
Carnegie Mellon University in Qatar

Distributed Systems

15-440 - Fall 2022
Project 2

Out: September 15, 2022

Due: October 4, 2022

1

Contents

1 Learning Objective 3

2 Project Objective 3

3 Conceptual Architecture 3
3.1 System Description . 4
3.2 Consistency . 4

3.2.1 Reader Operation . 4
3.2.2 Writer Operation . 4
3.2.3 Locking a File/Directory in the Hierarchy of the Path 5

3.3 Replication . 5
3.3.1 Replication Policy . 6
3.3.2 Read-request Handling for Hot-�les . 7
3.3.3 Write-request Handling for Hot-�les . 7

4 Design and Implementation Guidelines 7
4.1 File Concurrency and Synchronization . 7
4.2 Replication . 7

5 Starter Code 8

6 Implementation Notes 9
6.1 Summary of Changes since Project 1 . 9
6.2 Locking . 9
6.3 Replication . 10

7 Test Suite 11

8 Rubric 11

9 Deliverable 12

10 Submission 12

11 Late Policy 12

Page 2

1 Learning Objective

Project 2 applies the theory of two important aspects of distributed systems: synchronization
and replication. The learning objective of this project is two-fold:

1. Examine and apply synchronization algorithms that enable correct and consistent sharing
of common resources.

2. Apply intelligent replication strategies for load-balancing and performance.

2 Project Objective

FileStack (Project 1) was described as a distributed �le system which allows clients to read or
write �les on remote storage servers. Two important aspects of such �le systems are to:

1. Ensure correctness when multiple clients read/write: this problem is known as
maintaining "consistency." You will now maintain locks for reader and writer clients. Since
reads do not change the �le, you can allow as many readers as possible to access the �le
at the same time. However, if a writer has to write to a �le, you have to ensure that
there are no other readers or writers who have locked the �le. This concept is referred
to as read-write locks. In addition to ensuring basic consistency, you will also solve the
unfairness problem that manifests while ensuring consistency.

2. Improve performance by smart-allocation of �les across multiple servers: we
solve this problem by dynamic replication of �les. Instead of all clients fetching a �le
from one storage server, we can now parallelize - and hence improve read/write times - by
redirecting clients to di�erent replicas. It also aids in load-balancing of storage servers:
many clients who access a very popular �le will now not go to a single storage server.

3 Conceptual Architecture

Figure 1: Architecture of FileStack (Project 1)

The conceptual architecture of the FileStack system, shown in Figure 1, remains the same
as that of project 1:

1. The Clients will contact the naming server to access �les.

2. The Naming Server will redirect the clients towards Storage Servers.

3. The Clients will read/write �les on Storage Servers.

However, in this project, you will: (1) make sure that the �les are consistent, and (2)
implement a replication policy.

Page 3

3.1 System Description

In this section, we describe the functionalities that you will implement and the nature of the
protocol to ensure consistency and reliability. You will implement two main functionalities:
consistency and replication.

3.2 Consistency

You will implement a scheme to ensure consistency in distributed systems called "read-write
locks." The main concept is for reader and writer clients to grab locks before performing opera-
tions, and release them once these operations are done. If some other client already owns a lock,
this means that the �le is currently being accessed by that client. In such a case, it is possible
for the �le to become inconsistent if more than one client accesses the �le at the same time. For
example, if one writer is modifying a part of a �le, and another writer modi�es an overlapping
part, then the �le becomes inconsistent. The goal in this project is to avert the occurrence of
such a scenario (and alike) via ensuring consistency when multiple clients are present. You will
implement and design algorithms that achieve that goal.

In particular, you will implement coarse-grained locks (similar to Google Chubby). Here,
the user will ask for an exclusive lock or a non-exclusive lock from the naming server for
proceeding with a write or a read, respectively. As such, you have to provision two more methods
in the Naming Server (in the Service interface).

3.2.1 Reader Operation

A reader will grab a non-exclusive lock to a �le before reading, and will release the lock once
it is done. While one reader is reading the �le, you will allow other readers to concurrently read
the �le (i.e., other readers will also be able to grab non-exclusive lock to the �le). This is because
read operations do not modify �les, and hence, cannot cause inconsistencies. Nonetheless,
simultaneous reads to a �le can decrease the time taken for reading the �le by multiple readers
(as readers do not wait for each other), and accordingly, improving performance.

3.2.2 Writer Operation

A writer will grab an exclusive lock to a �le before writing, and will release the lock once the
operation is completed. In order to keep the �le consistent, a writer can successfully grab the
lock only when:

1. None of the readers are reading, or

2. None of the other writers are writing.

Handout continues on the next page(s)

Page 4

3.2.3 Locking a File/Directory in the Hierarchy of the Path

Consider writing to a �le in the absolute path /home/users/student1/work/project2.txt. While
obtaining a write lock to the �le, you have to make sure that:

1. No other reader or writer is operating on �le project2.txt

2. No writer is modifying the hierarchy of directory. For example, consider a scenario
where client 1 is trying to rename sub-directory "work" to "play," and client 2 is
writing to project2.txt. Then client 2 should write - after client 1 is �nished - to
the new location /home/users/student1/play/project2.txt (and not to /home/users/stu-
dent1/work/project2.txt). The likelihood of inconsistencies in DFSs renders increasingly
high if whole directory paths are not locked. You will avoid inconsistencies in your FileStack
system by:

(a) Obtaining non-exclusive locks to all the directories in a given path, and

(b) Obtaining an exclusive lock for the �le to be altered (e.g., in the aboveexample).

Such a strategy will ensure that writers do not introduce inconsistencies in your �le system.
For readers, you will also follow almost the same strategy: you will lock all the directories and
the �le in the path by using non-exclusive locks. By applying this approach, you will not allow
any writer (similar to client 1 above) to rename or delete a directory when a reader is reading.
Finally, be aware of deadlocks while locking a hierarchy of directories/�les. You have to lock
di�erent directories and a �le in a path. You might obtain locks to some and fail in getting locks
to others. Design a mechanism that precludes deadlocks.

3.3 Replication

The second problem is to improve the performance through replication. The problem is moti-
vated from the type of access-pattern to �les that are seen in normal �le systems and distributed
�le systems. Some �les have a lot of requests (e.g., system log �les), while others are very rarely
accessed (e.g., some remote photos in a user's home directory). We refer to the former as hot-�les,
and the latter as cold-�les. In distributed systems, if there are a lot of requests attempting to
read/write to one hot-�le, the networking and processing loads on the storage server that stores
the hot-�le is very high, while that of the storage servers that host only cold-�les are rarely
utilized. Consequently, the waiting queue for accessing the hot-�les becomes very large, and
might demonstrate a bottleneck. You will provide a solution to avoid such potential bottlenecks
through replication.

Handout continues on the next page(s)

Page 5

3.3.1 Replication Policy

The naming server maintains a counter that keeps track of the number of requesters to a �le.
This information will be useful to measure the hot-ness of a �le (e.g., the larger the number of
requesters to a �le; the higher the hot-ness of the �le). To avoid stressing a replica as well as
its hosting storage server, you will scale replicas linearly as the number of requesters increases.
Speci�cally, you can set the number of replicas per a �le as follows:

num_replicas = ALPHA * num_requesters

where ALPHA is a positive constant. By controlling ALPHA, you control the number of replicas
per �le. In addition, you would want to limit the replicas of a �le. For that sake, you can
maintain a REPLICA_UPPER_BOUND, and avoid replicating a �le whose number of replicas has
exceeded this threshold. In particular, you can now set the number of replicas per �le as follows:

num_replicas = min (ALPHA * num_requesters , REPLICA_UPPER_BOUND)

This �ne-grained control of replication will alter the number of replicas even upon a change
of one or two requesters. This might add to an already large overhead of dynamic replication
(what we are essentially implementing). To enhance the policy, you can rather apply a coarse-
grained approach by rounding the number of replicas to the next integer that is a multiple of 20
(as an example). That is,

num_requesters_coarse = {N | N >= num_requesters & a mul t ip l e o f 20}

Afterwards, you can compute the number of replicas as follows (this is the �nal formula that
you should implement):

num_replicas = min (ALPHA * num_requesters_coarse , REPLICA_UPPER_BOUND)

Figure 2 shows an illustrative graph that demonstrates how the number of replicas for a �le
changes upon changing the number of requesters.

Figure 2: Linear Replication Policy with an upper-bound

Page 6

3.3.2 Read-request Handling for Hot-�les

A simple approach for the server to perform load-balancing is by randomly redirecting requests
to replicas.

3.3.3 Write-request Handling for Hot-�les

You will implement an invalidation-based policy. Speci�cally, during a write call, you will
invalidate all-but-one replicas, and subsequently write on the remaining replica (the remaining
�le). Keep in mind that if you are to write to a replicated �le, you have to wait for every reader
or a writer (if any) to release their/its lock(s).

4 Design and Implementation Guidelines

In this project, you will improve your Project 1 to add concurrency and replication. Hence, it
is vital that basic components of project 1 (RMI, storage and naming) are working well.

4.1 File Concurrency and Synchronization

The �rst important part in implementing correct synchronization is to provide each �le/direc-
tory with a capability to lock. But where do you implement the lock? Do you implement it at
the naming server? Or do you implement it at the storage server where the �le resides? How
would you ensure that locks work with replicated �les (second part of this project)? First, think
about these questions.

The second design decision is regarding queues. Recall that there are readers and writers
waiting to access a �le. A writer can lock only when there are no readers: what happens when
multiple readers request the �le - one after another? Will the writer ever get a chance to lock
the �le for writing?

The third decision is ensuring the ordering of reads/writes. A simple way is FIFO : the �rst
request (read/write) occurs before the second, second before the third, and so on. However, note
that there is no ordering between reads and writes. This compromises the exact ordering, but
helps improve the performance of distributed systems: all reads can go on together even if there
is one write in-between. For some systems (Google search, for instance), this works perfectly �ne
(Read the section 7.3.1 "Eventual consistency" in the Tanenbaum textbook). All reads should
be in FIFO, and all writes should be in FIFO. How do you ensure the order of reads and writes?
How are the requests queued?

4.2 Replication

Replication introduces whole new range of challenges. The exact logic of replication is not too
complicated. However, remember that you have to copy �les from storage servers to others.
This might require ensuring that directory hierarchy for a �le is exactly created (but do not
overwrite the �les that already exists in sub-trees) as in the original storage server.

The second issue is to re-think �le functionalities. What will happen if you read a �le? How
do you write a �le, and update all replicas at di�erent storage servers? How do you handle
�le/directory deletions?

Page 7

5 Starter Code

Please use the code in P2_StarterCode.zip.

The starter code is an extension of the starter code for Project 1. The starter code includes
complete replacements for the apps/, test/, and conformance/ directories, as these are all en-
tirely the course sta�'s responsibility, and are a�ected by the changes going from Project 1 from
Project 2.

The main features of the starter code are as follows:

� The build/ and client/ directories are una�ected, and are included just for completeness.

� The naming/ and storage/ directories contain only the new .java �les for the updated
Command and Service interfaces. These �les are meant to replace the existing ones that
you have. You should copy your implementations of the interfaces from Project 1, and
edit them to conform to the new interfaces. There are only a few new methods - lock and
unlock - in Service, and copy in Command.

� The unit/ directory is not included. You should copy your own, if you want to use the
unit tests that you already have.

� The rmi/ directory is not included. It is completely una�ected, and you should copy your
own rmi code into this directory.

� The common/ directory is not included, because there is only one �le in there. It does
change, but most of it stays the same as in Project 1. You should copy your Project 1
version, and then make the Path class implement Comparable for Project 2. The
purpose of this is to allow applications to pick a locking order when taking multiple locks
- the order on the paths will help to prevent deadlocks. A �le "NOTE" is included with
the starter code to give you a starting point in doing this, but if you choose to use it, you
should copy the method skeleton in "NOTE" into your own copy of Path.java.

Handout continues on the next page(s)

Page 8

6 Implementation Notes

6.1 Summary of Changes since Project 1

The naming server supports �le and directory locking. The Service interface therefore has
two new methods: lock and unlock. Each node in the directory tree on the naming server now
has a read-write lock. Locks for a path are always taken in order from root to �nal node. Threads
requesting the lock are granted it in �rst-come �rst-serve order, with the exception that threads
requesting shared access are granted the lock at the same time (if there is a block of threads in
the queue all requesting shared access, then when one of them gets shared access, they all do,
until the next thread requesting exclusive access, or until the end of the queue).

The naming and storage servers support replication. Read and write accesses are noted on
the naming server when �le lock requests occur. The storage server Command interface provides
the new copy method to support replication.

Path objects now implement Comparable. This is meant to allow an application to choose
a locking order if multiple locks need to be taken. All applications must take locks in the order
de�ned by Path.compareTo. See the big comment by that method for further explanation.

StorageServer now has an additional constructor StorageServer(File, int, int), which
takes two port numbers to force the client/storage and command interfaces to use the given
ports.

6.2 Locking

Naming server methods should not all be synchronized anymore. The read-write locks now
provide most of the mutual exclusion needed. There are a few exceptions, however. A student
that leaves all methods synchronized is not relying on the read-write locks.

Locking must be done carefully. For example, it is not acceptable to traverse a path and
get a list of directory tree objects along that path, and then lock each one. This is because if
the parent of an object remains unlocked, another thread can unlink the object from the tree
after the path is traversed, but before the object is locked. Then, the locking thread has locked
an object that no longer exists. When locking, it is necessary to lock an object, then consult
its child list, and then attempt to lock the next object, and so on. Locking an object should
prevent its child list from being modi�ed (at least by well-behaved clients).

It is also important to unlock all objects that have been locked when locking fails. For ex-
ample, if three components are locked before it is discovered that the fourth does not exist, then
those three components must all be unlocked.

It is desirable, but not necessary, to make the locks interruptible. This is because when the
naming server is shut down, a large number of service threads may still be pooled in lock queues.
It is better to stop these threads as soon as possible, instead of permitting them to take the
locks and continue performing operations on naming server data structures.

External control of locks is deliberate. This allows an external tool to take a lock, perform
several operations atomically, & then release it. Without explicit external locking, complex
atomic operations cannot be performed by a client.

Page 9

Attempting to take the same lock twice for reading can result in deadlock if another client
tries to take the lock for exclusive access in between the 2 attempts.

Taking a lock for shared access on a directory ensures that its child list will not be altered,
but does not ensure that the children will not be changed. A subdirectory's child list can be
altered, and a �le can be written. Taking a lock for exclusive access on a directory ensures that
neither it nor the entire subdirectories under it are being accessed in any way by any client.

All the above statements concerning locking assume that it has been implemented correctly,
and that all clients are well-behaved. Operations that modify a �le or directory should lock that
�le or directory for exclusive access. Operations that work on an entire directory tree at once
should lock the root for exclusive access. Operations that read the state or contents of one �le
or directory should take the lock on that object for shared access.

6.3 Replication

Since the naming server has no good way to measure actual read and write requests on the
storage servers, it considers a lock for shared access to be a read, and a lock for exclusive access
to be a write.

During replication, the naming server should allow threads other than the current reader to
read existing copies of the �le. It is acceptable to make the reader that caused the replication
wait for the replication to complete. However, the gold standard in this is to make replication
asynchronous with all readers. Caution must be used if this is attempted however - if the asyn-
chronous replication thread has to take the lock on the object for shared access, it is important
that it will not go to the end of the lock queue when attempting to do this, but take the lock
together with the current thread. It would be a mistake if the replication thread went into the
queue after an exclusive access thread, which will invalidate the copy it has not yet created.

You should be careful about race conditions related to replication. A second reader should
not be able to access a copy of a �le that has not yet been completely downloaded by the server
making the copy. On the other hand, if this other reader causes another replication, then it
should not go to the same server that is still currently downloading a copy.

Threads reading the same �le may still access it concurrently, even though there are locks,
because these locks allow shared access. It may still be necessary to make a few synchronized
statements when these threads access shared server or per-�le data structures. Depending on
the design, this may be especially important in the code for replication.

The storage server copy method should support large �les - up to 231 bytes in size (�le sizes
in the �le system are reported as longs). However, it is not practical to copy that many bytes
at a time, in great part because the JVM cannot support an array whose size is not an int, or
even one whose size is just very large. Therefore, the copy method should download one block
at a time, where a block can be 1MB or some other size chosen by the implementor.

Page 10

7 Test Suite

We have provided test code for Project 2 as well. The test cases test if your code is conforming
to the above design guidelines, and to check if the implementation is correct. Please note that
this is a service o�ered to help you design and test faster. You are solely responsible
to make sure that your code works perfectly. During grading, we will also use other test
cases to make sure that your project is working as expected. We have also provided "apps" that
will let you use your distributed �le system using command-line.

8 Rubric

Common Package (1 Points)

•1pt CompareTo is implemented

Naming Server (85 Points)

• Lock Test

◦3pts Lock rejects null arguments and bad paths

◦3pts Two readers can simultaneously lock the same �le

◦3pts Two writers can simultaneously lock di�erent �les under the same directory

◦3pts A reader and a writer can simultaneously lock a directory and its child respectively

◦3pts A writer cannot lock a �le currently locked by another reader

◦3pts A reader cannot lock a �le currently locked by another writer

◦3pts A writer cannot lock a �le currently locked by another writer

◦3pts A reader cannot lock a �le whose parent is currently locked by a writer

◦3pts A writer cannot lock a directory whose child is currently locked by a reader

◦3pts A writer cannot lock a directory whose child is currently locked by a writer

• Queue Test

◦4pts Two readers simultaneously lock a �le

◦8pts A writer is queued until �rst two readers unlock

◦8pts Two readers are queued until writer unlocks and then simultaneously

• Replication Test

◦3pts File is replicated after a large number of read lock requests

◦3pts File is not invalidated due to read lock requests

◦3pts All (but one) replicas are invalidated after a write lock request

◦3pts Copy rejects null arguments

◦3pts Copy is provided with the up-to-date storage server

◦3pts Copy rejects duplicate copy requests

◦3pts Delete rejects null arguments

◦3pts Delete rejects wrong path

◦3pts Delete rejects duplicate delete requests

Page 11

• Deletion Test

◦4pts Delete deletes all replicas of a �le

◦4pts Delete deletes all replicas of a directory

Storage Server (9 Points)

• Replication Test

◦3pts Copy rejects null arguments and bad paths

◦3pts Copy creates new destination �les and their parent directories (if non-existent)

◦3pts Copy correctly replaces existing destination �les

Code Style (5 Points)

•5pts Method Comments, Block comments, Readability, Dead code, Code design

9 Deliverable

As a �nal deliverable, you should submit an archive containing the source code for the RMI
library, naming server, storage server, and test cases in separate directories.

10 Late Policy

� If you hand in on time, there is no penalty.

� 0-24 hours late = 25% penalty.

� 24-48 hours late = 50% penalty.

� More than 48 hours late = you lose all the points for this project.

NOTE: You can use your grace-days quota. For details about the quota, please refer to the
syllabus.

Page 12

	Learning Objective
	Project Objective
	Conceptual Architecture
	System Description
	Consistency
	Reader Operation
	Writer Operation
	Locking a File/Directory in the Hierarchy of the Path

	Replication
	Replication Policy
	Read-request Handling for Hot-files
	Write-request Handling for Hot-files

	Design and Implementation Guidelines
	File Concurrency and Synchronization
	Replication

	Starter Code
	Implementation Notes
	Summary of Changes since Project 1
	Locking
	Replication

	Test Suite
	Rubric
	Deliverable
	Submission
	Late Policy

