15-440

Distributed Systems
Recitation 11:
Project 4 & Ray Demo

Hend Gedawy

,LJS\J ,J.....;\;_.: IE::_%_.:IA.
ie Mellon University Qafar

Announcements

* P4 Out. Due Nov. 30 (No Grace
Days can be used)

* P3 Due Today

Amdgdyelagy gl=i ol

Carnegie Mellon University Qatar

Project 4 Overview/Objective

* Implement the K-Means clustering algorithm using Ray. Two
new code files:
* points_ray.py
« dna_ray.py
* You will compare and contrast the performance of your MPI K-

Means implementation (from P3) against your Ray K-Means
implementation from this project

 Varying the number of data points

 Varying the cluster size (number of workers/VMs)
A dgdyslagy l=iaaly

Carnegie Mellon University Qatar

Ray Custer

Head node

Driver Worker

Scheduler

Raylet

Object Store

Global Control
Store (GCS)

Worker Node (1)

Worker Node (n)

Worker |...... Worker
E Scheduler
>
© .
o | Object Store

Worker |...... Worker
E Scheduler
>
O .
o | Object Store

oo RAY

o dgdyslagy gl=iaaly

Carnegie Mellon University Qatar

Running A Program on Ray Cluster

Default is 6379
Optional argument, you can
give it if you'd like to select

* Make sure ray is stopped in all nodes (sudo ray stop --force) the port that you want

* Start Ray @ Head Node:

* sudo ray start --head [--port= 6379 --redis-password=my_password --include-dashboard 1 --dashboard-host headNodelP

* To include more worker machines:
* Ssh to the worker node and start ray using the following command:
* sudo ray start --address=‘headNodelP:headPortNum’
* Run the program @Head Node:

* sudo python3 points_ray.py <Program Parameters>

* To view the dashboard of your cluster, go to your web browser and put
headNodelP:{dashboardPortNumber | Given when head started

* When Done, run (sudo ray stop --force) on all nodes

P dgdgelagy gl=i 2 aly

Carnegie Mellon University Qatar

Ray Dashboar

k-

+

c @

Ray Dashboard

MACHINE VIEW

Group by host

Host
(192.168.031)
ubuntu

(192.168.0.39)

church (192.168.0.40)

Totals (3 hosts)

It shows:
all the machines that you have connected to this cluster (3 in this example)
Information about them (uptime, CPU, RAM,)

© O localhost

LOGICAL VIEW#y

PID

8 workers / 8
cores

6 workers / &
cores

4 workers / 4
cores

18 workers / 18
cores

MEMORY

Uptime (s)
5d 05h 37m

14s

22h 48m 35s

06h 16m 36s

cPy

3.3%

11.0%

5.4%

6.3%

RAY CONFIG

RAM

1.2GiB/31.4 GiB
(4%)

3.3GiB/15.6 GiB
21%)

0.9GiB/15.5GiB
(6%)

5.4 GiB / 62.5 GiB
(9%)

GPU GRAM
[0): 0 MiB/ 8117
o -
[0 0.0% e
0.0% 0.0%

Disk

751.1 GiB / 907.0 GiB
(83%)

24.4GiB/ 78.2GiB
(31%)

182.1 GiB / 430.7 GiB
(42%)

957.6 GiB / 1416.0 GiB
(68%)

Sent

0.0
MiB/s

0.0
MiB/s

0.0
MiB/s

0.1
MiB/s

Received

0.0 MiB/s

0.0 MiB/s

0.0 MiB/s

0.1 MiB/s

n O &

Logs

Errors

P dgdgelagy gl=i 2 aly

Carnegie Mellon University Qatar

&
#,.i"'"
—

LIVE DEMO

Parallel Sum
Using Ray

P dgdgelagy gl=i 2 aly

Carnegie Mellon University Qatar

Sequential to Parallel Sum Using Ray

import time

if (__name__ == '__main__"):

How to turn this

startTime = time.time() .
sequential Sum

N = 1000 program into a
total sum=0 parallel/distributed one
) using Ray?

for i in range(9, N):
total_sum += i

print("The sum is {@}\n".format(total_sum))
print("Time ", time.time()-startTime)

P dgdgelagy gl=i 2 aly

Carnegie Mellon University Qatar

K-Means Clustering With Ray —
General Guidelines

Identify the parts of the algorithm that you need to run in
parallel or distribute (As we did in MPI)

Put these parts in separate functions

Turn these functions into Ray tasks using the @ray.remote
decorator

Every invocation to the function, creates a Ray task that can
run in parallel and returns the result objectID as a future
Wait for the set of futures in your spawned parallel tasks
Aggregate the returned partial results

e g dyglagy il =i 2 uln

Carnegie Mellon University Qatar

o dgdogliagy gl =i 2l

Carnegie Mellon University Qatar

