
Recitation 8
Ammar Karkour

September 29, 2022



Announcements
• How was the midterm?
• P2 due next Tuesday



Agenda
• Dining Philosophers
• Locks in Java



Dining Philosophers



Dining Philosophers
• Actions: Thinking and Eating
• Each P needs a pair of forks
• When P is done eating, he is back to 

thinking and puts back his forks



Dining Philosophers

Step 1: think until the left chopstick is available; when it is, pick up; 

Step 2: think until the right chopstick is available; when it is, pick up; 

Step 3: when both chopsticks are held, eat for some time; 

Step 4: then, put the right chopstick down; 

Step 5: then, put the left chopstick down; 

Step 6: repeat from the beginning



Dining Philosophers
A concurrent system with a need for synchronization, should ensure 

Correctness



Dining Philosophers
A concurrent system with a need for synchronization, should ensure 

Correctness
No two philosophers 

should be using the same 
chopsticks at the same 

time.



Dining Philosophers
A concurrent system with a need for synchronization, should ensure 

Correctness Efficiency
No two philosophers 

should be using the same 
chopsticks at the same 

time.



Dining Philosophers
A concurrent system with a need for synchronization, should ensure 

Correctness Efficiency
No two philosophers 

should be using the same 
chopsticks at the same 

time.

Philosophers do not wait 
too long to pick-up 

chopsticks when they want 
to eat. 



Dining Philosophers
A concurrent system with a need for synchronization, should ensure 

Correctness Efficiency Fairness
No two philosophers 

should be using the same 
chopsticks at the same 

time.

Philosophers do not wait 
too long to pick-up 

chopsticks when they want 
to eat. 



Dining Philosophers
A concurrent system with a need for synchronization, should ensure 

Correctness Efficiency Fairness
No two philosophers 

should be using the same 
chopsticks at the same 

time.

Philosophers do not wait 
too long to pick-up 

chopsticks when they want 
to eat. 

No philosopher should be 
unable to pick up 

chopsticks forever and 
starve



Pseudocode

What’s wrong 
with this code



Dining Philosophers



Dining Philosophers



Dining Philosophers



Dining Philosophers
A concurrent system with a need for synchronization, should ensure 

Correctness Efficiency Fairness
No two philosophers 

should be using the same 
chopsticks at the same 

time.

Philosophers do not wait 
too long to pick-up 

chopsticks when they want 
to eat. 

No philosopher should be 
unable to pick up 

chopsticks forever and 
starve

How do we fix 
this?



Dining Philosophers

for (int i = 0; i < philosophers.length; i++) {
Object leftFork = forks[i];
Object rightFork = forks[(i+1) % forks.length];
philosophers[i] = new Philosopher(leftFork, rightFork);
Thread t = new Thread(philosophers[i], "Philosopher " + (i+1));
t.start();

}



Dining Philosophers
for (int i = 0; i < philosophers.length; i++) {

Object leftFork = forks[i];
Object rightFork = forks[(i + 1) % forks.length];
if (i == philosophers.length - 1) {

// The last philosopher picks up the right fork first
philosophers[i] = new Philosopher(rightFork, leftFork);

} else {
philosophers[i] = new Philosopher(leftFork, rightFork);

}

Thread t = new Thread(philosophers[i], "Philosopher " + (i + 1));
t.start();

}



Locks in Java



Locks vs. Synchronized
Synchronized Locks

Fully contained within a method Can have lock() and unlock() operation in 
separate methods

Rigid, any thread can acquire the lock 
once released, no preference can be 

specified

Flexible; we can prioritize waiting threads 
for example

A thread always gets blocked if it can't 
get an access to the synchronized block

The Lock API provides tryLock() method. 
The thread acquires lock only if it's 
available and not held by any other 

thread.

A thread which is in “waiting” state to 
acquire the access to synchronized block, 

can't be interrupted

The Lock API provides a method 
lockInterruptibly() which can be used to 

interrupt the thread when it's waiting for 
the lock



Lock API
Method Description

void lock() Acquire the lock if it's available; if the lock isn't 
available a thread gets blocked until the lock is 
released

void lockInterruptibly() similar to the lock(), but it allows the blocked thread 
to be interrupted and resume the execution through 
a thrown java.lang.InterruptedException

boolean tryLock() non-blocking version of lock() method; it attempts to 
acquire the lock immediately, return true if locking 
succeeds

boolean tryLock(long timeout, TimeUnit
timeUnit)

similar to tryLock(), except it waits up the given 
timeout before giving up trying to acquire the Lock

void unlock() unlocks the Lock instance



ReadWriteLock

•Read Lock – if no thread 
acquired the write lock or 
requested for it then multiple 
threads can acquire the read 
lock
•Write Lock – if no threads 
are reading or writing then 
only one thread can acquire 
the write lock

ReadWriteLock readWriteLock = new ReentrantReadWriteLock();

readWriteLock.readLock().lock();

// multiple readers can enter this section
// if not locked for writing, and not writers waiting
// to lock for writing.

readWriteLock.readLock().unlock();

readWriteLock.writeLock().lock();

// only one writer can enter this section,
// and only if no threads are currently reading.

readWriteLock.writeLock().unlock();



ReadWriteLock Example
public class SynchronizedHashMapWithReadWriteLock {

Map<String,String> syncHashMap = new HashMap<>();
ReadWriteLock lock = new ReentrantReadWriteLock();

Lock writeLock = lock.writeLock();

public void put(String key, String value) {
try {

writeLock.lock();
syncHashMap.put(key, value);

} finally {
writeLock.unlock();

}
}



ReadWriteLock Example
public String remove(String key){

try {
writeLock.lock();
return syncHashMap.remove(key);

} finally {
writeLock.unlock();

}
}

Lock readLock = lock.readLock();
//...
public String get(String key){

try {
readLock.lock();
return syncHashMap.get(key);

} finally {
readLock.unlock();

}
}



Locks with Conditions
• The Condition class provides the ability for a thread to wait for some 

condition to occur while executing the critical section.
• This can occur when a thread acquires the access to the critical 

section but doesn't have the necessary condition to perform its 
operation

• Traditionally Java provides wait(), notify() and notifyAll() methods for 
thread intercommunication. Conditions have similar mechanisms, but 
in addition, we can specify multiple conditions

Example?



Locks with Conditions Example
public class ReentrantLockWithCondition {

Stack<String> stack = new Stack<>();
int CAPACITY = 5;

ReentrantLock lock = new ReentrantLock();
Condition stackEmptyCondition = lock.newCondition();
Condition stackFullCondition = lock.newCondition();



Locks with Conditions Example
public void pushToStack(String item){

try {
lock.lock();
while(stack.size() == CAPACITY) {

stackFullCondition.await();
}
stack.push(item);
stackEmptyCondition.signalAll();

} finally {
lock.unlock();

}
}



Locks with Conditions Example
public String popFromStack() {

try {
lock.lock();
while(stack.size() == 0) {

stackEmptyCondition.await();
}
return stack.pop();

} finally {
stackFullCondition.signalAll();
lock.unlock();

}
}

}



Semaphores
• An integer variable, shared among multiple processes
• A semaphore has two indivisible (atomic) operations, namely: wait

and signal. These operations are sometimes referred to as P and V, or 
down and up.

• The initial value of a semaphore depends on the problem at hand. 
• Usually, we use the number of resources available as the initial value.



Semaphores API
Method/Constructor Description

Semaphore(int permits, boolean fair) Creates a Semaphore with the given number 
of permits and the given fairness setting

acquire() Acquires a permit; blocks until one is 
available

acquire(int permits) Acquires the given number of permits from 
this semaphore, blocking until all are 
available

tryAcquire() Return true if a permit is available 
immediately and acquire it; otherwise return 
false

availablePermits() Return number of current permits available

drainPermits() Acquires and returns all permits that are 
immediately available



Credits
This recitation was inspired by multiple Baeldung tutorials:
Readers-writers problem
The Dining Philosophers Problem
Locks in Java
Semaphores in Java

https://en.wikipedia.org/wiki/Readers%E2%80%93writers_problem#Second_readers%E2%80%93writers_problem
https://www.baeldung.com/java-dining-philoshophers
https://www.baeldung.com/java-concurrent-locks
https://www.baeldung.com/java-semaphore

	Recitation 8
	Announcements
	Agenda
	Dining Philosophers
	Dining Philosophers
	Dining Philosophers
	Dining Philosophers
	Dining Philosophers
	Dining Philosophers
	Dining Philosophers
	Dining Philosophers
	Dining Philosophers
	Pseudocode
	Dining Philosophers
	Dining Philosophers
	Dining Philosophers
	Dining Philosophers
	Dining Philosophers
	Dining Philosophers
	Locks in Java
	Locks vs. Synchronized
	Lock API
	ReadWriteLock
	ReadWriteLock Example
	ReadWriteLock Example
	Locks with Conditions
	Locks with Conditions Example
	Locks with Conditions Example
	Locks with Conditions Example
	Semaphores
	Semaphores API
	Credits

