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Last Time

• Entities, Architecture and 
Communication

• RMI

• Interfaces

• Skeleton & Stub

• Example

Today

• Packages dive-in:
✔ RMI
✔ Common
✔ Naming
✔ Storage



Quick Recap



Architecture
• FileStack will boast a Client-Server
architecture:
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Communication
• Registration phase
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Communication
• Post registration, the Naming Server responds with a list of duplicates (if 

any).
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Communication
• System is now ready, the Client can invoke requests.
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Communication
• Client requests a file (to read, write etc…) from the Naming Server.
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Communication
• Depending on the operation, the Naming Server could either perform it, or, respond back 

to the Client with the Storage Server that hosts the file.
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Communication
• After the Client receives which Storage Server hosts the file, it contacts that 

Server to perform the file operation.
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Full Example: Client Read
Client
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R M I package 
(overview)



RMI package

• It contains two parametrized (generic-type) classes:
1. Skeleton.java
2. Stub.java

• RMIException
• Both the Skeleton and the Stub classes take a remote interface 

as a parameter.



RMI package

Client at address IP

Stub’s client 
socket at port P

Server at address IP’

Listening Socket  
at port P’

Service  
Socket

(1) TCP connection request

(2) Communication

• We implement multi-threaded 
socket programming

• The skeleton is multi-threaded
• When it is started, the main thread 

creates a listening socket and waits 
for client requests.

• Once a client's request is received, 
the skeleton accepts the request, 
creates a new thread, and 
instantiates a new service socket to 
handle the communication



public void start() {
create serverSocket();
bind(address);
while (!stopped) {

clientSocket = accept();
Thread a = new Thread

(new serviceThread(clientSocket));
a.start() ;

}
}

serviceThread {
String methodName = (String) in.readObject();
Class[] argTypes = (Class[]) in.readObject();
Object[] args = (Object[]) in.readObject();
Method m = c*.getMethod(methodName,argTypes);
Object result = m.invokeMethod(implementation*, args);
out.writeObject(result);

}

Skeleton.java
*c is the interface,
*implementation is the implementation of the interface



Stub.java

• A stub is implemented in Java as a dynamic proxy
• A proxy has an associated invocation handler
• The invoke method checks whether the invoked method is local 

or remote
• If the remote, the proxy connects to the corresponding 

skeleton at the server side, marshalls the method name,
parameter types and values, and sends the entailed byte
stream.

• http://tutorials.jenkov.com/java-reflection/dynamic-proxies. 
html

http://tutorials.jenkov.com/java-reflection/dynamic-proxies.html
http://tutorials.jenkov.com/java-reflection/dynamic-proxies.html


R M I  package 
(Example: File Server)



Creating a file server:

1. Defining a remote interface
2. Defining a server class
3. Creating the server object and making it remotely-accessible
4. Accessing a server object remotely



Creating a file server:

1. Defining a remote interface
2. Defining a server class
3. Creating the server object and making it remotely-accessible
4. Accessing a server object remotely

public interface Server {
public long size(String path) throws ..;
public byte[] retrieve(String path) throws ..;

}



Creating a file server:

1. Defining a remote interface
2. Defining a server class
3. Creating the server object and making it remotely-accessible
4. Accessing a server object remotely

public class ServerImplementation implements Server {
// Fields and methods. ...
public long size(String path) throws ..{

//size method impl.
}
public byte[] retrieve(String path) throws ..{

// retrieve method impl.
} ...

}



Creating a file server:

1. Defining a remote interface
2. Defining a server class
3. Creating the server object  and making it remotely-accessible
4. Accessing a server object  remotely

// Create the server object.
ServerImplementation server = new ServerImplementation(...);
// At this point, the server object is a regular local  object, and is not accessible remotely.
// Create the skeleton object.
Skeleton skeleton = new Skeleton(Server.class, server);
// Start the skeleton, making the server object  remotely-accessible.
skeleton.start();



Creating a file server:

1. Defining a remote interface
2. Defining a server class
3. Creating the server object and  making it remotely-accessible
4. Accessing a server object  remotely

// Create a stub which will forward method  calls to the remote object.
InetSocketAddress address = new InetSocketAddress(hostname, port);
Server server = Stub.create(Server.class, address);
// Perform some method calls using the stub.
long file_size = server.size("/file");
...
byte[] data = server.retrieve("/file");



Common package



Path package

• This package contains the  class 
Path which contains  helper 
methods that are used  by 
Naming Server and the  Storage 
Servers.

• Path creation
• Listing
• toString
• Equals
• Hashcode
• isRoot
• …



Naming package



Naming package

• The naming package contains:
1. Registration interface
2. Service interface
3. NamingServer class:  creates the 

necessary  skeletons and stubs and  
implements the logic of all  the 
operations handled by  the Naming 
Server
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Naming package

• The naming package contains:
1. Registration interface
2. Service interface
3. NamingServer class:  creates the 

necessary  skeletons and stubs and  
implements the logic of all  the 
operations handled by  the Naming 
Server
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Naming package (NamingServer.java)

• Creates and maintains the FileStack directory  tree:
 Top-level directory being the root represented by the path "/".
 Inner tree nodes represent directories,
 the leaves represent files

• Builds its tree  during registration.
• After registration, uses its tree to handle operations.
• It is important to design the directory tree in a way that allows the 

NamingServer to easily look-up, traverse and alter the tree, as well as 
detect  invalid paths.



Naming package (Tree)

• How can we build the Directory Tree?
• One way is to use  Leaf/Branch  approach:

• Leaf will represent:
• A file (name) and stub

• Branch (inner node) will represent:
• A list of Leafs/Branches



Naming package (Classes)
public class Node { 

String name;

}

public class Branch extends Node { 

ArrayList<Node> list;

}

public class Leaf extends Node { 

Command c;

Storage s;

}



Storage package



Storage package
Storage  
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These stubs are sent to the 
Naming server during

registration



Storage package

• The Storage Package:
• Command.java (interface)
• Storage.java (interface)
• StorageServer.java (public class)

• Implements:
• Command Interface

• methods(s): create, delete
• Storage Interface

• methods(s): size, read, write
• Has functions:

• start()
• stop()



Storage package

• The StorageServer start() function will:
• Start the Skeletons:

• Command Skeleton
• Storage Skeleton

• Create the stubs
• Command Stub
• Storage Stub



Storage package

• The StorageServer start() function will:
• Registers itself with the Naming Server using:

• Its files
• The created stubs

• Post registration, we receive a list of duplicates (if any):
• Delete the duplicates
• Prune directories if needed



Storage package

• The StorageServer stop() function will:
• Stop the skeletons:

• Command Skeleton
• Storage Skeleton
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