray Demo

Hend Gedawy

• P4 Out. Due Nov. 30 (No Grace
Days can be used)

• P3 Due Today

Announcements

Project 4 Overview/Objective
• Implement the K-Means clustering algorithm using Ray. Two

new code files:
• points_ray.py

• dna_ray.py

• You will compare and contrast the performance of your MPI K-
Means implementation (from P3) against your Ray K-Means
implementation from this project

• Varying the number of data points
• Varying the cluster size (number of workers/VMs)

Ray Custer
(1) (n)

....

• Make sure ray is stopped in all nodes (sudo ray stop --force)

• Start Ray @ Head Node:

• sudo ray start --head --port= 6379 --redis-password=my_password --include-dashboard 1 --dashboard-host headNodeIP

• To include more worker machines:

• Ssh to the worker node and start ray using the following command:

• sudo ray start --address=‘headNodeIP:headPortNum’

• Run the program @Head Node:

• sudo python3 points_ray.py <Program Parameters>

• To view the dashboard of your cluster, go to your web browser and put
headNodeIP:dashboardPortNumber

• When Done, run (sudo ray stop --force) on all nodes

Running A Program on Ray Cluster
Default is 6379

Optional argument, you can
give it if you’d like to select

the port that you want

Given when head started

Ray Dashboard

It shows:
• all the machines that you have connected to this cluster (3 in this example)
• Information about them (uptime, CPU, RAM,)

Parallel Sum
Using Ray

Sequential to Parallel Sum Using Ray

How to turn this
sequential Sum
program into a

parallel/distributed one
using Ray?

K-Means Clustering With Ray –
General Guidelines
• Identify the parts of the algorithm that you need to run in

parallel or distribute (As we did in MPI)
• Put these parts in separate functions
• Turn these functions into Ray tasks using the @ray.remote

decorator
• Every invocation to the function, creates a Ray task that can

run in parallel and returns the result objectID as a future
• Wait for the set of futures in your spawned parallel tasks
• Aggregate the returned partial results

