
15-440
Distributed Systems

Recitation 4

Ammar Karkour
Slides Adopted from:

Previous TAs

Last Time

• Entities, Architecture and
Communication

• RMI

• Interfaces

• Skeleton & Stub

• Example

Today

• Packages dive-in:
✔ RMI
✔ Common
✔ Naming
✔ Storage

Quick Recap

Architecture
• FileStack will boast a Client-Server
architecture:

Storage
Server 2

Storage
Server n

1

Storage
Server 1

Naming
Server

2

Client

3
4

5

6

Communication
• Registration phase

Storage
Server 2

Storage
Server n

1

Storage
Server 1

Naming
Server

2

Client

3
4

5

6

Communication
• Post registration, the Naming Server responds with a list of duplicates (if

any).

Storage
Server 2

Storage
Server n

1

Storage
Server 1

Naming
Server

2

Client

3
4

5

6

Communication
• System is now ready, the Client can invoke requests.

Storage
Server 2

Storage
Server n

1

Storage
Server 1

Naming
Server

2

Client

3
4

5

6

Communication
• Client requests a file (to read, write etc…) from the Naming Server.

Storage
Server 2

Storage
Server n

1

Storage
Server 1

Naming
Server

2

Client

3
4

5

6

Communication
• Depending on the operation, the Naming Server could either perform it, or, respond back

to the Client with the Storage Server that hosts the file.

Storage
Server 2

Storage
Server n

1

Storage
Server 1

Naming
Server

2

Client

3
4

5

6

Communication
• After the Client receives which Storage Server hosts the file, it contacts that

Server to perform the file operation.

Storage
Server 2

Storage
Server n

1

Storage
Server 1

Naming
Server

2

Client

3
4

5

6

Full Example: Client Read
Client

Naming
Server

Storage
Server

Service
Stub

Service
Skeleton

Storage
Skeleton

TI
M

E

ServiceStub.getStorage(abc)

GetStorage(abc)

GetStorage(abc)

Storage
Stub

Storage
Stub

Storage
Stub

StorageStub.
read(abc,0,10)

read(abc,0,10)

read(abc,0,10)

“HelloWorld”
“HelloWorld”

“HelloWorld”

R M I package
(overview)

RMI package

• It contains two parametrized (generic-type) classes:
1. Skeleton.java
2. Stub.java

• RMIException
• Both the Skeleton and the Stub classes take a remote interface

as a parameter.

RMI package

Client at address IP

Stub’s client
socket at port P

Server at address IP’

Listening Socket
at port P’

Service
Socket

(1) TCP connection request

(2) Communication

• We implement multi-threaded
socket programming

• The skeleton is multi-threaded
• When it is started, the main thread

creates a listening socket and waits
for client requests.

• Once a client's request is received,
the skeleton accepts the request,
creates a new thread, and
instantiates a new service socket to
handle the communication

public void start() {
create serverSocket();
bind(address);
while (!stopped) {

clientSocket = accept();
Thread a = new Thread

(new serviceThread(clientSocket));
a.start() ;

}
}

serviceThread {
String methodName = (String) in.readObject();
Class[] argTypes = (Class[]) in.readObject();
Object[] args = (Object[]) in.readObject();
Method m = c*.getMethod(methodName,argTypes);
Object result = m.invokeMethod(implementation*, args);
out.writeObject(result);

}

Skeleton.java
*c is the interface,
*implementation is the implementation of the interface

Stub.java

• A stub is implemented in Java as a dynamic proxy
• A proxy has an associated invocation handler
• The invoke method checks whether the invoked method is local

or remote
• If the remote, the proxy connects to the corresponding

skeleton at the server side, marshalls the method name,
parameter types and values, and sends the entailed byte
stream.

• http://tutorials.jenkov.com/java-reflection/dynamic-proxies.
html

http://tutorials.jenkov.com/java-reflection/dynamic-proxies.html
http://tutorials.jenkov.com/java-reflection/dynamic-proxies.html

R M I package
(Example: File Server)

Creating a file server:

1. Defining a remote interface
2. Defining a server class
3. Creating the server object and making it remotely-accessible
4. Accessing a server object remotely

Creating a file server:

1. Defining a remote interface
2. Defining a server class
3. Creating the server object and making it remotely-accessible
4. Accessing a server object remotely

public interface Server {
public long size(String path) throws ..;
public byte[] retrieve(String path) throws ..;

}

Creating a file server:

1. Defining a remote interface
2. Defining a server class
3. Creating the server object and making it remotely-accessible
4. Accessing a server object remotely

public class ServerImplementation implements Server {
// Fields and methods. ...
public long size(String path) throws ..{

//size method impl.
}
public byte[] retrieve(String path) throws ..{

// retrieve method impl.
} ...

}

Creating a file server:

1. Defining a remote interface
2. Defining a server class
3. Creating the server object and making it remotely-accessible
4. Accessing a server object remotely

// Create the server object.
ServerImplementation server = new ServerImplementation(...);
// At this point, the server object is a regular local object, and is not accessible remotely.
// Create the skeleton object.
Skeleton skeleton = new Skeleton(Server.class, server);
// Start the skeleton, making the server object remotely-accessible.
skeleton.start();

Creating a file server:

1. Defining a remote interface
2. Defining a server class
3. Creating the server object and making it remotely-accessible
4. Accessing a server object remotely

// Create a stub which will forward method calls to the remote object.
InetSocketAddress address = new InetSocketAddress(hostname, port);
Server server = Stub.create(Server.class, address);
// Perform some method calls using the stub.
long file_size = server.size("/file");
...
byte[] data = server.retrieve("/file");

Common package

Path package

• This package contains the class
Path which contains helper
methods that are used by
Naming Server and the Storage
Servers.

• Path creation
• Listing
• toString
• Equals
• Hashcode
• isRoot
• …

Naming package

Naming package

• The naming package contains:
1. Registration interface
2. Service interface
3. NamingServer class: creates the

necessary skeletons and stubs and
implements the logic of all the
operations handled by the Naming
Server

Naming
Server

Registration
Interface

Service
Interface

ImplementsImplements

isDirectory()
isFile()

…
register()

Naming package

• The naming package contains:
1. Registration interface
2. Service interface
3. NamingServer class: creates the

necessary skeletons and stubs and
implements the logic of all the
operations handled by the Naming
Server

Naming
Server

Registration
Interface

Service
Interface

ImplementsImplements

isDirectory(
)

isFile()
…

register(
)

Service
Skeleton

Registration
Skeleton

Naming package (NamingServer.java)

• Creates and maintains the FileStack directory tree:
 Top-level directory being the root represented by the path "/".
 Inner tree nodes represent directories,
 the leaves represent files

• Builds its tree during registration.
• After registration, uses its tree to handle operations.
• It is important to design the directory tree in a way that allows the

NamingServer to easily look-up, traverse and alter the tree, as well as
detect invalid paths.

Naming package (Tree)

• How can we build the Directory Tree?
• One way is to use Leaf/Branch approach:

• Leaf will represent:
• A file (name) and stub

• Branch (inner node) will represent:
• A list of Leafs/Branches

Naming package (Classes)
public class Node {

String name;

}

public class Branch extends Node {

ArrayList<Node> list;

}

public class Leaf extends Node {

Command c;

Storage s;

}

Storage package

Storage package
Storage
Server

Command
Interface

Storage
Interface

ImplementsImplements

size
read
writ
e

create
delet
e Storage

Skeleton
Command
Skeleton

Storage
Stub

Command
Stub

These stubs are sent to the
Naming server during

registration

Storage package

• The Storage Package:
• Command.java (interface)
• Storage.java (interface)
• StorageServer.java (public class)

• Implements:
• Command Interface

• methods(s): create, delete
• Storage Interface

• methods(s): size, read, write
• Has functions:

• start()
• stop()

Storage package

• The StorageServer start() function will:
• Start the Skeletons:

• Command Skeleton
• Storage Skeleton

• Create the stubs
• Command Stub
• Storage Stub

Storage package

• The StorageServer start() function will:
• Registers itself with the Naming Server using:

• Its files
• The created stubs

• Post registration, we receive a list of duplicates (if any):
• Delete the duplicates
• Prune directories if needed

Storage package

• The StorageServer stop() function will:
• Stop the skeletons:

• Command Skeleton
• Storage Skeleton

	15-440
Distributed Systems
	Last Time
	Quick Recap
	Architecture
	Communication
	Communication
	Communication
	Communication
	Communication
	Communication
	Full Example: Client Read
	RMI package (overview)
	RMI package
	RMI package
	Skeleton.java
	Stub.java
	RMI package (Example: File Server)
	Creating a file server:
	Creating a file server:
	Creating a file server:
	Creating a file server:
	Creating a file server:
	Common package
	Path package
	Naming package
	Naming package
	Naming package
	Naming package (NamingServer.java)
	Naming package (Tree)
	Naming package (Classes)
	Storage package
	Storage package
	Storage package
	Storage package
	Storage package
	Storage package

