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Announcements

* P4 Out. Due Nov. 30 (No Grace
Days can be used)

* P3 Due Today
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Project 4 Overview/Objective

* Implement the K-Means clustering algorithm using Ray. Two
new code files:
* points_ray.py
« dna_ray.py
* You will compare and contrast the performance of your MPI K-

Means implementation (from P3) against your Ray K-Means
implementation from this project

 Varying the number of data points

 Varying the cluster size (number of workers/VMs)
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Running A Program on Ray Cluster

Default is 6379
Optional argument, you can
give it if you'd like to select

* Make sure ray is stopped in all nodes (sudo ray stop --force) the port that you want

* Start Ray @ Head Node:

* sudo ray start --head [--port= 6379 --redis-password=my_password --include-dashboard 1 --dashboard-host headNodelP

* To include more worker machines:
* Ssh to the worker node and start ray using the following command:
* sudo ray start --address=‘headNodelP:headPortNum’
* Run the program @Head Node:

* sudo python3 points_ray.py <Program Parameters>

* To view the dashboard of your cluster, go to your web browser and put
headNodelP:{dashboardPortNumber | Given when head started

* When Done, run (sudo ray stop --force) on all nodes
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Ray Dashboar
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Ray Dashboard

MACHINE VIEW

Group by host

Host
(192.168.031)
ubuntu

(192.168.0.39)

church (192.168.0.40)

Totals (3 hosts)

It shows:
all the machines that you have connected to this cluster (3 in this example)
Information about them (uptime, CPU, RAM, )
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LIVE DEMO

Parallel Sum
Using Ray
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Sequential to Parallel Sum Using Ray

import time

if (__name__ == '__main__"):

How to turn this

startTime = time.time() .
sequential Sum

N = 1000 program into a
total sum=0 parallel/distributed one
) using Ray?

for i in range(9, N):
total_sum += i

print("The sum is {@}\n".format(total_sum))
print("Time ", time.time()-startTime)
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K-Means Clustering With Ray —
General Guidelines

Identify the parts of the algorithm that you need to run in
parallel or distribute (As we did in MPI)

Put these parts in separate functions

Turn these functions into Ray tasks using the @ray.remote
decorator

Every invocation to the function, creates a Ray task that can
run in parallel and returns the result objectID as a future
Wait for the set of futures in your spawned parallel tasks
Aggregate the returned partial results
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