
15-440
Distributed Systems

Recitation 6
Ammar Karkour

Adopted from: Previous TAs

Logistics
• P1 Done!
• P2 Out (due October 4)
• Midterm (September 25)
• PS3 (due September 29)

Project 2
• Involves building on your Project 1 Distributed File

System (DFS): FileStack

• P2_StarterCode: Copy files into your P1 folder

• Release Date: September 15th

• Due date: October 4th

FileStack Architecture

Project 2 Objectives
1. Devise and apply a synchronization algorithm that:

 achieves correctness while sharing files

 and ensures fairness to clients.

2. Devise and apply a replication algorithm that:
 achieves load-balancing among storage servers

 and ensures consistency of replicated files.

Project 2 Objectives
1. Devise and apply a synchronization algorithm that:

 achieves correctness while sharing files

 and ensures fairness to clients.

2. Devise and apply a replication algorithm that:
 achieves load-balancing among storage servers

 and ensures consistency of replicated files.

Logical Synchronization of Readers and
Writers

Synchronization

Synchronization

Synchronization

Synchronization

Synchronization

Synchronization

Synchronization

Synchronization

Synchronization

Is this good
enough?

Synchronization

Synchronization

Mutual Exclusion Recap
1. Reader:

 Reader is a Client who wishes to read a file at a SS
 Reader first requests a read/non-exclusive/shared lock

2. Writer:
 Writer is a Client who wishes to write to a file at a SS
 Writer first requests a write/exclusive lock

3. Order:
 Readers and writers are queued and served in the FIFO order

Read Locks
• Readers request the NS for read locks before reading files

• Readers do not modify contents of a file/directory

• Multiple readers can acquire a read lock simultaneously

• Readers unlock files once done

Write Locks
• Writers request the NS for write locks before

reading/writing to files

• Writers can modify contents of files/directories

• Only one writer can acquire a write lock at a time

• Writers unlock files once done

Write Locks
• NS grants a write lock on a file if:

• No reader is currently reading the file

• No writer is currently writing to the file

• Assume a writer requests a write lock for project2.txt:

/FileStack/users/student1/work/project2.txt

• NS applies read locks on all the directories in the path to prevent modifications

• NS then grants a write lock to the requestor of project2.txt

Service Interface
• Two new operations available to Clients:

• LOCK(path, read/write)

• UNLOCK(path, read/write)

Project 2 Objectives
1. Devise and apply a synchronization algorithm that:

 achieves correctness while sharing files

 and ensures fairness to clients.

2. Devise and apply a replication algorithm that:
 achieves load-balancing among storage servers

 and ensures consistency of replicated files.

Logical Synchronization of Readers and
Writers

Project 2 Objectives
1. Devise and apply a synchronization algorithm that:

 achieves correctness while sharing files
 and ensures fairness to clients.

2. Devise and apply a replication algorithm that:
 achieves load-balancing among storage servers
 and ensures consistency of replicated files.

Dynamic Replication of Files

Why Replicate?
• In our DFS, we’ll have two kinds of Files:

• Files that have a lot of requests
• These are denoted as “hot-files”

• Files that are very rarely accessed
• These are denoted as “cold-files”

• To achieve load-balancing, we can replicate “hot-files” onto other
SSs

How many replicas?

When to Replicate?
• NS would want to store num_requests as file metadata
• However, how can we determine and in turn update

num_requests over time?
• We know that Clients invoke read operations on storage servers

• Therefore, every “read” lock request from a client is deemed as
a read operation

• Afterward, NS increments num_requests

• Reavaluate num_replicas

How can we Replicate?
• NS first elects one or many SSs to store the replicas
• NS commands each elected SS to copy the file from the

original SS
• Therefore, the metadata of a file now includes a set of SSs

instead of a single SS

Load Balancing What are the
challenges?

How to Update Replicas
• When a Client requests a write lock on a file:
 It causes the NS to invalidate all the replicas except the locked one

• Invalidation is achieved by commanding those SSs hosting
replicas to delete the file

• When the Client unlocks the file, the NS commands SSs to
copy the modified file

The Command Interface
• One new operation available to the NS:

• COPY (path P, StorageStub S)
copies file with path P from StorageStub S

Implementation Tips: Synchronization

• Consider a Lock object that:
• Stores a list of “Requests” (represents a read/write Request)
• Is assigned to each Node in your tree

• In the new LOCK/UNLOCK method:
• Traverse your tree
• Obtain/Release locks as necessary

Implementation Tips: Replication
• Keep track of the number of reads for files:

• You need to modify your Tree data structure

• Create a formula for calculating the number of
replicas given the number of reads
• Similar to the one shown earlier

• After each read/write:
• Update the number of replicas

	15-440 � Distributed Systems�Recitation 6
	Logistics
	Project 2
	FileStack Architecture
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Project 2 Objectives
	Project 2 Objectives
	Synchronization
	Synchronization
	Synchronization
	Synchronization
	Synchronization
	Synchronization
	Synchronization
	Synchronization
	Synchronization
	Synchronization
	Synchronization
	Mutual Exclusion Recap
	Read Locks
	Write Locks
	Write Locks
	Service Interface
	Project 2 Objectives
	Project 2 Objectives
	Why Replicate?
	How many replicas?
	When to Replicate?
	How can we Replicate?
	Load Balancing
	How to Update Replicas
	The Command Interface
	Implementation Tips: Synchronization
	Implementation Tips: Replication

