
15440 - Fall 2017

Project 2

Implementation Notes

15440 - Fall 2017

1



1 Summary of Changes since Project 1

The naming server supports �le and directory locking. The Service in-
terface therefore has two new methods: lock and unlock. Each node in the
directory tree on the naming server now has a read-write lock. Locks for a path
are always taken in order from root to �nal node. Threads requesting the lock
are granted it in �rst-come �rst-serve order, with the exception that threads
requesting shared access are granted the lock at the same time (if there is a
block of threads in the queue all requesting shared access, then when one of
them gets shared access, they all do, until the next thread requesting exclusive
access, or until the end of the queue).

The naming and storage servers support replication. Read and write accesses
are noted on the naming server when �le lock requests occur. The storage server
Command interface provides the new copy method to support replication.

Path objects now implement Comparable. This is meant to allow an applica-
tion to choose a locking order if multiple locks need to be taken. All applications
must take locks in the order de�ned by Path.compareTo. See the big comment
by that method for further explanation.

StorageServer now has an additional constructor StorageServer(File, int,

int), which takes two port numbers to force the client/storage and command
interfaces to use the given ports.

2



2 Locking

Naming server methods should not all be synchronized anymore. The read-
write locks now provide most of the mutual exclusion needed. There are a few
exceptions, however. A student that leaves all methods synchronized is not re-
lying on the read-write locks.

Locking must be done carefully. For example, it is not acceptable to traverse
a path and get a list of directory tree objects along that path, and then lock each
one. This is because if the parent of an object remains unlocked, another thread
can unlink the object from the tree after the path is traversed, but before the
object is locked. Then, the locking thread has locked an object that no longer
exists. When locking, it is necessary to lock an object, then consult its child list,
and then attempt to lock the next object, and so on. Locking an object should
prevent its child list from being modi�ed (at least by well-behaved clients).

It is also important to unlock all objects that have been locked when locking
fails. For example, if three components are locked before it is discovered that
the fourth does not exist, then those three components must all be unlocked.

It is desirable, but not necessary, to make the locks interruptible. This is
because when the naming server is shut down, a large number of service threads
may still be pooled in lock queues. It is better to stop these threads as soon as
possible, instead of permitting them to take the locks and continue performing
operations on naming server data structures.

External control of locks is deliberate. This allows an external tool to take a
lock, perform several operations atomically, & then release it. Without explicit
external locking, complex atomic operations cannot be performed by a client.

Attempting to take the same lock twice for reading can result in deadlock
if another client tries to take the lock for exclusive access in between the 2 at-
tempts.

Taking a lock for shared access on a directory ensures that its child list will
not be altered, but does not ensure that the children will not be changed. A
subdirectory's child list can be altered, and a �le can be written. Taking a lock
for exclusive access on a directory ensures that neither it nor the entire subdi-
rectories under it are being accessed in any way by any client.

All the above statements concerning locking assume that it has been imple-
mented correctly, and that all clients are well-behaved. Operations that modify
a �le or directory should lock that �le or directory for exclusive access. Op-
erations that work on an entire directory tree at once should lock the root for
exclusive access. Operations that read the state or contents of one �le or direc-
tory should take the lock on that object for shared access.

3



3 Replication

Since the naming server has no good way to measure actual read and write
requests on the storage servers, it considers a lock for shared access to be a read,
and a lock for exclusive access to be a write.

During replication, the naming server should allow threads other than the
current reader to read existing copies of the �le. It is acceptable to make the
reader that caused the replication wait for the replication to complete. However,
the gold standard in this is to make replication asynchronous with all readers.
Caution must be used if this is attempted however - if the asynchronous replica-
tion thread has to take the lock on the object for shared access, it is important
that it will not go to the end of the lock queue when attempting to do this, but
take the lock together with the current thread. It would be a mistake if the
replication thread went into the queue after an exclusive access thread, which
will invalidate the copy it has not yet created.

You should be careful about race conditions related to replication. A sec-
ond reader should not be able to access a copy of a �le that has not yet been
completely downloaded by the server making the copy. On the other hand, if
this other reader causes another replication, then it should not go to the same
server that is still currently downloading a copy.

Threads reading the same �le may still access it concurrently, even though
there are locks, because these locks allow shared access. It may still be necessary
to make a few synchronized statements when these threads access shared server
or per-�le data structures. Depending on the design, this may be especially
important in the code for replication.

The storage server copy method should support large �les - up to 231 bytes
in size (�le sizes in the �le system are reported as longs). However, it is not
practical to copy that many bytes at a time, in great part because the JVM
cannot support an array whose size is not an int, or even one whose size is just
very large. Therefore, the copy method should download one block at a time,
where a block can be 1MB or some other size chosen by the implementor.

4


	Summary of Changes since Project 1
	Locking
	Replication

