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Project 1: Recap

* Applied the knowledge of client-server communication and
Remote Method Invocation (RMI) to build a Distributed File
System denoted as FileStack

 Employed stubs and skeletons to mask communication,

thereby transparently locating and manipulating files stored
remotely at a cluster of machines

Carnegie Mellon University Qatar




Entities & Architecture

* Storage Servers (5Ss)

e Each SS stores physically files to share in a directory (denoted as temporary
directory) in its local file system

* Naming Server (NS)

e Stores metadata about all shared files in the form of a mapping from filenames to
storage servers (like DNS)

* Clients
» Perform operations on files (e.g., write, read etc.)

o Architecture
* Based on client-server architecture
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Project 2

* [nvolves building on your Project 1 Distributed File
System (DFS): FileStack

» P2 StarterCode: Copy files into your P1 folder

e Release Date: October 14th

* Due date: November 1st

Ao igdsglagy l =i aaly
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File Correctness & Consistency

* Did we allow multiple clients to write on a file?
Yes!

* Did we allow a client to read a file under modification?
Yes!

Clent ¢ Cwmetemes
File

Shared

abc.txt

Client A
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Project 2 Objectives

1. Devise and apply a synchronization algorithm that:
= achieves correctness while sharing files

» and ensures fairness to clients.

2. Devise and apply a replication algorithm that:
= achieves load-balancing among storage servers

* and ensures consistency of replicated files.
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Project 2 Objectives

—

. Logical Synchronization of Readers and
Writers

2. Devise and apply a replication algorithm that:
= achieves load-balancing among storage servers

* and ensures consistency of replicated files.
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Mutual Exclusion

1. Reader:

= Reader is a Client who wishes to read a file at a SS

= Reader first requests a read/non-exclusive/shared lock

2. Writer:

= \Writer is a Client who wishes to write to a file at a SS

= \Writer first requests a write/exclusive lock

3. Order:

= Readers and writers are queued and served in the FIFO order

Ao igdsglagy l =i aaly
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Read Locks

» Readers request the NS for read locks before reading files
» Readers do not modify contents of a file/directory

* Multiple readers can acquire a read lock simultaneously
» Readers unlock files once done
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Write Locks

* \Writers request the NS for write locks before
reading/writing to files

* \Writers can modify contents of files/directories
* Only one writer can acquire a write lock at a time

 \Writers unlock files once done
P dgdglag gl =i 2 ol
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Write Locks

NS grants a write lock on a file if:

 No reader is currently reading the file

* No writer is currently writing to the file

 Assume a writer requests a write lock for project” txt:

/FileStack/users/studentl/work/project2.txt
NS applies read locks on all the directories in the path to prevent modifications

NS then grants a write lock to the requestor of project2.txt
P dgdyglagy gl =i 2y
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Service Interface

* [wo new operations available to Clients:
o [LOCK(path, read/write)

 UNLOCK(path, read/write)

Carnegie Mellon University Qatar




Project 2 Objectives

Dynamic Replication of Files
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Why Replicate?

 |nour DFS, we'll have two kinds of Files:

 Files that have a lot of requests

* These are denoted as “hot-files"

* Files that are very rarely accessed

* These are denoted as “cold-files"

* To achieve load-balancing, we can replicate "hot-files" onto other
>>S Lty lmasds
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How Many Replicas?

* TJo measure file how "hot” a file is, the NS can keep track of
the number of requests to a file:

* num_requests: number of read requests to a file

* Joscale replicas linearly with the increase of num_requests:

* num_replicas = & * num_ requests
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How Many Replicas?

 However, we need to limit the number of replicas:

* num_replicas = min(a * num_ requests, upper_bound)

* Thisis still too sensitive/fine-grained:

* num_requests_coarse: num_ requests rounded to the nearest
multiple of 20

* num_replicas = min(a * num_requests_coarse, upper_bound)

Ao igdsglagy il =i aaly
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How Many Replicas?

Number of Requests
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When to Replicate?

* N

S would want to store num_requests as file metadata

owever, how can we determine and in turn update

num_requests over time?

We know that Clients invoke read operations on storage servers

Therefore, every "read” lock request from a client is deemed as a
read operation

Afterward, NS increments num_requests
Reavaluate num_replicas
Ao agdselagy gl =i 2 aly
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How can we Replicate?

NS first elects one or many SSs to store the replicas

NS commands each elected SS to copy the file from the
original SS

* Therefore, the metadata of a file now includes a set of SSs
instead of a single SS
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How to Update Replicas

* When a Client requests a write lock on a file:

= |t causes the NS to invalidate all the replicas except the locked one

* |nvalidation is achieved by commanding those SSs hosting
replicas to delete the file

 \When the Client unlocks the file, the NS commands SSs to

copy the modified file
P dgdyglagy il =i oy
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The Command Interface

* One new operation available to the NS:

 COPY (path P, StorageStub S)
copies file with path P from StorageStub S

Carnegie Mellon University Qatar




Implementation Tips: Synchronization

* (Consider a Lock object that:
* Stores alist of "Requests” (represents a read/write Request)

* |sassignedto each Node in your tree

e Inthenew LOCK/UNLOCK method:

 J[raverse your tree
 (Obtain/Release locks as necessary
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Implementation Tips: Replication

» Keep track of the number of reads for files:

* You need to modity your Tree data structure

* (reate a formula for calculating the number of
replicas given the number of reads

e Similar to the one shown earlier

o After each read/write:

Update the number of replicas
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