
15-440
Distributed Systems

Collective Routines in MPI

Zeinab Khalifa

Agenda
• Last recitation: Point-to-point communication in MPI

• Today’s recitation: collective communication in MPI

Point-to-point communication

P2P – Exercise (1)
1. Download Parallel_Sum.c from course website

2. Run the code:

- Login to hadoop@<andrewid>-n01.qatar.cmu.edu

- password: hadoop

- mpicc Parallel_Sum.c –o Parallel_Sum

- scp ./Parallel_Sum <andrewid>-n02.qatar.cmu.edu:<path>(similarly for n03 and n04)

- mpiexec –f machinefile –np 4 ./Parallel_Sum (note: -np is the number of processes)

3. What have we done in parallel sum using point-to-point
communication?

Parallel Sum – P2P

P0
----------------- N=[1,2,…..,1000] ------------------- P1

P2

P3

• Root initializes the array

Parallel Sum – P2P

P0
----------------- N=[1,2,…..,1000] -------------------

N[0:249], N[250:499], N[500:749], N[750:999]
P1

P2

P3

• Root initializes the array

• Root breaks down the array with a loop (process
#, num_elements_per_process, etc.)

Parallel Sum – P2P

P0
----------------- N=[1,2,…..,1000] -------------------

ps=500 N[250:499], N[500:749], N[750:999]

• Root initializes the array

• Root breaks down the array with a loop (process
#, num_elements_per_process, etc.)

• Root calculates it’s own partial sum

P1

P2

P3

Parallel Sum – P2P

P0
----------------- N=[1,2,…..,1000] -------------------

ps=500 N[250:499], N[500:749], N[750:999]

• Root initializes the array

• Root breaks down the array with a loop (process
#, num_elements_per_process, etc.)

• Root calculates it’s own partial sum

• Root sends each process elements to calculate

P1 N[250:499]

P2 N[500:749]

P3 N[750:999]

Parallel Sum – P2P

P0
----------------- N=[1,2,…..,1000] -------------------

ps=500 N[250:499], N[500:749], N[750:999]

• Root initializes the array

• Root breaks down the array with a loop (process
#, num_elements_per_process, etc.)

• Root calculates it’s own partial sum

• Root sends each process elements to calculate

P1 Ps=250

P2 Ps=100

P3 Ps=176

• Each process calculates the sum

Parallel Sum – P2P

P0
----------------- N=[1,2,…..,1000] -------------------

ps=500 ps=250 ps=100 ps=176

• Root initializes the array

• Root breaks down the array with a loop (process
#, num_elements_per_process, etc.)

• Root calculates it’s own partial sum

• Root sends each process elements to calculate

P1 Ps=250

P2 Ps=100

P3 Ps=176

• Each process calculates the sum

• Each process sends back the result

Parallel Sum – P2P

P0
----------------- N=[1,2,…..,1000] -------------------

Total sum = 1026

• Root initializes the array

• Root breaks down the array with a loop (process
#, num_elements_per_process, etc.)

• Root calculates it’s own partial sum

• Root sends each process elements to calculate

P1 Ps=250

P2 Ps=100

P3 Ps=176

• Each process calculates the sum

• Each process sends back the result

• Root adds all partial sums and has the result

Collective communication

Collective routines
• Broadcast

• Gather

• AllGather

• Scatter

• Reduce

• AllReduce

• ReduceScatter

• Scan

• Alltoall

Collective routines
• Broadcast

• Gather

• AllGather

• Scatter

• Reduce

• AllReduce

• ReduceScatter

• Scan

• Alltoall

Scatter and Gather
• Scatter distributes distinct messages from a single source task to each task in the group

• Gather gathers distinct messages from each task in the group to a single destination task

A B C DP0

P1

P2

P3

Data

P
ro

c
e

s
s

Scatter
A

B

C

D

P0

P1

P2

P3

Data

P
ro

c
e

s
s

Gather

A B C DP0

P1

P2

P3

P
ro

c
e

s
s

Reduce and All Reduce
• Reduce applies a reduction operation on all tasks in the group and places the result in one task

• Allreduce applies a reduction operation and places the result in all tasks in the group. This is
equivalent to an MPI_Reduce followed by an MPI_Bcast

A

B

C

D

P0

P1

P2

P3

Data

P
ro

c
e

s
s

Reduce
A*B*C*DP0

P1

P2

P3

Data

P
ro

c
e

s
s A

B

C

D

P0

P1

P2

P3

Data

P
ro

c
e

s
s

Allreduce
A*B*C*D

A*B*C*D

A*B*C*D

A*B*C*D

P0

P1

P2

P3

Data

P
ro

c
e

s
s

Parallel Sum - CR
Exercise: How can we compute the parallel sum using CR?

Hints (1): which CR is similar to this step in P2P communication?

Hint (2): which CR is similar to the following steps we did in P2P communication?

1. Root sends each process elements to calculate

2. Each process calculates the sum

3. Each process sends back the result

4. Root adds all partial sums and has the result

P0
----------------- N=[1,2,…..,1000] -------------------

ps=500 N[250:499], N[500:749], N[750:999]
P1 N[250:499]

P2 N[500:749]

P3 N[750:999]

Parallel Sum - CR
Exercise: How can we compute the parallel sum using CR?

P0 N/4 N/4 N/4 N/4

P1

P2

P3

P0 N/4, ps0 = sum(arr[n/4])

P1 N/4, ps0 = sum(arr[n/4])

P2 N/4, ps0 = sum(arr[n/4])

P3 N/4, ps0 = sum(arr[n/4])

Receive Buffer:
Each process calculates the
sum of the receive buffer

P0 ps0 + ps1 + ps3 + ps4

P1

P2

P3

Scatter Reduce

Parallel Sum - CR
Exercise: Download the starter code and implement parallel sum using the
collective routines.

MPI_Scatter & MPI_Reduce
MPI_SCATTER(sendbuf, sendcount,
sendtype, recvbuf, recvcount, recvtype,
root, comm)

sendbuf: address of send buffer
sendcount: number of elements sent to
each process
sendtype: data type of send buffer
elements
recvbuf: address of receive buffer
recvcount: number of elements in receive
buffer
recvtype: data type of receive buffer
elements
root: rank of sending process
comm: communicator

MPI_REDUCE(sendbuf, recvbuf, count, datatype,
op, root, comm)

sendbuf: address of send buffer
recvbuf: address of receive buffer
count: number of elements in send buffer
datatype: data type of elements of send buffer
op: reduce operation
root: rank of root process
comm: communicator

P2P vs. CR

What is the difference?
• Point-to-point communication

One process sends a message to
another one

• Collective communication

- Collective communication
operations are composed of
several point-to-point operations
& Optimized internal
implementations

• Can broadcast be implemented using MPI_Send & MPI_Recv?

- Yes

- However, it is less efficient

