
1

K-Means clustering on MapReduce

Contents
Introduction ... 1

Instructions .. 1

MPI vs. MapReduce K-Means implementation .. 2

MapReduce Skeleton .. 2

Mapper class (i.e., WordCount mapper) ... 3

Reducer class (i.e., WordCoutReducer) .. 3

Main configurations .. 3

KMeans on MapReduce .. 3

Map Phase ... 3

Combiner .. 4

Reduce Phase .. 6

Running the Job .. 6

Command Line Instructions .. 7

How to run your code? .. 7

Troubleshooting .. 7

Introduction
This handout covers the following topics:

 Instructions for the projects

 A comparison between MPI and MapReduce K-Means clustering implementation

 Quick overview of the MapReduce Skeleton using the WordCount example

 K-Means MapReduce Implementation (Mapper, Reducer, Combiner and configurations)

 Command line instructions

Instructions
 You will use Java for this assignment

 Refer to P3 handout for how K-Means clustering works

 You will be using your hadoop account on your clusters:

hadoop@<andrew-id>.n01.qatar.cmu.edu

if you have not changed your password already, please change it with the command: $passwd

mailto:hadoop@%3Candrew-id%3E.n01.qatar.cmu.edu

2

MPI vs. MapReduce K-Means implementation

 MPI MapReduce

Data

partitioning

In MPI we partitioned the points

from the master (rank == 0) and

sent them to the slaves for

processing.

Hadoop DFS is responsible for chunking the input

files as we have seen in wordcount.

Centroids

calculation

The centroids are initially picked

by the master code and sent

across all participating machines.

This is because MPI is not a

shared-memory model.

MapReduce is a shared-memory model, the

centroids can be shared among iterations.

To share the centroids, a file can be created on

HDFS to include the initial K centroids (in iteration

0) and the updated centroids in each iteration.

You can create a FileSystem in your program’s
Configuration()

MapReduce Skeleton
In this section, we will further analyze the wordcount example from the recitation and we will introduce

key concepts that we will utilize in the K-Means implementation:

Figure 1MapReduce WordCount

3

Mapper class (i.e., WordCount mapper)

 Extends MapReduceBase

 Implements Mapper <LongWritable, Text, Text, IntWritable>

 Should implement the map function:
public void map (LongWritable key, Text value, OutputCollector<Text,

IntWritable> output,Reporter report)

The map function takes a key, value, output collector and a reporter:

 Key: represents the offset in the file (in Figure 1, key1)

 Value: The value of the offset (In Figure 1, “Tamim is” for offset 0)

 Output Collector: collects the output from the map function and feeds it into the Reduce

phase. The type of the output collector depends on the <key,value> pair type of the map

output (in Figure 1, the type is <Text, IntWritable>)

 Reporter: reports any failure on the mapper

Reducer class (i.e., WordCoutReducer)

 Extands MapReduceBase

 Implements Reducer Reducer <Text, IntWritable, Text, LongWritable>

 Implements the reduce function with the following parameters:

 Key: input key where the data is combined together (in case of word count, the key is the

word.

 Iterator for the values: iterates over the values assigned for a given key.

 Output Collector: we output a word and its count, with types of output <key, value> pair as
<Text, LongWritable>

 Reporter: reports any failure on the reducer.

Main configurations
There is a set of configurations that should be considered in the main function, before running the job:

1. Defining a new job configuration: new JobConf(class instance)

2. Set the mapper and the reducer classes

3. Define the types of the map and reduce <key, value> output types:
 conf.setMapOutputKeyClass(Text.class);

 conf.setMapOutputValueClass(IntWritable.class);

 conf.setOutputKeyClass(Text.class);

 conf.setOutputValueClass(LongWritable.class);

4. Run the job

 JobClient.runJob(conf);

KMeans on MapReduce

Map Phase
1) The mapper reads the data input file and gets the centroids from last iteration (or initial iteration)

2) The file is chunked and fed into the map function.

3) You should have predefined the mapper <key, value> pairs with the key being the offset and the

value is a point read from the file.

4) For each find the nearest centroid and assign the point to it (Figure 2 illustrates the process)

4

Figure 2 Kmeans Map Task

Combiner
The output of the map phase is huge (= total number of points) and we shall need to use a combiner to

minimize the size of the data before sending it to the reducer. Let’s see an example of a combiner in

WordCount. Figure 3 shows a WordCount example without a combiner as opposed to Figure 3 with a

combiner. The number of keys processed by the Reduce task is reduced from 9 to 4. This will be helpful

in our KMeans implementation so that we minimize the number of points to be processed by the Reduce

phase. The combiner calculates the average of the data instances for each cluster id, along with the

number of the instances. It outputs (cluster id, (intermediate cluster centroid, number of instances)).

To define a combiner, you set it in your configuration as:
job.setCombinerClass(IntSumReducer.class);

where IntSumReducer is a Reducer class.

5

Figure 3 WordCount without a combiner

Figure 4 WordCount with a combiner

6

Reduce Phase
In the reduce phase, and based on the output of the combiner, you need to recalculate the centroids by

iterating over the values and output the intermediate centroids. Since we are sharing the centroids among

iterations, the centroid values have to be updated using the configuration file as stated in the previous

section.

Running the Job
The main function involves two parts:

1. Configurations

2. Running multiple iteration jobs using the above Mapper + Combiner + Reducer. You can use the

sample skeleton for the implementation (but feel free to use your own):

int iteration = 0;

// counter from the previous running import job

long counter = job.getCounters().findCounter(Reducer.Counter.CONVERGED).getValue();

iteration++;

while (counter > 0) {

conf = new Configuration();

conf.set("recursion.iter", iteration + "");

job = new Job(conf);

job.setJobName("KMeans " + iteration);

// ...job.set Mapper, Combiner, Reducer... //

// always take the output from last iteration as the input

in = new Path("files/kmeans/iter_" + (iteration - 1) + "/");

out = new Path("files/kmeans/iter_" + iteration);

//... job.set Input, Output... //

// wait for completion and update the counter

job.waitForCompletion(true);

iteration++;

counter = job.getCounters().findCounter(Reducer.Counter.CONVERGED).getValue();

}

You can define the counter in the reducer class and update it as necessary:

public enum Counter{

CONVERGED //name of the counter

}

context.getCounter(Counter.CONVERGED).increment(1);

7

Command Line Instructions

How to run your code?
1. Create a folder for the .class files of your application:

$ mkdir KMeans_Classes

2. Compile your KMeans program (where Kmeans.java is where you have your implementation)

$ javac -classpath $(hadoop classpath) -d KMeans_Classes Kmeans.java

3. Create the jar file required by Hadoop to run your application using the following command:

$ jar -cvf Kmeans.jar -C KMeans_Classes/ .

4. Create an input directory in HDFS using the following command:

hadoop dfs –mkdir ./KmeansInput (for new versions)

5. Copy your points file to HDFS input directory using the following command:

hadoop dfs - copyFromLocal points.txt ./KmeansInput

6. You can check if the points file was copied correctly by:

hadoop dfs –ls ./ KmeansInput

7. Run your Kmeans application (where KMeans is the classname, if KmeansOutput is not created,

please create it as you created the KmeansInput)

hadoop jar Kmeans.jar KMeans ./KmeansInput ./KmeansOutput 100 3 5

8. You can check your output file:

hadoop dfs -ls ./KmeansOutput

Troubleshooting
If you face any issues, try to restart using the below commands and then restart your cluster

1) #stop-all.sh
2) #start-all.sh

