
15-440: Distributed Systems

Zeinab Khalifa

Sept 19, 2019

Recitation 4

Last lecture

• Entities, Architecture and

Communication

• RMI

• Interfaces

• Skeleton & Stub

• Example

• Packages dive-in:

 RMI

 Common

 Naming

 Storage

** Note: You should implement the packages in
the above order.

Today

RMI package
(overview)

RMI package

• It contains two parametrized (generic-type) classes:
1. Skeleton.java

2. Stub.java

• RMIException

• Both the Skeleton and the Stub classes take a remote interface
as a parameter.

RMI package

Client at address IP Server at address IP’

Stub’s client
socket at port P

Skeleton’s
listening socket

at port P’

Skeleton’s
listening socket

at port P’’

(1) TCP connection request

(2) Communication

• We implement multi-threaded

socket programming

• The skeleton is multi-threaded

• When it is started, the main thread

creates a listening socket and waits

for client requests.

• Once a client's request is received,

the skeleton accepts the request,

creates a new thread, and

instantiates a new service socket to

handle the communication

Skeleton.java
public void start() {

create serverSocket();

bind(address);

while (!stopped) {

clientSocket = accept();

Thread a = new Thread (new serviceThread(clientSocket));

a.start() ;

}

}

serviceThread {

String methodName = (String) in.readObject();

Class[] argTypes = (Class[]) in.readObject();

Object[] args = (Object[]) in.readObject();

Method m = c*.getMethod(methodName,argTypes);

Object result = m.invokeMethod(implementation*, args);

out.writeObject(result);

}
** c is the interface,
** implementation is the implementation of the interface

Stub.java

• A stub is implemented in Java as a dynamic proxy

• A proxy has an associated invocation handler

• The invoke method checks whether the invoked method is or
remote

• If the method is remote, the proxy connects to the
corresponding skeleton at the server side, marshalls the
method name, parameter types and values, and sends the
entailed byte stream.

• http://tutorials.jenkov.com/java-reflection/dynamic-
proxies.html

http://tutorials.jenkov.com/java-reflection/dynamic-proxies.html

Stub.java (creating proxies)

T proxy/stub = java.lang.reflect.Proxy.newProxyInstance(c.getClassLoader(), new Class[] {c*}, new ProxyHandler());

public class ProxyHandler implements InvocationHandler {

public Object invoke (String methodname, Class[] argTypes, Object[] args) {

if method is local // can be toString, equals, hashCode

call locally implemented method accordingly

} else {

- create socket

- connect (address)

- out.writeObject(methodName);

- out.writeObject(argTypes);

- out.writeObject(args);

- Object result = in.readObject();

- close socket

- return result

}

}

** Class loaders: give you a dynamic instance of the class during runtime

RMI package
(Example: File Server)

Creating a file server:

1. Defining a remote interface

2. Defining a server class

3. Creating the server object and
making it remotely-accessible

4. Accessing a server object
remotely

Creating a file server:

1. Defining a remote interface

2. Defining a server class

3. Creating the server object and
making it remotely-accessible

4. Accessing a server object
remotely

public interface Server {

public long size(String path) throws ..;

public byte[] retrieve(String path)
throws ..;

}

Creating a file server:

1. Defining a remote interface

2. Defining a server class

3. Creating the server object and
making it remotely-accessible

4. Accessing a server object
remotely

public class ServerImplementation implements
Server {

// Fields and methods. ...

public long size(String path) throws ..{
//size method impl.

}

public byte[] retrieve(String path) throws ..{
// retrieve method impl.

} ...

}

Creating a file server:

1. Defining a remote interface

2. Defining a server class

3. Creating the server object
and making it remotely-
accessible

4. Accessing a server object
remotely

// Create the server object.

ServerImplementation server = new ServerImplementation(...);

// At this point, the server object is a regular local
object, and is not accessible remotely.

// Create the skeleton object.

Skeleton skeleton = new Skeleton(Server.class, server);

// Start the skeleton, making the server object
remotely-accessible.

skeleton.start();

Creating a file server:

1. Defining a remote interface

2. Defining a server class

3. Creating the server object and
making it remotely-accessible

4. Accessing a server object
remotely

// Create a stub which will forward method
calls to the remote object.

InetSocketAddress address = new
InetSocketAddress(hostname, port);

Server server = Stub.create(Server.class, address);

// Perform some method calls using the stub.

long file_size = server.size("/file"); ... byte[] data =
server.retrieve("/file");

Naming package

Naming package

Naming
Server

Registration
Interface

Service
Interface

ImplementsImplements

isDirectory()
isFile()

…
register()

• The naming package
contains:

1. Registration interface

2. Service interface

3. NamingServer class:
creates the necessary
skeletons and stubs and
implements the logic of all
the operations handled by
the Naming Server

Naming package

Naming
Server

Registration
Interface

Service
Interface

ImplementsImplements

isDirectory()
isFile()

…
register()

• The naming package
contains:

1. Registration interface

2. Service interface

3. NamingServer class:
creates the necessary
skeletons and stubs and
implements the logic of all
the operations handled by
the Naming Server

Service
Skeleton

Registration
Skeleton

Naming package (NamingServer.java)

• The Naming Server creates and
maintains the FileStack directory
tree:
Top-level directory being the root

represented by the path "/".
 Inner tree nodes represent directories,
 the leaves represent files

• The Naming Server builds its tree
during registration.

• After registration, the Naming Server
uses its tree to handle operations.

• It is important to design the directory
tree in a way that allows the Naming
Server to easily look-up, traverse and
alter the tree, as well as detect
invalid paths.

Naming package (Tree)

•How can we build the
Directory Tree?
• One way is to use

Leaf/Branch
approach:
• Leaf will represent:

• A file (name) and stub

• Branch will represent:
• A list of

Leafs/Branches

Naming package (Classes)

public class Node {

String name;

}

public class Branch extends Node {

ArrayList<Node> list;

}

public class Leaf extends Node {

Command c;

Storage s;

}

Naming package

NamingStubs.java (public
class)

• Creates:
• Registration Stub
• Service Stub

Storage package

Storage package
Storage
Server

Command
Interface

Storage
Interface

ImplementsImplements

size
read
write

create
delete

Storage
Skeleton

Command
Skeleton

Storage
Stub

Command
Stub

These stubs are sent to the Naming
server during registration

Storage package

• The Storage Package:

• Command.java (interface)

• Storage.java (interface)

• StorageServer.java (public class)

• Implements:

• Command Interface

• methods(s): create, delete

• Storage Interface

• methods(s): size, read,
write

• Has functions:

• start()

• stop()

Storage package

• The StorageServer start() function will:
• Start the Skeletons:

• Command Skeleton

• Storage Skeleton

• Create the stubs
• Command Stub

• Storage Stub

Storage package

• The StorageServer start() function will:
• Registers itself with the Naming Server using:

• Its files

• The created stubs

• Post registration, we receive a list of duplicates (if
any):
• Delete the duplicates

• Prune directories if needed

Storage package

• The StorageServer stop() function will:
• Stop the skeletons:

• Command Skeleton

• Storage Skeleton

