
15-440
Distributed Systems

Recitation 6
Ammar Karkour

Slides Adopted From:
Laila Elbeheiry

Logistics

• Quiz 2 Graded (Average: 16, Stdev: 2.3, Max: 19)
• P1 Due Next Sunday
• PS3 Released (Due next Thursday)

In this Recitation..

• Study concurrent programming
• Using Java as a language
• Using an abstract shared memory model

• In a future lecture
• Use C/C++ primitives (MPI)
• Using a distributed memory machine

What is concurrency?

• Sequential Programs
• Single thread of control
• Executes one instruction at a time
• (- pipelining + SIMD)

• Concurrent Programs
• Multiple autonomous sequential threads, executing (logically) in parallel

• The implementation (i.e. execution) of the threads can be:
• Multiprogramming – Threads multiplex their executions on a single processor.
• Multiprocessing – Threads multiplex their executions on a multiprocessor or a

system
• Distributed Processing – Processes multiplex their executions on several different

machines

Not accurate

Concurrency and Parallelism

• Concurrency doesn’t imply parallelism Why?

Concurrency in Java
Bank use case

Concurrency in Java

• Java has a predefined class java.lang.Thread
public class MyThread extends Thread {

public void run() {
}

}

• Java also provides a standard interface
public interface Runnable {

public void run();
}

• Any class which wishes to express concurrent execution must implement
this interface and the run method

• Threads do not begin their execution until the start method in the
Thread class is called

What’s the diff?

Activity Trace 1 of ATMs

Account ID > Ammar
Password > 1234
your account balance is 200
Deposit or withdraw amount > -150
your balance is 50

Account ID > Sana
Password > 0000
your account balance is 250
Deposit or withdraw amount > -50
your balance is 200

Ti
m

e

Activity Trace 2 of ATMs

Account ID > Ammar
Password > 1234
Your account balance is 200
Deposit or withdraw amount > -150
your balance is 50

Account ID > Ammar
Password > 1234
Your account balance is 200
Deposit or withdraw amount > -150
your balance is 50

Ti
m

e

Synchronization

• Threads can be arbitrarily interleaved
• Some interleavings are NOT correct
• Java provides synchronization mechanism to restrict the interleavings
• Synchronization serves two purposes:

• Ensure safety for shared updates – Avoid race conditions
• Coordinate actions of threads – Parallel computation – Event notification

Safety of Concurrent Execution

• Multiple threads access shared resource simultaneously
• Safe only if:

• All accesses have no effect on resource, – e.g., reading a variable
• All accesses are atomic
• Only one access at a time: mutual exclusion

Mutual Exclusion

• Prevent more than one thread from accessing critical section at a
given time

• Once a thread is in the critical section, no other thread can enter that
critical section until the first thread has left the critical section.

• No interleavings of threads within the critical section
• Serializes access to section
synchronized int getbal() { return balance; }

synchronized void post(int v) { balance = balance + v; }
Good enough?

Activity Trace 2 of ATMs Zoom in

int val = in.readLine();

if (acc.getbal() + val > 0)

post(val);

out.println("your balance is " +

acc.getbal());

your balance is 50

int val = in.readLine();

if (acc.getbal() + val > 0)

post(val);

out.println("your balance is " +

acc.getbal());

your balance is 50

Ti
m

e

• Synchronized methods execute the body as an atomic unit
• May need to execute a code region as the atomic unit
• Block Synchronization is a mechanism where a region of code can be

labeled as synchronized
• The synchronized keyword takes as a parameter an object whose

lock the system needs to obtain before it can continue

Atomicity

synchronized (acc) {
if (acc.getbal() + val > 0)

acc.post(val);
else

throw new Exception();
out.print(“your balance is “ + acc.getbal());

}

Good enough?

Activity Trace 2 of ATMs Zoom in
out.println("your balance is " + acc.getbal());

your balance is 200

out.print("Deposit or withdraw amount > ");

Deposit or withdraw amount > -150

int val = in.readLine();

synchronized(acc)

if (acc.getbal() + val > 0) post(val);

out.println("your balance is " +

acc.getbal());

your balance is 50

out.println("your balance is " + acc.getbal());

your balance is 200

out.print("Deposit or withdraw amount > “);

Deposit or withdraw amount > -150

int val = in.readLine();

synchronized(acc)

if (acc.getbal() + val > 0)

throw new Exception();

Ti
m

e

Activity Trace 2 of ATMs Zoom in

Account ID > Ammar

Password > 1234

synchronized(acc)

out.println("your balance is " + acc.getbal());

your balance is 200

Deposit or withdraw amount >

Account ID > Ammar

Password > 1234

synchronized(acc)Ti
m

e

Account Transfer Execution Trace

Sana -> Abdalla

synchronized(from) {

if (from.getbal() > val)

from.post(-val);

synchronized(to)

Abdalla -> Sana

synchronized(from) {

if (from.getbal() > val)

from.post(-val);

synchronized(to)

Ti
m

e
Sana wants to transfer 10

riyals to Abdalla
Abdalla wants to transfer 20

riyals to Sana
Will our code always work?

How to fix?

Avoiding deadlocks

• Cycle in locking graph = deadlock
• Standard solution: canonical order for locks

• Acquire in increasing order
• Release in decreasing order

• Ensures deadlock-freedom, but not always easy to do

Other types of synchronization in Java

• Semaphores
• Blocking & non-blocking queues
• Concurrent hash maps
• Copy-on-write arrays
• Exchangers
• Barriers
• Futures
• Thread pool support

Potential Concurrency Problems

• Deadlock
• Two or more threads stop and wait for each other

• Livelock
• Two or more threads continue to execute, but make no progress toward the ultimate

goal.
• Starvation

• Some thread gets deferred forever.
• Lack of fairness

• Each thread gets a turn to make progress.
• Race Condition

• Some possible interleaving of threads results in an undesired computation result

Interesting Ongoing Research on Concurrency

• Automatic parallelizers (e.g. Parsynt)
• Verification of concurrent programs (e.g. Duet)
• Concurrent program testing (e.g. Penelope)
• PL approached to deadlock freedom

http://www.cs.toronto.edu/%7Evictorn/parsynt/index.html
http://duet.cs.toronto.edu/
https://cs.illinois.edu/%7Esorrent1/penelope/publications

Conclusion

• Concurrency and Parallelism are important concepts in Computer
Science

• It can be very hard to understand and debug concurrent programs
• Parallelism is critical for high performance

• From Supercomputers in national labs to Multicores and GPUs on your
desktop

• Concurrency is the basis for writing parallel programs
• Next Recitation: Project 2

Credits

• The bank use case code and some slides are taken from 6.189 IAP
2007 MIT concurrent programming lecture

	15-440 � Distributed Systems�Recitation 6
	Logistics
	In this Recitation..
	What is concurrency?
	Concurrency and Parallelism
	Concurrency in Java
	Concurrency in Java
	Activity Trace 1 of ATMs
	Activity Trace 2 of ATMs
	Synchronization
	Safety of Concurrent Execution
	Mutual Exclusion
	Activity Trace 2 of ATMs Zoom in
	Atomicity
	Activity Trace 2 of ATMs Zoom in
	Activity Trace 2 of ATMs Zoom in
	Account Transfer Execution Trace
	Avoiding deadlocks
	Other types of synchronization in Java
	Potential Concurrency Problems
	Interesting Ongoing Research on Concurrency
	Conclusion
	Credits

