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Logistics
• P1 Done!
• P2 Out (due October 4)
• Midterm (September 25)
• PS3 (due September 29)



Project 2
• Involves building on your Project 1 Distributed File 

System (DFS): FileStack 

• P2_StarterCode: Copy files into your P1 folder

• Release Date: September 15th

• Due date: October 4th



FileStack Architecture

















Project 2 Objectives
1. Devise and apply a synchronization algorithm that:

 achieves correctness while sharing files

 and ensures fairness to clients. 

2. Devise and apply a replication algorithm that:
 achieves load-balancing among storage servers 

 and ensures consistency of replicated files.
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Synchronization

Is this good 
enough?
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Mutual Exclusion Recap
1. Reader:

 Reader is a Client who wishes to read a file at a SS
 Reader first requests a read/non-exclusive/shared lock

2. Writer:
 Writer is a Client who wishes to write to a file at a SS
 Writer first requests a write/exclusive lock

3. Order:
 Readers and writers are queued and served in the FIFO order



Read Locks
• Readers request the NS for read locks before reading files

• Readers do not modify contents of a file/directory

• Multiple readers can acquire a read lock simultaneously

• Readers unlock files once done



Write Locks
• Writers request the NS for write locks before 

reading/writing to files

• Writers can modify contents of files/directories

• Only one writer can acquire a write lock at a time

• Writers unlock files once done



Write Locks
• NS grants a write lock on a file if:

• No reader is currently reading the file 

• No writer is currently writing to the file

• Assume a writer requests a write lock for project2.txt:

/FileStack/users/student1/work/project2.txt

• NS applies read locks on all the directories in the path to prevent modifications 

• NS then grants a write lock to the requestor of project2.txt



Service Interface
• Two new operations available to Clients:

• LOCK(path, read/write)

• UNLOCK(path, read/write)
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Dynamic Replication of Files



Why Replicate?
• In our DFS, we’ll have two kinds of Files:

• Files that have a lot of requests
• These are denoted as “hot-files”

• Files that are very rarely accessed
• These are denoted as “cold-files” 

• To achieve load-balancing, we can replicate “hot-files” onto other 
SSs



How many replicas?



When to Replicate?
• NS would want to store num_requests as file metadata
• However, how can we determine and in turn update 

num_requests over time?
• We know that Clients invoke read operations on storage servers

• Therefore, every “read” lock request from a client is deemed as 
a read operation

• Afterward, NS increments num_requests

• Reavaluate num_replicas



How can we Replicate?
• NS first elects one or many SSs to store the replicas
• NS commands each elected SS to copy the file from the 

original SS
• Therefore, the metadata of a file now includes  a set of SSs 

instead of a single SS



Load Balancing What are the 
challenges?



How to Update Replicas
• When a Client requests a write lock on a file:
 It causes the NS to invalidate all the replicas except the locked one

• Invalidation is achieved by commanding those SSs hosting 
replicas to delete the file

• When the Client unlocks the file, the NS commands SSs to 
copy the modified file 



The Command Interface
• One new operation available to the NS:

• COPY (path P, StorageStub S)
copies file with path P from StorageStub S



Implementation Tips: Synchronization

• Consider a Lock object that:
• Stores a list of “Requests” (represents a read/write Request)
• Is assigned to each Node in your tree

• In the new LOCK/UNLOCK method:
• Traverse your tree
• Obtain/Release locks as necessary



Implementation Tips: Replication
• Keep track of the number of reads for files:

• You need to modify your Tree data structure

• Create a formula for calculating the number of 
replicas given the number of reads
• Similar to the one shown earlier

• After each read/write:
• Update the number of replicas
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