
Recitation 9
Ammar Karkour
October 6, 2022

Logistics
• P2 done (almost)
• P3 out (discussion next week)

Parallel Programming Models
• Shared Memory Model

• Message Passing Model

Presenter Notes
Presentation Notes
Whether you need or want MPI or OpenMP (or both) heavily depends the type of application you are running, and whether your problem is mostly memory-bound or CPU-bound (or both). Furthermore, it depends on the type of hardware you are running on. A few examples:

Parallel Programming Models
Shared Memory Message Passing

Parallel Programming Models
Shared Memory Message Passing

Communicating processes usually
reside on the same machine

Typically used in a distributed
environment where communicating
processes reside on remote machines
connected through a network.

Faster communication strategy. Relatively slower communication
strategy

More difficult to synchronize Easier to synchronize

Example: OpenMP Example: MPI

What is MPI?
• Message Passing Interface
• Defines a set of API declarations on message passing (such as send,

receive, broadcast, etc.), and what behavior should be expected from
the implementations.

• The de-facto method of writing message-passing applications
• Applications can be written in C, C++ and calls to MPI can be added

where required

MPI Program Skeleton

Photo credits:
https://princetonuniversity.github.io/PUbootcamp/sessions/par
allel-programming/Intro_PP_bootcamp_2018.pdf

https://princetonuniversity.github.io/PUbootcamp/sessions/parallel-programming/Intro_PP_bootcamp_2018.pdf

MPI Program Skeleton

Photo credits:
https://princetonuniversity.githu
b.io/PUbootcamp/sessions/para
llel-
programming/Intro_PP_bootca
mp_2018.pdf

https://princetonuniversity.github.io/PUbootcamp/sessions/parallel-programming/Intro_PP_bootcamp_2018.pdf

MPI Concepts
• Communicator

• Defines which collection of processes may communicate with each other to
solve a certain problem

• In this collection, each process is assigned a unique rank, and they explicitly
communicate with one another by their ranks.

• When an MPI application starts, it automatically creates a communicator
comprising all processes and names it MPI_COMM_WORLD

• Rank
• Within a communicator, every process has its own unique ID referred to as

rank
• Ranks are used by the programmer to specify the source and destination of

messages

MPI Concepts

Rank=0

Rank=0

Comm_Fluid

Rank=1

Rank=1

Rank=2

Rank=2

Rank=3

Rank=3

Rank=0

Rank=4

Comm_Struct

Rank=1

Rank=5

Rank=2

Rank=6

Rank=3

Rank=7

MPI_COMM_WORLD

Ranks within MPI_COMM_WORLD are printed in red
Ranks within Comm_Fluid are printed in green
Ranks within Comm_Struct are printed in blue

MPI Concepts
MPI_Init(int *argc, char ***argv) • Initialize the MPI library (must be the first

routine called)

MPI_Comm_rank(comm, &rank); • Returns the rank of the calling MPI process
within the communicator, comm

• MPI_COMM_WORLD is set during Init(…)
• Other communicators can be created if

needed

MPI_Comm_size(comm, &size) • Returns the total number of processes within
the communicator, comm

Let’s write our first MPI
program...

MPI Send and Recv

• The first argument is the data buffer
• The second and third arguments describe the count and type of

elements that reside in the buffer
• MPI Datatype is very similar to a C datatype: MPI_INT, MPI_CHAR
• The fourth and fifth arguments specify the rank of the

sending/receiving process and the tag of the message
• The sixth argument specifies the communicator

MPI_Send(, , , ,
,)

Why do we
need a tag?

void *buf int count MPI_Datatype datatype int dest
int tag MPI_Comm comm

MPI_Recv(void *buf, int count, MPI_Datatype datatype, int src, int tag,
MPI_Comm comm, MPI_Status *status)

Presenter Notes
Presentation Notes
Sometimes there are cases when A might have to send many different types of messages to B. Instead of B having to go through extra measures to differentiate all these messages, MPI allows senders and receivers to also specify message IDs with the message (known as tags). When process B only requests a message with a certain tag number, messages with different tags will be buffered by the network until B is ready for them.

Let’s look at some parallel
programs

Collective Communication
• Collective communication allows you to exchange data among a

group of processes
• It must involve all processes in the scope of a communicator
• Hence, it is the programmer's responsibility to ensure that all

processes within a communicator participate in any collective
operation

Patterns of Collective Communication
1. Broadcast

Patterns of Collective Communication

• Broadcasts a message from the process with
rank root to all other processes of the group

MPI_Bcast(void *buffer, int count, MPI_Datatype datatype,
int root, MPI_Comm comm)

Patterns of Collective Communication

• Distributes elements of sendbuf to all processes in comm
• Although the root process (sender) contains the entire data array,

MPI_Scatter will copy the appropriate element into the recvbuf
of the process.

• sendcount and recvcount are counts per process

MPI_Scatter(const void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)

Presenter Notes
Presentation Notes
MPI_Bcast sends the same piece of data to all processes while MPI_Scatter sends chunks of an array to different processes

Patterns of Collective Communication

• Inverse of MPI_Scatter
• Only the root process needs to have a valid receive buffer. All other

calling processes can pass NULL for recv_data

MPI_Gather(const void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)

Patterns of Collective Communication

• Reduces values on all processes within a group.
• The sendbuf parameter is an array of elements of type datatype that each

process wants to reduce.
• The recvbuf is only relevant on the process with a rank of root.
• The recvbuf array contains the reduced result and has a size

of sizeof(datatype) * count.
• The op parameter is the operation that you wish to apply to your data.
• MPI contains a set of common reduction operations that can be used

int MPI_Reduce(const void *sendbuf, void *recvbuf, int
count, MPI_Datatype datatype, MPI_Op op, int root,
MPI_Comm comm)

Why not just sizeof(datatype)?

Patterns of Collective Communication

Patterns of Collective Communication
1. Broadcast
2. Scatter
3. Gather
4. Allgather
5. Alltoall
6. Reduce
7. Allreduce
8. Scan
9. Reducescatter

Let’s implement a more efficient
parallel_sum

	Recitation 9
	Logistics
	Parallel Programming Models
	Parallel Programming Models
	Parallel Programming Models
	What is MPI?
	MPI Program Skeleton
	MPI Program Skeleton
	MPI Concepts
	MPI Concepts
	MPI Concepts
	Let’s write our first MPI program...
	MPI Send and Recv
	Let’s look at some parallel programs
	Collective Communication
	Patterns of Collective Communication
	Patterns of Collective Communication
	Patterns of Collective Communication
	Patterns of Collective Communication
	Patterns of Collective Communication
	Patterns of Collective Communication
	Patterns of Collective Communication
	Let’s implement a more efficient parallel_sum

