15-440
Distributed Systems
Recitation 6

Ammar Karkour

Adopted from: Previous TAs

P dgdgglagy ale=ia ol

Carnegie Mellon University Qatar

Logistics

* P1 Done!

e P2 Out (due October 4)

* Midterm (September 25)
e PS3 (due September 29)

P dgdgglagy ale=ia ol

Carnegie Mellon University Qatar

Project 2

* Involves building on your Project 1 Distributed File
System (DFS): FileStack

* P2 StarterCode: Copy files into your P1 folder

* Release Date: September 15t

* Due date: October 4th

P dgdgglagy ale=ia ol

Carnegie Mellon University Qatar

FileStack Architecture

Naming ki
e Server N

Storage
Server n

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

file1.txt

Storage
Server 1

Storage
Server n

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

file1.txt

Storage
Server 1
""""""""""""""""" “"

Server 2
Storage
Server n

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

file1.txt What might go wrong?

write(“abc”, file1.txt)

Client 1 wme(xyz", file1. ti)f

Client 2

read(file1.txt)

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

file1.txt What might go wmng?

—\

write(“abc”, file1.txt) ® Synchronization

-

Client 1 -*;;,me(“wi/
-
-

Client 2

read(file1.txt)

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

write(“abc”, file1.txt)

Client 1 Gy
_
fﬁf-—
Client 2

le1.txt) ~
/”"/)

file1.txt

—N\

e
-
e

read(file1.txt)

What might go wrong?

. Synchronization

file1l.txt is hosted on SS9, and
it’s gets 5000 reqs/ sec. As
opposed to file2.txt which gets
1000 reqgs / month on SS3

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

Client 1 'f»;rritefwfw/
_—
_—

Client 2

file1.txt

—\

write(“abc”, file1.txt)

-

read(file1.txt)

What might go wrong?

o Synchronization

® [.oad-balancing

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

wri

Client 1 'ﬂrrite(“x"w
_—
_

file1.ixt

te(*abc’, file1.txt)

e

read(file1.txt)

What might go wrong?

® Synchronization
® [.oad-balancing

Replicate filel.txt on multiple
Storage Servers

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

Project 2 Objectives

1. Devise and apply a synchronization algorithm that:
= achieves correctness while sharing files

= and ensures fairness to clients.

2. Devise and apply a replication algorithm that:
= achieves load-balancing among storage servers

= and ensures consistency of replicated files.

Carnegie Mellon University Qatar

Project 2 Objectives

1. Logical Synchronization of Readers and
Writers

2. Devise and apply a replication algorithm that:
= achieves load-balancing among storage servers

= and ensures consistency of replicated files.

Carnegie Mellon University Qatar

Synchronization

sr’ “lib’
| l
\ v v
“li o mp"
P dgdsslag il =iy

Carnegie Mellon University Qatar

Synchronization

I
write(“abc”, file1.txt) * ' *
C1 _
Thread o - LS “ H-usr” hlibll
\.\\
Y
b
| \ v \
A\
LY Gt
~ lib o “tmp*

IR o

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

Synchronization

A"
b
Y

T~ g file1.txt Client1 has the lock

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

Synchronization

write(“abc”, file1.txt) / i I]

BREaN g ixt Client1 has the lock

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

Synchronization

write(“abc”, file1.txt) / i I]

rEad(ﬁIE1 b{t} \\\\ 1\\ ulib:: "tiin

QUEUE O\
BRI 1 txt Client1 has the lock

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

Synchronization .

write(“abc”, file1.txt) (* I +

—

-

b

o “usr” “lib”

"l\..\ \
~ \

R S A '

read(filel txt) .
Y
QUEUE N

Y “Iib:"I blllrl “tmp’- o
%
Ty \\
"’*‘m Client1 has the lock
E2 C1

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

Synchronization

write(“abc”, file1.txt) / * I *

—

-

b

o . “usr” “lib”

—_—

i - A
- - Y
- LY
N \\

read(file1.txt) *. '

b
QUEUE AN .

c3 read(file1.txt)
Thread QUEUE

et e

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

Synchronization

== | l
Thread Rl TR * * +
~ w I = in [T]
- read(filel.odt) lib b -
Thread QUEUE \\

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

Synchronization

Is this good
enough?

read(filel txt)

C3
Thread QUEUE

_To]e

ﬁf“
3
“usr’ “lib”
| l
v Y v
“bin
. “tmp”
Te= *m Client2 has the lock
P agdsglagy bl =i ol

Carnegie Mellon University Qatar

Synchronization

Client3 is Renaming? @ = = = = = — —« — > C“usr’ “lib”

m Client2 has the lock

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

Synchronization

Client3 is Renaming?

@ Client2 has the lock

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

Mutual Exclusion Recap

1. Reader:
= Readeris a Client who wishes to read a file at a SS

= Reader first requests a read/non-exclusive/shared lock

2. Writer:

= \Writer is a Client who wishes to write to a file at a SS

= Writer first requests a write/exclusive lock

3. Order:

= Readers and writers are queued and served in the FIFO order

P dgdgglagy ale=ia ol

Carnegie Mellon University Qatar

Read Locks

* Readers request the NS for read locks before reading files
* Readers do not modify contents of a file/directory
 Multiple readers can acquire a read lock simultaneously
* Readers unlock files once done

P dgdgglagy ale=ia ol

Carnegie Mellon University Qatar

Write Locks

* Writers request the NS for write locks before
reading/writing to files

* Writers can modify contents of files/directories
* Only one writer can acquire a write lock at a time

e \Writers unlock files once done
A igdyglagy gl o ulN

Carnegie Mellon University Qatar

Write Locks

* NS grants a write lock on a file if:
* Noreader is currently reading the file

* No writer is currently writing to the file

 Assume a writer requests a write lock for project2.txt:

/FileStack/users/studentl/work/project2.txt

* NS applies read locks on all the directories in the path to prevent modifications

NS then grants a write lock to the requestor of project2.txt
o digdsslagy gl =i o ol

Carnegie Mellon University Qatar

Service Interface

* Two new operations available to Clients:
* LOCK(path, read/write)

 UNLOCK(path, read/write)

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

Project 2 Objectives

1. Logical Synchronization of Readers and
Writers

2. Devise and apply a replication algorithm that:
= achieves load-balancing among storage servers

= and ensures consistency of replicated files.

Carnegie Mellon University Qatar

Project 2 Objectives

Dynamic Replication of Files

P dgdgglagy ale=ia ol

Carnegie Mellon University Qatar

Why Replicate?

 |n our DFS, we’ll have two kinds of Files:

* Files that have a lot of requests

 These are denoted as “hot-files”

* Files that are very rarely accessed

* These are denoted as “cold-files”

 To achieve load-balancing, we can replicate “hot-files” onto other

335 Ligdylag s sl oy

Carnegie Mellon University Qatar

How many replicas?

HOT FILES
Frequently Accessed

N
E ¢

file1.txt file1.txt

e dgdslagy il=ia s

Carnegie Mellon University Qatar

When to Replicate?

* NS would want to store num_requests as file metadata

e However, how can we determine and in turn update
num_requests over time?

We know that Clients invoke read operations on storage servers

Therefore, every “read” lock request from a client is deemed as
a read operation

Afterward, NS increments num_requests
Reavaluate num_replicas

Carnegie Mellon University Qatar

How can we Replicate?

* NS first elects one or many SSs to store the replicas
* NS commands each elected SS to copy the file from the
original SS

 Therefore, the metadata of a file now includes a set of SSs
instead of a single SS

Carnegie Mellon University Qatar

Load Balancing What are the

challenges?
HOT FILES CONSISTENCY
Frcqucntly Accessed
REDIRECTION
WRITE REQUESTS
INVALIDATION

= — write("abc”, file1.txt)
r Client 1

file1.txt file1 txt

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

How to Update Replicas

 When a Client requests a write lock on a file:

= |t causes the NS to invalidate all the replicas except the locked one

* Invalidation is achieved by commanding those SSs hosting
replicas to delete the file

e When the Client unlocks the file, the NS commands SSs to

copy the modified file

Carnegie Mellon University Qatar

The Command Interface

* One new operation available to the NS:

e COPY (path P, StorageStub S)

copies file with path P from StorageStub S

Ao dgdgslagy glemi ol

Carnegie Mellon University Qatar

Implementation Tips: Synchronization

e Consider a Lock object that:

* Stores a list of “Requests” (represents a read/write Request)

* |s assigned to each Node in your tree

* Inthe new LOCK/UNLOCK method:

* Traverse your tree
* Obtain/Release locks as necessary

Pedgdgelagy gl ol

Carnegie Mellon University Qatar

Implementation Tips: Replication

 Keep track of the number of reads for files:

* You need to modify your Tree data structure

* Create a formula for calculating the number of
replicas given the number of reads

e Similar to the one shown earlier

o After each read/write:

 Update the number of replicas

Carnegie Mellon University Qatar

	15-440 � Distributed Systems�Recitation 6
	Logistics
	Project 2
	FileStack Architecture
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Project 2 Objectives
	Project 2 Objectives
	Synchronization
	Synchronization
	Synchronization
	Synchronization
	Synchronization
	Synchronization
	Synchronization
	Synchronization
	Synchronization
	Synchronization
	Synchronization
	Mutual Exclusion Recap
	Read Locks
	Write Locks
	Write Locks
	Service Interface
	Project 2 Objectives
	Project 2 Objectives
	Why Replicate?
	How many replicas?
	When to Replicate?
	How can we Replicate?
	Load Balancing
	How to Update Replicas
	The Command Interface
	Implementation Tips: Synchronization
	Implementation Tips: Replication

