15-440
Systems

DistribL

RecC|

tec
tatl

on 6

Tamim Jabban

,J:Jsxs glead N 4, IE.._I»_.I_x
Carnegie Mellon University Qatar




Agenda

* Project 1 Recap

* Project 2 Objectives

Carnegie Mellon University Qatar




Project 1: Recap

* Applied the knowledge of client-server communication and
Remote Method Invocation (RMI) to build a Distributed File
System denoted as FileStack

 Employed stubs and skeletons to mask communication,

thereby transparently locating and manipulating files stored
remotely at a cluster of machines

Carnegie Mellon University Qatar




Entities & Architecture

* Storage Servers (5Ss)

e Each SS stores physically files to share in a directory (denoted as temporary
directory) in its local file system

* Naming Server (NS)

e Stores metadata about all shared files in the form of a mapping from filenames to
storage servers (like DNS)

* Clients
» Perform operations on files (e.g., write, read etc.)

o Architecture
* Based on client-server architecture

Carnegie Mellon University Qatar




Agenda

* Project 1 Recap

* Project 2 Objectives

Carnegie Mellon University Qatar




Project 2

* [nvolves building on your Project 1 Distributed File
System (DFS): FileStack

» P2 StarterCode: Copy files into your P1 folder

e Release Date: October 14th

* Due date: November 1st

Ao igdsglagy l =i aaly

Carnegie Mellon University Qatar




File Correctness & Consistency

* Did we allow multiple clients to write on a file?
Yes!

* Did we allow a client to read a file under modification?
Yes!

Clent ¢ Cwmetemes
File

Shared

abc.txt

Client A

Carnegie Mellon University Qatar




Project 2 Objectives

1. Devise and apply a synchronization algorithm that:
= achieves correctness while sharing files

» and ensures fairness to clients.

2. Devise and apply a replication algorithm that:
= achieves load-balancing among storage servers

* and ensures consistency of replicated files.

Carnegie Mellon University Qatar




Project 2 Objectives

—

. Logical Synchronization of Readers and
Writers

2. Devise and apply a replication algorithm that:
= achieves load-balancing among storage servers

* and ensures consistency of replicated files.

Carnegie Mellon University Qatar




Mutual Exclusion

1. Reader:

= Reader is a Client who wishes to read a file at a SS

= Reader first requests a read/non-exclusive/shared lock

2. Writer:

= \Writer is a Client who wishes to write to a file at a SS

= \Writer first requests a write/exclusive lock

3. Order:

= Readers and writers are queued and served in the FIFO order

Ao igdsglagy l =i aaly

Carnegie Mellon University Qatar




Read Locks

» Readers request the NS for read locks before reading files
» Readers do not modify contents of a file/directory

* Multiple readers can acquire a read lock simultaneously
» Readers unlock files once done

Carnegie Mellon University Qatar




Write Locks

* \Writers request the NS for write locks before
reading/writing to files

* \Writers can modify contents of files/directories
* Only one writer can acquire a write lock at a time

 \Writers unlock files once done
P dgdglag gl =i 2 ol

Carnegie Mellon University Qatar




Write Locks

NS grants a write lock on a file if:

 No reader is currently reading the file

* No writer is currently writing to the file

 Assume a writer requests a write lock for project” txt:

/FileStack/users/studentl/work/project2.txt
NS applies read locks on all the directories in the path to prevent modifications

NS then grants a write lock to the requestor of project2.txt
P dgdyglagy gl =i 2y

Carnegie Mellon University Qatar




Service Interface

* [wo new operations available to Clients:
o [LOCK(path, read/write)

 UNLOCK(path, read/write)

Carnegie Mellon University Qatar




Project 2 Objectives

Dynamic Replication of Files

Carnegie Mellon University Qatar




Why Replicate?

 |nour DFS, we'll have two kinds of Files:

 Files that have a lot of requests

* These are denoted as “hot-files"

* Files that are very rarely accessed

* These are denoted as “cold-files"

* To achieve load-balancing, we can replicate "hot-files" onto other
>>S Lty lmasds

Carnegie Mellon University Qatar




How Many Replicas?

* TJo measure file how "hot” a file is, the NS can keep track of
the number of requests to a file:

* num_requests: number of read requests to a file

* Joscale replicas linearly with the increase of num_requests:

* num_replicas = & * num_ requests

Carnegie Mellon University Qatar




How Many Replicas?

 However, we need to limit the number of replicas:

* num_replicas = min(a * num_ requests, upper_bound)

* Thisis still too sensitive/fine-grained:

* num_requests_coarse: num_ requests rounded to the nearest
multiple of 20

* num_replicas = min(a * num_requests_coarse, upper_bound)

Ao igdsglagy il =i aaly

Carnegie Mellon University Qatar




How Many Replicas?

Number of Requests
1 100 500 50 50 1
)
(]
O
a
Q
o
G
o
| -
Q
O
e
-}
=
Time

Ao igdsglagy l =i aaly

Carnegie Mellon University Qatar




When to Replicate?

* N

S would want to store num_requests as file metadata

owever, how can we determine and in turn update

num_requests over time?

We know that Clients invoke read operations on storage servers

Therefore, every "read” lock request from a client is deemed as a
read operation

Afterward, NS increments num_requests
Reavaluate num_replicas
Ao agdselagy gl =i 2 aly

Carnegie Mellon University Qatar




How can we Replicate?

NS first elects one or many SSs to store the replicas

NS commands each elected SS to copy the file from the
original SS

* Therefore, the metadata of a file now includes a set of SSs
instead of a single SS

Carnegie Mellon University Qatar




How to Update Replicas

* When a Client requests a write lock on a file:

= |t causes the NS to invalidate all the replicas except the locked one

* |nvalidation is achieved by commanding those SSs hosting
replicas to delete the file

 \When the Client unlocks the file, the NS commands SSs to

copy the modified file
P dgdyglagy il =i oy

Carnegie Mellon University Qatar




The Command Interface

* One new operation available to the NS:

 COPY (path P, StorageStub S)
copies file with path P from StorageStub S

Carnegie Mellon University Qatar




Implementation Tips: Synchronization

* (Consider a Lock object that:
* Stores alist of "Requests” (represents a read/write Request)

* |sassignedto each Node in your tree

e Inthenew LOCK/UNLOCK method:

 J[raverse your tree
 (Obtain/Release locks as necessary

Carnegie Mellon University Qatar




Implementation Tips: Replication

» Keep track of the number of reads for files:

* You need to modity your Tree data structure

* (reate a formula for calculating the number of
replicas given the number of reads

e Similar to the one shown earlier

o After each read/write:

Update the number of replicas

Carnegie Mellon University Qatar




