Recitation 9

Zeinab Khalifa
October 29th, 2020

Carnegie Mellon University Qatar

What is MPI?

e It's alibrary of routines that can be used to create parallel programs
e Applications can be written in C, C++ and calls to MPI can be added where
required.

MPI Program Skeleton

. Initialize
Program ,, mp1 prototypes, ; MPI

include some serial & (parallel
file code code
begins)

starts

Do work
and
message
passing

Terminate
MPI
(parallel
code
ends)

Serial
code

Program
ends

Communicators and Groups

e Communicator is a set of processes that may communicate with each other
and may consist of processes from a single group or multiple groups.

e \When an MPI application starts, the group of all processes is initially given a
predefined name called MPI_COMM_WORLD

MPI_COMM_WORLD

Ranks

e \Within a communicator, each process has its own and unique ID or rank
e These IDs are commonly used conditionally to control program execution
e Ranks start from 0

MPI Routines

MPI_INIT — initialize the MPI library (must be the first routine called)
MPI_COMM_SIZE - determines the number of processes in the group
associated with the comm communicator

MPI_COMM_RANK — get the rank of the calling process in the communicator
MPI_SEND - send a message to another process

MPI_RECV - send a message to another process

MPI_FINALIZE — clean up all MPI state (must be the last MPI function called
by a process)

MPI_Witime — determines elapsed wall clock time in seconds on the calling
processor. We'll use this to measure the runtime of an MPI| program

Let’s write our first MPI program...

MPI Send

MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, int tag,
MPI_Comm comm)

This is a basic blocking send operation. It returns only after the application
has sent the data to the recipient(s)

MPI Datatype is very similar to a C datatype: MPIl_INT, MPI_CHAR

The count refers to how many datatype elements should be communicated
tag is a user-defined “type” for the message

dest is the rank of the target process in the communicator specified by comm.

MPI Recv

e MPI_Recv(void *buf, int count, MPI_Datatype datatype, int src, int tag,
MPI_Comm comm, MPI_Status *status)

e This receives a message and blocks until the requested data is available in
the application buffer

e source is rank in communicator comm

e status contains further information on who sent the message, how much data
was actually received,..

More MPI programs...

